IF YOU WOULD LIKE TO GET AN ACCOUNT, please write an
email to Administrator. User accounts are meant only to access repo
and report issues and/or generate pull requests.
This is a purpose-specific Git hosting for
BaseALT
projects. Thank you for your understanding!
Только зарегистрированные пользователи имеют доступ к сервису!
Для получения аккаунта, обратитесь к администратору.
commit 89aba4c26fae4e459f755a18912845c348ee48f3 upstream.
Add missing earlyclobber annotation to size, to, and tmp2 operands of the
__clear_user() inline assembly since they are modified or written to before
the last usage of all input operands. This can lead to incorrect register
allocation for the inline assembly.
Fixes: 6c2a9e6df604 ("[S390] Use alternative user-copy operations for new hardware.")
Reported-by: Mark Rutland <mark.rutland@arm.com>
Link: https://lore.kernel.org/all/20230321122514.1743889-3-mark.rutland@arm.com/
Cc: stable@vger.kernel.org
Reviewed-by: Gerald Schaefer <gerald.schaefer@linux.ibm.com>
Signed-off-by: Heiko Carstens <hca@linux.ibm.com>
Signed-off-by: Vasily Gorbik <gor@linux.ibm.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit a52e5cdbe8016d4e3e6322fd93d71afddb9a5af9 upstream.
The code which handles the ipl report is searching for a free location
in memory where it could copy the component and certificate entries to.
It checks for intersection between the sections required for the kernel
and the component/certificate data area, but fails to check whether
the data structures linking these data areas together intersect.
This might cause the iplreport copy code to overwrite the iplreport
itself. Fix this by adding two addtional intersection checks.
Cc: <stable@vger.kernel.org>
Fixes: 9641b8cc733f ("s390/ipl: read IPL report at early boot")
Signed-off-by: Sven Schnelle <svens@linux.ibm.com>
Reviewed-by: Vasily Gorbik <gor@linux.ibm.com>
Signed-off-by: Vasily Gorbik <gor@linux.ibm.com>
Signed-off-by: Sven Schnelle <svens@linux.ibm.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit a494398bde273143c2352dd373cad8211f7d94b2 upstream.
Nathan Chancellor reports that the s390 vmlinux fails to link with
GNU ld < 2.36 since commit 99cb0d917ffa ("arch: fix broken BuildID
for arm64 and riscv").
It happens for defconfig, or more specifically for CONFIG_EXPOLINE=y.
$ s390x-linux-gnu-ld --version | head -n1
GNU ld (GNU Binutils for Debian) 2.35.2
$ make -s ARCH=s390 CROSS_COMPILE=s390x-linux-gnu- allnoconfig
$ ./scripts/config -e CONFIG_EXPOLINE
$ make -s ARCH=s390 CROSS_COMPILE=s390x-linux-gnu- olddefconfig
$ make -s ARCH=s390 CROSS_COMPILE=s390x-linux-gnu-
`.exit.text' referenced in section `.s390_return_reg' of drivers/base/dd.o: defined in discarded section `.exit.text' of drivers/base/dd.o
make[1]: *** [scripts/Makefile.vmlinux:34: vmlinux] Error 1
make: *** [Makefile:1252: vmlinux] Error 2
arch/s390/kernel/vmlinux.lds.S wants to keep EXIT_TEXT:
.exit.text : {
EXIT_TEXT
}
But, at the same time, EXIT_TEXT is thrown away by DISCARD because
s390 does not define RUNTIME_DISCARD_EXIT.
I still do not understand why the latter wins after 99cb0d917ffa,
but defining RUNTIME_DISCARD_EXIT seems correct because the comment
line in arch/s390/kernel/vmlinux.lds.S says:
/*
* .exit.text is discarded at runtime, not link time,
* to deal with references from __bug_table
*/
Nathan also found that binutils commit 21401fc7bf67 ("Duplicate output
sections in scripts") cured this issue, so we cannot reproduce it with
binutils 2.36+, but it is better to not rely on it.
Fixes: 99cb0d917ffa ("arch: fix broken BuildID for arm64 and riscv")
Link: https://lore.kernel.org/all/Y7Jal56f6UBh1abE@dev-arch.thelio-3990X/
Reported-by: Nathan Chancellor <nathan@kernel.org>
Signed-off-by: Masahiro Yamada <masahiroy@kernel.org>
Link: https://lore.kernel.org/r/20230105031306.1455409-1-masahiroy@kernel.org
Signed-off-by: Heiko Carstens <hca@linux.ibm.com>
Signed-off-by: Tom Saeger <tom.saeger@oracle.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit f2d3155e2a6bac44d16f04415a321e8707d895c6 upstream.
Migration mode is a VM attribute which enables tracking of changes in
storage attributes (PGSTE). It assumes dirty tracking is enabled on all
memslots to keep a dirty bitmap of pages with changed storage attributes.
When enabling migration mode, we currently check that dirty tracking is
enabled for all memslots. However, userspace can disable dirty tracking
without disabling migration mode.
Since migration mode is pointless with dirty tracking disabled, disable
migration mode whenever userspace disables dirty tracking on any slot.
Also update the documentation to clarify that dirty tracking must be
enabled when enabling migration mode, which is already enforced by the
code in kvm_s390_vm_start_migration().
Also highlight in the documentation for KVM_S390_GET_CMMA_BITS that it
can now fail with -EINVAL when dirty tracking is disabled while
migration mode is on. Move all the error codes to a table so this stays
readable.
To disable migration mode, slots_lock should be held, which is taken
in kvm_set_memory_region() and thus held in
kvm_arch_prepare_memory_region().
Restructure the prepare code a bit so all the sanity checking is done
before disabling migration mode. This ensures migration mode isn't
disabled when some sanity check fails.
Cc: stable@vger.kernel.org
Fixes: 190df4a212a7 ("KVM: s390: CMMA tracking, ESSA emulation, migration mode")
Signed-off-by: Nico Boehr <nrb@linux.ibm.com>
Reviewed-by: Janosch Frank <frankja@linux.ibm.com>
Reviewed-by: Claudio Imbrenda <imbrenda@linux.ibm.com>
Link: https://lore.kernel.org/r/20230127140532.230651-2-nrb@linux.ibm.com
Message-Id: <20230127140532.230651-2-nrb@linux.ibm.com>
[frankja@linux.ibm.com: fixed commit message typo, moved api.rst error table upwards]
Signed-off-by: Janosch Frank <frankja@linux.ibm.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit cd57953936f2213dfaccce10d20f396956222c7d upstream.
Recent test_kprobe_missed kprobes kunit test uncovers the following
problem. Once kprobe is triggered from another kprobe (kprobe reenter),
all future kprobes on this cpu are considered as kprobe reenter, thus
pre_handler and post_handler are not being called and kprobes are counted
as "missed".
Commit b9599798f953 ("[S390] kprobes: activation and deactivation")
introduced a simpler scheme for kprobes (de)activation and status
tracking by using push_kprobe/pop_kprobe, which supposed to work for
both initial kprobe entry as well as kprobe reentry and helps to avoid
handling those two cases differently. The problem is that a sequence of
calls in case of kprobes reenter:
push_kprobe() <- NULL (current_kprobe)
push_kprobe() <- kprobe1 (current_kprobe)
pop_kprobe() -> kprobe1 (current_kprobe)
pop_kprobe() -> kprobe1 (current_kprobe)
leaves "kprobe1" as "current_kprobe" on this cpu, instead of setting it
to NULL. In fact push_kprobe/pop_kprobe can only store a single state
(there is just one prev_kprobe in kprobe_ctlblk). Which is a hack but
sufficient, there is no need to have another prev_kprobe just to store
NULL. To make a simple and backportable fix simply reset "prev_kprobe"
when kprobe is poped from this "stack". No need to worry about
"kprobe_status" in this case, because its value is only checked when
current_kprobe != NULL.
Cc: stable@vger.kernel.org
Fixes: b9599798f953 ("[S390] kprobes: activation and deactivation")
Reviewed-by: Heiko Carstens <hca@linux.ibm.com>
Signed-off-by: Vasily Gorbik <gor@linux.ibm.com>
Signed-off-by: Heiko Carstens <hca@linux.ibm.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 42e19e6f04984088b6f9f0507c4c89a8152d9730 upstream.
Recent test_kprobe_missed kprobes kunit test uncovers the following error
(reported when CONFIG_DEBUG_ATOMIC_SLEEP is enabled):
BUG: sleeping function called from invalid context at kernel/locking/mutex.c:580
in_atomic(): 0, irqs_disabled(): 1, non_block: 0, pid: 662, name: kunit_try_catch
preempt_count: 0, expected: 0
RCU nest depth: 0, expected: 0
no locks held by kunit_try_catch/662.
irq event stamp: 280
hardirqs last enabled at (279): [<00000003e60a3d42>] __do_pgm_check+0x17a/0x1c0
hardirqs last disabled at (280): [<00000003e3bd774a>] kprobe_exceptions_notify+0x27a/0x318
softirqs last enabled at (0): [<00000003e3c5c890>] copy_process+0x14a8/0x4c80
softirqs last disabled at (0): [<0000000000000000>] 0x0
CPU: 46 PID: 662 Comm: kunit_try_catch Tainted: G N 6.2.0-173644-g44c18d77f0c0 #2
Hardware name: IBM 3931 A01 704 (LPAR)
Call Trace:
[<00000003e60a3a00>] dump_stack_lvl+0x120/0x198
[<00000003e3d02e82>] __might_resched+0x60a/0x668
[<00000003e60b9908>] __mutex_lock+0xc0/0x14e0
[<00000003e60bad5a>] mutex_lock_nested+0x32/0x40
[<00000003e3f7b460>] unregister_kprobe+0x30/0xd8
[<00000003e51b2602>] test_kprobe_missed+0xf2/0x268
[<00000003e51b5406>] kunit_try_run_case+0x10e/0x290
[<00000003e51b7dfa>] kunit_generic_run_threadfn_adapter+0x62/0xb8
[<00000003e3ce30f8>] kthread+0x2d0/0x398
[<00000003e3b96afa>] __ret_from_fork+0x8a/0xe8
[<00000003e60ccada>] ret_from_fork+0xa/0x40
The reason for this error report is that kprobes handling code failed
to restore irqs.
The problem is that when kprobe is triggered from another kprobe
post_handler current sequence of enable_singlestep / disable_singlestep
is the following:
enable_singlestep <- original kprobe (saves kprobe_saved_imask)
enable_singlestep <- kprobe triggered from post_handler (clobbers kprobe_saved_imask)
disable_singlestep <- kprobe triggered from post_handler (restores kprobe_saved_imask)
disable_singlestep <- original kprobe (restores wrong clobbered kprobe_saved_imask)
There is just one kprobe_ctlblk per cpu and both calls saves and
loads irq mask to kprobe_saved_imask. To fix the problem simply move
resume_execution (which calls disable_singlestep) before calling
post_handler. This also fixes the problem that post_handler is called
with pt_regs which were not yet adjusted after single-stepping.
Cc: stable@vger.kernel.org
Fixes: 4ba069b802c2 ("[S390] add kprobes support.")
Reviewed-by: Heiko Carstens <hca@linux.ibm.com>
Signed-off-by: Vasily Gorbik <gor@linux.ibm.com>
Signed-off-by: Heiko Carstens <hca@linux.ibm.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit e9c9cb90e76ffaabcc7ca8f275d9e82195fd6367 upstream.
When debugging vmlinux with QEMU + GDB, the following GDB error may
occur:
(gdb) c
Continuing.
Warning:
Cannot insert breakpoint -1.
Cannot access memory at address 0xffffffffffff95c0
Command aborted.
(gdb)
The reason is that, when .interp section is present, GDB tries to
locate the file specified in it in memory and put a number of
breakpoints there (see enable_break() function in gdb/solib-svr4.c).
Sometimes GDB finds a bogus location that matches its heuristics,
fails to set a breakpoint and stops. This makes further debugging
impossible.
The .interp section contains misleading information anyway (vmlinux
does not need ld.so), so fix by discarding it.
Signed-off-by: Ilya Leoshkevich <iii@linux.ibm.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Heiko Carstens <hca@linux.ibm.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
[ Upstream commit 7ab41c2c08a32132ba8c14624910e2fe8ce4ba4b ]
Historically calls to __decompress() didn't specify "out_len" parameter
on many architectures including s390, expecting that no writes beyond
uncompressed kernel image are performed. This has changed since commit
2aa14b1ab2c4 ("zstd: import usptream v1.5.2") which includes zstd library
commit 6a7ede3dfccb ("Reduce size of dctx by reutilizing dst buffer
(#2751)"). Now zstd decompression code might store literal buffer in
the unwritten portion of the destination buffer. Since "out_len" is
not set, it is considered to be unlimited and hence free to use for
optimization needs. On s390 this might corrupt initrd or ipl report
which are often placed right after the decompressor buffer. Luckily the
size of uncompressed kernel image is already known to the decompressor,
so to avoid the problem simply specify it in the "out_len" parameter.
Link: https://github.com/facebook/zstd/commit/6a7ede3dfccb
Signed-off-by: Vasily Gorbik <gor@linux.ibm.com>
Tested-by: Alexander Egorenkov <egorenar@linux.ibm.com>
Link: https://lore.kernel.org/r/patch-1.thread-41c676.git-41c676c2d153.your-ad-here.call-01675030179-ext-9637@work.hours
Signed-off-by: Heiko Carstens <hca@linux.ibm.com>
Signed-off-by: Sasha Levin <sashal@kernel.org>
commit 0e25498f8cd43c1b5aa327f373dd094e9a006da7 upstream.
There are two big uses of do_exit. The first is it's design use to be
the guts of the exit(2) system call. The second use is to terminate
a task after something catastrophic has happened like a NULL pointer
in kernel code.
Add a function make_task_dead that is initialy exactly the same as
do_exit to cover the cases where do_exit is called to handle
catastrophic failure. In time this can probably be reduced to just a
light wrapper around do_task_dead. For now keep it exactly the same so
that there will be no behavioral differences introducing this new
concept.
Replace all of the uses of do_exit that use it for catastraphic
task cleanup with make_task_dead to make it clear what the code
is doing.
As part of this rename rewind_stack_do_exit
rewind_stack_and_make_dead.
Signed-off-by: "Eric W. Biederman" <ebiederm@xmission.com>
Signed-off-by: Eric Biggers <ebiggers@google.com>
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit 42400d99e9f0728c17240edb9645637ead40f6b9 ]
Use READ_ONCE() before cmpxchg() to prevent that the compiler generates
code that fetches the to be compared old value several times from memory.
Reviewed-by: Christian Borntraeger <borntraeger@linux.ibm.com>
Acked-by: Christian Borntraeger <borntraeger@linux.ibm.com>
Reviewed-by: Claudio Imbrenda <imbrenda@linux.ibm.com>
Link: https://lore.kernel.org/r/20230109145456.2895385-1-hca@linux.ibm.com
Signed-off-by: Heiko Carstens <hca@linux.ibm.com>
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit 0d4d52361b6c29bf771acd4fa461f06d78fb2fac ]
Using DEBUG_H without a prefix is very generic and inconsistent with
other header guards in arch/s390/include/asm. In fact it collides with
the same name in the ath9k wireless driver though that depends on !S390
via disabled wireless support. Let's just use a consistent header guard
name and prevent possible future trouble.
Signed-off-by: Niklas Schnelle <schnelle@linux.ibm.com>
Signed-off-by: Heiko Carstens <hca@linux.ibm.com>
Signed-off-by: Sasha Levin <sashal@kernel.org>
commit e3f360db08d55a14112bd27454e616a24296a8b0 upstream.
Make sure that *ptr__ within arch_this_cpu_to_op_simple() is only
dereferenced once by using READ_ONCE(). Otherwise the compiler could
generate incorrect code.
Cc: <stable@vger.kernel.org>
Reviewed-by: Alexander Gordeev <agordeev@linux.ibm.com>
Signed-off-by: Heiko Carstens <hca@linux.ibm.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit c2337a40e04dde1692b5b0a46ecc59f89aaba8a1 upstream.
This commit addresses the following erroneous situation with file-based
kdump executed on a system with a valid IPL report.
On s390, a kdump kernel, its initrd and IPL report if present are loaded
into a special and reserved on boot memory region - crashkernel. When
a system crashes and kdump was activated before, the purgatory code
is entered first which swaps the crashkernel and [0 - crashkernel size]
memory regions. Only after that the kdump kernel is entered. For this
reason, the pointer to an IPL report in lowcore must point to the IPL report
after the swap and not to the address of the IPL report that was located in
crashkernel memory region before the swap. Failing to do so, makes the
kdump's decompressor try to read memory from the crashkernel memory region
which already contains the production's kernel memory.
The situation described above caused spontaneous kdump failures/hangs
on systems where the Secure IPL is activated because on such systems
an IPL report is always present. In that case kdump's decompressor tried
to parse an IPL report which frequently lead to illegal memory accesses
because an IPL report contains addresses to various data.
Cc: <stable@vger.kernel.org>
Fixes: 99feaa717e55 ("s390/kexec_file: Create ipl report and pass to next kernel")
Reviewed-by: Vasily Gorbik <gor@linux.ibm.com>
Signed-off-by: Alexander Egorenkov <egorenar@linux.ibm.com>
Signed-off-by: Heiko Carstens <hca@linux.ibm.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 0dd4cdccdab3d74bd86b868768a7dca216bcce7e upstream.
We recently experienced some weird huge time jumps in nested guests when
rebooting them in certain cases. After adding some debug code to the epoch
handling in vsie.c (thanks to David Hildenbrand for the idea!), it was
obvious that the "epdx" field (the multi-epoch extension) did not get set
to 0xff in case the "epoch" field was negative.
Seems like the code misses to copy the value from the epdx field from
the guest to the shadow control block. By doing so, the weird time
jumps are gone in our scenarios.
Link: https://bugzilla.redhat.com/show_bug.cgi?id=2140899
Fixes: 8fa1696ea781 ("KVM: s390: Multiple Epoch Facility support")
Signed-off-by: Thomas Huth <thuth@redhat.com>
Reviewed-by: Christian Borntraeger <borntraeger@linux.ibm.com>
Acked-by: David Hildenbrand <david@redhat.com>
Reviewed-by: Claudio Imbrenda <imbrenda@linux.ibm.com>
Reviewed-by: Janosch Frank <frankja@linux.ibm.com>
Cc: stable@vger.kernel.org # 4.19+
Link: https://lore.kernel.org/r/20221123090833.292938-1-thuth@redhat.com
Message-Id: <20221123090833.292938-1-thuth@redhat.com>
Signed-off-by: Janosch Frank <frankja@linux.ibm.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
[ Upstream commit f44e07a8afdd713ddc1a8832c39372fe5dd86895 ]
The size of the TOD programmable field was incorrectly increased from
four to eight bytes with commit 1a2c5840acf9 ("s390/dump: cleanup CPU
save area handling").
This leads to an elf notes section NT_S390_TODPREG which has a size of
eight instead of four bytes in case of kdump, however even worse is
that the contents is incorrect: it is supposed to contain only the
contents of the TOD programmable field, but in fact contains a mix of
the TOD programmable field (32 bit upper bits) and parts of the CPU
timer register (lower 32 bits).
Fix this by simply changing the size of the todpreg field within the
save area structure. This will implicitly also fix the size of the
corresponding elf notes sections.
This also gets rid of this compile time warning:
in function ‘fortify_memcpy_chk’,
inlined from ‘save_area_add_regs’ at arch/s390/kernel/crash_dump.c:99:2:
./include/linux/fortify-string.h:413:25: error: call to ‘__read_overflow2_field’
declared with attribute warning: detected read beyond size of field
(2nd parameter); maybe use struct_group()? [-Werror=attribute-warning]
413 | __read_overflow2_field(q_size_field, size);
| ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Fixes: 1a2c5840acf9 ("s390/dump: cleanup CPU save area handling")
Reviewed-by: Christian Borntraeger <borntraeger@linux.ibm.com>
Signed-off-by: Heiko Carstens <hca@linux.ibm.com>
Signed-off-by: Alexander Gordeev <agordeev@linux.ibm.com>
Signed-off-by: Sasha Levin <sashal@kernel.org>
commit 6ec803025cf3173a57222e4411097166bd06fa98 upstream.
For some exception types the instruction address points behind the
instruction that caused the exception. Take that into account and add
the missing exception table entry.
Cc: <stable@vger.kernel.org>
Fixes: f058599e22d5 ("s390/pci: Fix s390_mmio_read/write with MIO")
Reviewed-by: Niklas Schnelle <schnelle@linux.ibm.com>
Signed-off-by: Heiko Carstens <hca@linux.ibm.com>
Signed-off-by: Vasily Gorbik <gor@linux.ibm.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit a262d3ad6a433e4080cecd0a8841104a5906355e upstream.
For some exception types the instruction address points behind the
instruction that caused the exception. Take that into account and add
the missing exception table entry.
Cc: <stable@vger.kernel.org>
Reviewed-by: Vasily Gorbik <gor@linux.ibm.com>
Signed-off-by: Heiko Carstens <hca@linux.ibm.com>
Signed-off-by: Vasily Gorbik <gor@linux.ibm.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit c9305b6c1f52060377c72aebe3a701389e9f3172 upstream.
Add proper alignment for .nospec_call_table and .nospec_return_table in
vmlinux.
[hca@linux.ibm.com]: The problem with the missing alignment of the nospec
tables exist since a long time, however only since commit e6ed91fd0768
("s390/alternatives: remove padding generation code") and with
CONFIG_RELOCATABLE=n the kernel may also crash at boot time.
The above named commit reduced the size of struct alt_instr by one byte,
so its new size is 11 bytes. Therefore depending on the number of cpu
alternatives the size of the __alt_instructions array maybe odd, which
again also causes that the addresses of the nospec tables will be odd.
If the address of __nospec_call_start is odd and the kernel is compiled
With CONFIG_RELOCATABLE=n the compiler may generate code that loads the
address of __nospec_call_start with a 'larl' instruction.
This will generate incorrect code since the 'larl' instruction only works
with even addresses. In result the members of the nospec tables will be
accessed with an off-by-one offset, which subsequently may lead to
addressing exceptions within __nospec_revert().
Fixes: f19fbd5ed642 ("s390: introduce execute-trampolines for branches")
Signed-off-by: Josh Poimboeuf <jpoimboe@kernel.org>
Link: https://lore.kernel.org/r/8719bf1ce4a72ebdeb575200290094e9ce047bcc.1661557333.git.jpoimboe@kernel.org
Cc: <stable@vger.kernel.org> # 4.16
Reviewed-by: Heiko Carstens <hca@linux.ibm.com>
Signed-off-by: Heiko Carstens <hca@linux.ibm.com>
Signed-off-by: Vasily Gorbik <gor@linux.ibm.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 7c8d42fdf1a84b1a0dd60d6528309c8ec127e87c upstream.
The alignment check in prepare_hugepage_range() is wrong for 2 GB
hugepages, it only checks for 1 MB hugepage alignment.
This can result in kernel crash in __unmap_hugepage_range() at the
BUG_ON(start & ~huge_page_mask(h)) alignment check, for mappings
created with MAP_FIXED at unaligned address.
Fix this by correctly handling multiple hugepage sizes, similar to the
generic version of prepare_hugepage_range().
Fixes: d08de8e2d867 ("s390/mm: add support for 2GB hugepages")
Cc: <stable@vger.kernel.org> # 4.8+
Acked-by: Alexander Gordeev <agordeev@linux.ibm.com>
Signed-off-by: Gerald Schaefer <gerald.schaefer@linux.ibm.com>
Signed-off-by: Vasily Gorbik <gor@linux.ibm.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
[ Upstream commit 7b6670b03641ac308aaa6fa2e6f964ac993b5ea3 ]
When booting under KVM the following error messages are issued:
hypfs.7f5705: The hardware system does not support hypfs
hypfs.7a79f0: Initialization of hypfs failed with rc=-61
Demote the severity of first message from "error" to "info" and issue
the second message only in other error cases.
Signed-off-by: Juergen Gross <jgross@suse.com>
Acked-by: Heiko Carstens <hca@linux.ibm.com>
Acked-by: Christian Borntraeger <borntraeger@linux.ibm.com>
Link: https://lore.kernel.org/r/20220620094534.18967-1-jgross@suse.com
[arch/s390/hypfs/hypfs_diag.c changed description]
Signed-off-by: Alexander Gordeev <agordeev@linux.ibm.com>
Signed-off-by: Sasha Levin <sashal@kernel.org>
commit 41ac42f137080bc230b5882e3c88c392ab7f2d32 upstream.
For non-protection pXd_none() page faults in do_dat_exception(), we
call do_exception() with access == (VM_READ | VM_WRITE | VM_EXEC).
In do_exception(), vma->vm_flags is checked against that before
calling handle_mm_fault().
Since commit 92f842eac7ee3 ("[S390] store indication fault optimization"),
we call handle_mm_fault() with FAULT_FLAG_WRITE, when recognizing that
it was a write access. However, the vma flags check is still only
checking against (VM_READ | VM_WRITE | VM_EXEC), and therefore also
calling handle_mm_fault() with FAULT_FLAG_WRITE in cases where the vma
does not allow VM_WRITE.
Fix this by changing access check in do_exception() to VM_WRITE only,
when recognizing write access.
Link: https://lkml.kernel.org/r/20220811103435.188481-3-david@redhat.com
Fixes: 92f842eac7ee3 ("[S390] store indication fault optimization")
Cc: <stable@vger.kernel.org>
Reported-by: David Hildenbrand <david@redhat.com>
Reviewed-by: Heiko Carstens <hca@linux.ibm.com>
Signed-off-by: Gerald Schaefer <gerald.schaefer@linux.ibm.com>
Signed-off-by: Vasily Gorbik <gor@linux.ibm.com>
Signed-off-by: Gerald Schaefer <gerald.schaefer@linux.ibm.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 13cccafe0edcd03bf1c841de8ab8a1c8e34f77d9 upstream.
The pointers for guarded storage and runtime instrumentation control
blocks are stored in the thread_struct of the associated task. These
pointers are initially copied on fork() via arch_dup_task_struct()
and then cleared via copy_thread() before fork() returns. If fork()
happens to fail after the initial task dup and before copy_thread(),
the newly allocated task and associated thread_struct memory are
freed via free_task() -> arch_release_task_struct(). This results in
a double free of the guarded storage and runtime info structs
because the fields in the failed task still refer to memory
associated with the source task.
This problem can manifest as a BUG_ON() in set_freepointer() (with
CONFIG_SLAB_FREELIST_HARDENED enabled) or KASAN splat (if enabled)
when running trinity syscall fuzz tests on s390x. To avoid this
problem, clear the associated pointer fields in
arch_dup_task_struct() immediately after the new task is copied.
Note that the RI flag is still cleared in copy_thread() because it
resides in thread stack memory and that is where stack info is
copied.
Signed-off-by: Brian Foster <bfoster@redhat.com>
Fixes: 8d9047f8b967c ("s390/runtime instrumentation: simplify task exit handling")
Fixes: 7b83c6297d2fc ("s390/guarded storage: simplify task exit handling")
Cc: <stable@vger.kernel.org> # 4.15
Reviewed-by: Gerald Schaefer <gerald.schaefer@linux.ibm.com>
Reviewed-by: Heiko Carstens <hca@linux.ibm.com>
Link: https://lore.kernel.org/r/20220816155407.537372-1-bfoster@redhat.com
Signed-off-by: Vasily Gorbik <gor@linux.ibm.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 0828c4a39be57768b8788e8cbd0d84683ea757e5 upstream.
commit e23a8020ce4e ("s390/kexec_file: Signature verification prototype")
adds support for KEXEC_SIG verification with keys from platform keyring
but the built-in keys and secondary keyring are not used.
Add support for the built-in keys and secondary keyring as x86 does.
Fixes: e23a8020ce4e ("s390/kexec_file: Signature verification prototype")
Cc: stable@vger.kernel.org
Cc: Philipp Rudo <prudo@linux.ibm.com>
Cc: kexec@lists.infradead.org
Cc: keyrings@vger.kernel.org
Cc: linux-security-module@vger.kernel.org
Signed-off-by: Michal Suchanek <msuchanek@suse.de>
Reviewed-by: "Lee, Chun-Yi" <jlee@suse.com>
Acked-by: Baoquan He <bhe@redhat.com>
Signed-off-by: Coiby Xu <coxu@redhat.com>
Acked-by: Heiko Carstens <hca@linux.ibm.com>
Signed-off-by: Mimi Zohar <zohar@linux.ibm.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 918e75f77af7d2e049bb70469ec0a2c12782d96a upstream.
This patch slightly reworks the s390 arch_get_random_seed_{int,long}
implementation: Make sure the CPACF trng instruction is never
called in any interrupt context. This is done by adding an
additional condition in_task().
Justification:
There are some constrains to satisfy for the invocation of the
arch_get_random_seed_{int,long}() functions:
- They should provide good random data during kernel initialization.
- They should not be called in interrupt context as the TRNG
instruction is relatively heavy weight and may for example
make some network loads cause to timeout and buck.
However, it was not clear what kind of interrupt context is exactly
encountered during kernel init or network traffic eventually calling
arch_get_random_seed_long().
After some days of investigations it is clear that the s390
start_kernel function is not running in any interrupt context and
so the trng is called:
Jul 11 18:33:39 t35lp54 kernel: [<00000001064e90ca>] arch_get_random_seed_long.part.0+0x32/0x70
Jul 11 18:33:39 t35lp54 kernel: [<000000010715f246>] random_init+0xf6/0x238
Jul 11 18:33:39 t35lp54 kernel: [<000000010712545c>] start_kernel+0x4a4/0x628
Jul 11 18:33:39 t35lp54 kernel: [<000000010590402a>] startup_continue+0x2a/0x40
The condition in_task() is true and the CPACF trng provides random data
during kernel startup.
The network traffic however, is more difficult. A typical call stack
looks like this:
Jul 06 17:37:07 t35lp54 kernel: [<000000008b5600fc>] extract_entropy.constprop.0+0x23c/0x240
Jul 06 17:37:07 t35lp54 kernel: [<000000008b560136>] crng_reseed+0x36/0xd8
Jul 06 17:37:07 t35lp54 kernel: [<000000008b5604b8>] crng_make_state+0x78/0x340
Jul 06 17:37:07 t35lp54 kernel: [<000000008b5607e0>] _get_random_bytes+0x60/0xf8
Jul 06 17:37:07 t35lp54 kernel: [<000000008b56108a>] get_random_u32+0xda/0x248
Jul 06 17:37:07 t35lp54 kernel: [<000000008aefe7a8>] kfence_guarded_alloc+0x48/0x4b8
Jul 06 17:37:07 t35lp54 kernel: [<000000008aeff35e>] __kfence_alloc+0x18e/0x1b8
Jul 06 17:37:07 t35lp54 kernel: [<000000008aef7f10>] __kmalloc_node_track_caller+0x368/0x4d8
Jul 06 17:37:07 t35lp54 kernel: [<000000008b611eac>] kmalloc_reserve+0x44/0xa0
Jul 06 17:37:07 t35lp54 kernel: [<000000008b611f98>] __alloc_skb+0x90/0x178
Jul 06 17:37:07 t35lp54 kernel: [<000000008b6120dc>] __napi_alloc_skb+0x5c/0x118
Jul 06 17:37:07 t35lp54 kernel: [<000000008b8f06b4>] qeth_extract_skb+0x13c/0x680
Jul 06 17:37:07 t35lp54 kernel: [<000000008b8f6526>] qeth_poll+0x256/0x3f8
Jul 06 17:37:07 t35lp54 kernel: [<000000008b63d76e>] __napi_poll.constprop.0+0x46/0x2f8
Jul 06 17:37:07 t35lp54 kernel: [<000000008b63dbec>] net_rx_action+0x1cc/0x408
Jul 06 17:37:07 t35lp54 kernel: [<000000008b937302>] __do_softirq+0x132/0x6b0
Jul 06 17:37:07 t35lp54 kernel: [<000000008abf46ce>] __irq_exit_rcu+0x13e/0x170
Jul 06 17:37:07 t35lp54 kernel: [<000000008abf531a>] irq_exit_rcu+0x22/0x50
Jul 06 17:37:07 t35lp54 kernel: [<000000008b922506>] do_io_irq+0xe6/0x198
Jul 06 17:37:07 t35lp54 kernel: [<000000008b935826>] io_int_handler+0xd6/0x110
Jul 06 17:37:07 t35lp54 kernel: [<000000008b9358a6>] psw_idle_exit+0x0/0xa
Jul 06 17:37:07 t35lp54 kernel: ([<000000008ab9c59a>] arch_cpu_idle+0x52/0xe0)
Jul 06 17:37:07 t35lp54 kernel: [<000000008b933cfe>] default_idle_call+0x6e/0xd0
Jul 06 17:37:07 t35lp54 kernel: [<000000008ac59f4e>] do_idle+0xf6/0x1b0
Jul 06 17:37:07 t35lp54 kernel: [<000000008ac5a28e>] cpu_startup_entry+0x36/0x40
Jul 06 17:37:07 t35lp54 kernel: [<000000008abb0d90>] smp_start_secondary+0x148/0x158
Jul 06 17:37:07 t35lp54 kernel: [<000000008b935b9e>] restart_int_handler+0x6e/0x90
which confirms that the call is in softirq context. So in_task() covers exactly
the cases where we want to have CPACF trng called: not in nmi, not in hard irq,
not in soft irq but in normal task context and during kernel init.
Signed-off-by: Harald Freudenberger <freude@linux.ibm.com>
Acked-by: Jason A. Donenfeld <Jason@zx2c4.com>
Reviewed-by: Juergen Christ <jchrist@linux.ibm.com>
Link: https://lore.kernel.org/r/20220713131721.257907-1-freude@linux.ibm.com
Fixes: e4f74400308c ("s390/archrandom: simplify back to earlier design and initialize earlier")
[agordeev@linux.ibm.com changed desc, added Fixes and Link, removed -stable]
Signed-off-by: Alexander Gordeev <agordeev@linux.ibm.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 25deecb21c18ee29e3be8ac6177b2a9504c33d2d upstream.
Since commit 4c0f032d4963 ("s390/purgatory: Omit use of bin2c"),
s390 builds the purgatory without using bin2c.
Remove 'select BUILD_BIN2C' to avoid the unneeded build of bin2c.
Fixes: 4c0f032d4963 ("s390/purgatory: Omit use of bin2c")
Signed-off-by: Masahiro Yamada <masahiroy@kernel.org>
Link: https://lore.kernel.org/r/20220613170902.1775211-1-masahiroy@kernel.org
Signed-off-by: Alexander Gordeev <agordeev@linux.ibm.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit e4f74400308cb8abde5fdc9cad609c2aba32110c upstream.
s390x appears to present two RNG interfaces:
- a "TRNG" that gathers entropy using some hardware function; and
- a "DRBG" that takes in a seed and expands it.
Previously, the TRNG was wired up to arch_get_random_{long,int}(), but
it was observed that this was being called really frequently, resulting
in high overhead. So it was changed to be wired up to arch_get_random_
seed_{long,int}(), which was a reasonable decision. Later on, the DRBG
was then wired up to arch_get_random_{long,int}(), with a complicated
buffer filling thread, to control overhead and rate.
Fortunately, none of the performance issues matter much now. The RNG
always attempts to use arch_get_random_seed_{long,int}() first, which
means a complicated implementation of arch_get_random_{long,int}() isn't
really valuable or useful to have around. And it's only used when
reseeding, which means it won't hit the high throughput complications
that were faced before.
So this commit returns to an earlier design of just calling the TRNG in
arch_get_random_seed_{long,int}(), and returning false in arch_get_
random_{long,int}().
Part of what makes the simplification possible is that the RNG now seeds
itself using the TRNG at bootup. But this only works if the TRNG is
detected early in boot, before random_init() is called. So this commit
also causes that check to happen in setup_arch().
Cc: stable@vger.kernel.org
Cc: Harald Freudenberger <freude@linux.ibm.com>
Cc: Ingo Franzki <ifranzki@linux.ibm.com>
Cc: Juergen Christ <jchrist@linux.ibm.com>
Cc: Heiko Carstens <hca@linux.ibm.com>
Signed-off-by: Jason A. Donenfeld <Jason@zx2c4.com>
Link: https://lore.kernel.org/r/20220610222023.378448-1-Jason@zx2c4.com
Reviewed-by: Harald Freudenberger <freude@linux.ibm.com>
Acked-by: Heiko Carstens <hca@linux.ibm.com>
Signed-off-by: Alexander Gordeev <agordeev@linux.ibm.com>
Signed-off-by: Jason A. Donenfeld <Jason@zx2c4.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 3e35142ef99fe6b4fe5d834ad43ee13cca10a2dc upstream.
Since commit d1bcae833b32f1 ("ELF: Don't generate unused section
symbols") [1], binutils (v2.36+) started dropping section symbols that
it thought were unused. This isn't an issue in general, but with
kexec_file.c, gcc is placing kexec_arch_apply_relocations[_add] into a
separate .text.unlikely section and the section symbol ".text.unlikely"
is being dropped. Due to this, recordmcount is unable to find a non-weak
symbol in .text.unlikely to generate a relocation record against.
Address this by dropping the weak attribute from these functions.
Instead, follow the existing pattern of having architectures #define the
name of the function they want to override in their headers.
[1] https://sourceware.org/git/?p=binutils-gdb.git;a=commit;h=d1bcae833b32f1
[akpm@linux-foundation.org: arch/s390/include/asm/kexec.h needs linux/module.h]
Link: https://lkml.kernel.org/r/20220519091237.676736-1-naveen.n.rao@linux.vnet.ibm.com
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Signed-off-by: Naveen N. Rao <naveen.n.rao@linux.vnet.ibm.com>
Cc: "Eric W. Biederman" <ebiederm@xmission.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
[ Upstream commit be857b7f77d130dbbd47c91fc35198b040f35865 ]
Events CPU_CYCLES and INSTRUCTIONS can be submitted with two different
perf_event attribute::type values:
- PERF_TYPE_HARDWARE: when invoked via perf tool predefined events name
cycles or cpu-cycles or instructions.
- pmu->type: when invoked via perf tool event name cpu_cf/CPU_CYLCES/ or
cpu_cf/INSTRUCTIONS/. This invocation also selects the PMU to which
the event belongs.
Handle both type of invocations identical for events CPU_CYLCES and
INSTRUCTIONS. They address the same hardware.
The result is different when event modifier exclude_kernel is also set.
Invocation with event modifier for user space event counting fails.
Output before:
# perf stat -e cpum_cf/cpu_cycles/u -- true
Performance counter stats for 'true':
<not supported> cpum_cf/cpu_cycles/u
0.000761033 seconds time elapsed
0.000076000 seconds user
0.000725000 seconds sys
#
Output after:
# perf stat -e cpum_cf/cpu_cycles/u -- true
Performance counter stats for 'true':
349,613 cpum_cf/cpu_cycles/u
0.000844143 seconds time elapsed
0.000079000 seconds user
0.000800000 seconds sys
#
Fixes: 6a82e23f45fe ("s390/cpumf: Adjust registration of s390 PMU device drivers")
Signed-off-by: Thomas Richter <tmricht@linux.ibm.com>
Acked-by: Sumanth Korikkar <sumanthk@linux.ibm.com>
[agordeev@linux.ibm.com corrected commit ID of Fixes commit]
Signed-off-by: Alexander Gordeev <agordeev@linux.ibm.com>
Signed-off-by: Sasha Levin <sashal@kernel.org>
commit 3ae11dbcfac906a8c3a480e98660a823130dc16a upstream.
The switch to a keyed guest does not require a classic sske as the other
guest CPUs are not accessing the key before the switch is complete.
By using the NQ SSKE things are faster especially with multiple guests.
Signed-off-by: Christian Borntraeger <borntraeger@linux.ibm.com>
Suggested-by: Janis Schoetterl-Glausch <scgl@linux.ibm.com>
Reviewed-by: Claudio Imbrenda <imbrenda@linux.ibm.com>
Link: https://lore.kernel.org/r/20220530092706.11637-3-borntraeger@linux.ibm.com
Signed-off-by: Christian Borntraeger <borntraeger@linux.ibm.com>
Signed-off-by: Heiko Carstens <hca@linux.ibm.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 2e3df523256cb9836de8441e9c791a796759bb3c upstream.
S390x defines a get_cycles() function, but it does not do the usual
`#define get_cycles get_cycles` dance, making it impossible for generic
code to see if an arch-specific function was defined. While the
get_cycles() ifdef is not currently used, the following timekeeping
patch in this series will depend on the macro existing (or not existing)
when defining random_get_entropy().
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Arnd Bergmann <arnd@arndb.de>
Cc: Vasily Gorbik <gor@linux.ibm.com>
Cc: Alexander Gordeev <agordeev@linux.ibm.com>
Cc: Christian Borntraeger <borntraeger@linux.ibm.com>
Cc: Sven Schnelle <svens@linux.ibm.com>
Acked-by: Heiko Carstens <hca@linux.ibm.com>
Signed-off-by: Jason A. Donenfeld <Jason@zx2c4.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 5e054c820f59bbb9714d5767f5f476581c309ca8 upstream.
These symbols are currently part of the generic archrandom.h
interface, but are currently unused and can be removed.
Signed-off-by: Richard Henderson <rth@twiddle.net>
Signed-off-by: Mark Brown <broonie@kernel.org>
Link: https://lore.kernel.org/r/20200110145422.49141-4-broonie@kernel.org
Signed-off-by: Theodore Ts'o <tytso@mit.edu>
Signed-off-by: Jason A. Donenfeld <Jason@zx2c4.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
[ Upstream commit 6d5946274df1fff539a7eece458a43be733d1db8 ]
With large and many guest with storage keys it is possible to create
large latencies or stalls during initial key setting:
rcu: INFO: rcu_sched self-detected stall on CPU
rcu: 18-....: (2099 ticks this GP) idle=54e/1/0x4000000000000002 softirq=35598716/35598716 fqs=998
(t=2100 jiffies g=155867385 q=20879)
Task dump for CPU 18:
CPU 1/KVM R running task 0 1030947 256019 0x06000004
Call Trace:
sched_show_task
rcu_dump_cpu_stacks
rcu_sched_clock_irq
update_process_times
tick_sched_handle
tick_sched_timer
__hrtimer_run_queues
hrtimer_interrupt
do_IRQ
ext_int_handler
ptep_zap_key
The mmap lock is held during the page walking but since this is a
semaphore scheduling is still possible. Same for the kvm srcu.
To minimize overhead do this on every segment table entry or large page.
Signed-off-by: Christian Borntraeger <borntraeger@linux.ibm.com>
Reviewed-by: Alexander Gordeev <agordeev@linux.ibm.com>
Reviewed-by: Claudio Imbrenda <imbrenda@linux.ibm.com>
Link: https://lore.kernel.org/r/20220530092706.11637-2-borntraeger@linux.ibm.com
Signed-off-by: Christian Borntraeger <borntraeger@linux.ibm.com>
Signed-off-by: Heiko Carstens <hca@linux.ibm.com>
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit bd52cd5e23f134019b23f0c389db0f9a436e4576 ]
The argument of scatterwalk_unmap() is supposed to be the void* that was
returned by the previous scatterwalk_map() call.
The s390 AES-GCM implementation was instead passing the pointer to the
struct scatter_walk.
This doesn't actually break anything because scatterwalk_unmap() only uses
its argument under CONFIG_HIGHMEM and ARCH_HAS_FLUSH_ON_KUNMAP.
Fixes: bf7fa038707c ("s390/crypto: add s390 platform specific aes gcm support.")
Signed-off-by: Jann Horn <jannh@google.com>
Acked-by: Harald Freudenberger <freude@linux.ibm.com>
Link: https://lore.kernel.org/r/20220517143047.3054498-1-jannh@google.com
Signed-off-by: Heiko Carstens <hca@linux.ibm.com>
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit 63678eecec57fc51b778be3da35a397931287170 ]
gcc 12 does not (always) optimize away code that should only be generated
if parameters are constant and within in a certain range. This depends on
various obscure kernel config options, however in particular
PROFILE_ALL_BRANCHES can trigger this compile error:
In function ‘__atomic_add_const’,
inlined from ‘__preempt_count_add.part.0’ at ./arch/s390/include/asm/preempt.h:50:3:
./arch/s390/include/asm/atomic_ops.h:80:9: error: impossible constraint in ‘asm’
80 | asm volatile( \
| ^~~
Workaround this by simply disabling the optimization for
PROFILE_ALL_BRANCHES, since the kernel will be so slow, that this
optimization won't matter at all.
Reported-by: Thomas Richter <tmricht@linux.ibm.com>
Reviewed-by: Sven Schnelle <svens@linux.ibm.com>
Signed-off-by: Heiko Carstens <hca@linux.ibm.com>
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit 8b202ee218395319aec1ef44f72043e1fbaccdd6 ]
gcc-12 shows a lot of array bound warnings on s390. This is caused
by the S390_lowcore macro which uses a hardcoded address of 0.
Wrapping that with absolute_pointer() works, but gcc no longer knows
that a 12 bit displacement is sufficient to access lowcore. So it
emits instructions like 'lghi %r1,0; l %rx,xxx(%r1)' instead of a
single load/store instruction. As s390 stores variables often
read/written in lowcore, this is considered problematic. Therefore
disable -Warray-bounds on s390 for gcc-12 for the time being, until
there is a better solution.
Signed-off-by: Sven Schnelle <svens@linux.ibm.com>
Link: https://lore.kernel.org/r/yt9dzgkelelc.fsf@linux.ibm.com
Link: https://lore.kernel.org/r/20220422134308.1613610-1-svens@linux.ibm.com
Link: https://lore.kernel.org/r/20220425121742.3222133-1-svens@linux.ibm.com
Signed-off-by: Heiko Carstens <hca@linux.ibm.com>
Signed-off-by: Sasha Levin <sashal@kernel.org>
commit 663d34c8df98740f1e90241e78e456d00b3c6cad upstream.
Currently if z/VM guest is allowed to retrieve hypervisor performance
data globally for all guests (privilege class B) the query is formed in a
way to include all guests but the group name is left empty. This leads to
that z/VM guests which have access control group set not being included
in the results (even local vm).
Change the query group identifier from empty to "any" to retrieve
information about all guests from any groups (or without a group set).
Cc: stable@vger.kernel.org
Fixes: 31cb4bd31a48 ("[S390] Hypervisor filesystem (s390_hypfs) for z/VM")
Reviewed-by: Gerald Schaefer <gerald.schaefer@linux.ibm.com>
Signed-off-by: Vasily Gorbik <gor@linux.ibm.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit c2c224932fd0ee6854d6ebfc8d059c2bcad86606 upstream.
There is a race on concurrent 2KB-pgtables release paths when
both upper and lower halves of the containing parent page are
freed, one via page_table_free_rcu() + __tlb_remove_table(),
and the other via page_table_free(). The race might lead to a
corruption as result of remove of list item in page_table_free()
concurrently with __free_page() in __tlb_remove_table().
Let's assume first the lower and next the upper 2KB-pgtables are
freed from a page. Since both halves of the page are allocated
the tracking byte (bits 24-31 of the page _refcount) has value
of 0x03 initially:
CPU0 CPU1
---- ----
page_table_free_rcu() // lower half
{
// _refcount[31..24] == 0x03
...
atomic_xor_bits(&page->_refcount,
0x11U << (0 + 24));
// _refcount[31..24] <= 0x12
...
table = table | (1U << 0);
tlb_remove_table(tlb, table);
}
...
__tlb_remove_table()
{
// _refcount[31..24] == 0x12
mask = _table & 3;
// mask <= 0x01
...
page_table_free() // upper half
{
// _refcount[31..24] == 0x12
...
atomic_xor_bits(
&page->_refcount,
1U << (1 + 24));
// _refcount[31..24] <= 0x10
// mask <= 0x10
...
atomic_xor_bits(&page->_refcount,
mask << (4 + 24));
// _refcount[31..24] <= 0x00
// mask <= 0x00
...
if (mask != 0) // == false
break;
fallthrough;
...
if (mask & 3) // == false
...
else
__free_page(page); list_del(&page->lru);
^^^^^^^^^^^^^^^^^^ RACE! ^^^^^^^^^^^^^^^^^^^^^
} ...
}
The problem is page_table_free() releases the page as result of
lower nibble unset and __tlb_remove_table() observing zero too
early. With this update page_table_free() will use the similar
logic as page_table_free_rcu() + __tlb_remove_table(), and mark
the fragment as pending for removal in the upper nibble until
after the list_del().
In other words, the parent page is considered as unreferenced and
safe to release only when the lower nibble is cleared already and
unsetting a bit in upper nibble results in that nibble turned zero.
Cc: stable@vger.kernel.org
Suggested-by: Vlastimil Babka <vbabka@suse.com>
Reviewed-by: Gerald Schaefer <gerald.schaefer@linux.ibm.com>
Signed-off-by: Alexander Gordeev <agordeev@linux.ibm.com>
Signed-off-by: Heiko Carstens <hca@linux.ibm.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 812de04661c4daa7ac385c0dfd62594540538034 upstream.
With KVM_CAP_S390_USER_SIGP, there are only five Signal Processor
orders (CONDITIONAL EMERGENCY SIGNAL, EMERGENCY SIGNAL, EXTERNAL CALL,
SENSE, and SENSE RUNNING STATUS) which are intended for frequent use
and thus are processed in-kernel. The remainder are sent to userspace
with the KVM_CAP_S390_USER_SIGP capability. Of those, three orders
(RESTART, STOP, and STOP AND STORE STATUS) have the potential to
inject work back into the kernel, and thus are asynchronous.
Let's look for those pending IRQs when processing one of the in-kernel
SIGP orders, and return BUSY (CC2) if one is in process. This is in
agreement with the Principles of Operation, which states that only one
order can be "active" on a CPU at a time.
Cc: stable@vger.kernel.org
Suggested-by: David Hildenbrand <david@redhat.com>
Signed-off-by: Eric Farman <farman@linux.ibm.com>
Reviewed-by: Christian Borntraeger <borntraeger@linux.ibm.com>
Acked-by: David Hildenbrand <david@redhat.com>
Link: https://lore.kernel.org/r/20211213210550.856213-2-farman@linux.ibm.com
[borntraeger@linux.ibm.com: add stable tag]
Signed-off-by: Christian Borntraeger <borntraeger@linux.ibm.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
[ Upstream commit 41967a37b8eedfee15b81406a9f3015be90d3980 ]
arch_kexec_apply_relocations_add currently ignores all errors returned
by arch_kexec_do_relocs. This means that every unknown relocation is
silently skipped causing unpredictable behavior while the relocated code
runs. Fix this by checking for errors and fail kexec_file_load if an
unknown relocation type is encountered.
The problem was found after gcc changed its behavior and used
R_390_PLT32DBL relocations for brasl instruction and relied on ld to
resolve the relocations in the final link in case direct calls are
possible. As the purgatory code is only linked partially (option -r)
ld didn't resolve the relocations leaving them for arch_kexec_do_relocs.
But arch_kexec_do_relocs doesn't know how to handle R_390_PLT32DBL
relocations so they were silently skipped. This ultimately caused an
endless loop in the purgatory as the brasl instructions kept branching
to itself.
Fixes: 71406883fd35 ("s390/kexec_file: Add kexec_file_load system call")
Reported-by: Tao Liu <ltao@redhat.com>
Signed-off-by: Philipp Rudo <prudo@redhat.com>
Link: https://lore.kernel.org/r/20211208130741.5821-3-prudo@redhat.com
Signed-off-by: Heiko Carstens <hca@linux.ibm.com>
Signed-off-by: Sasha Levin <sashal@kernel.org>
commit 52d04d408185b7aa47628d2339c28ec70074e0ae upstream.
When running without MIO support, with pci=nomio or for devices which
are not MIO-capable the zPCI subsystem generates pseudo-MMIO addresses
to allow access to PCI BARs via MMIO based Linux APIs even though the
platform uses function handles and BAR numbers.
This is done by stashing an index into our global IOMAP array which
contains the function handle in the 16 most significant bits of the
addresses returned by ioremap() always setting the most significant bit.
On the other hand the MIO addresses assigned by the platform for use,
while requiring special instructions, allow PCI access with virtually
mapped physical addresses. Now the problem is that these MIO addresses
and our own pseudo-MMIO addresses may overlap, while functionally this
would not be a problem by itself this overlap is detected by common code
as both address types are added as resources in the iomem_resource tree.
This leads to the overlapping resource claim of either the MIO capable
or non-MIO capable devices with being rejected.
Since PCI is tightly coupled to the use of the iomem_resource tree, see
for example the code for request_mem_region(), we can't reasonably get
rid of the overlap being detected by keeping our pseudo-MMIO addresses
out of the iomem_resource tree.
Instead let's move the range used by our own pseudo-MMIO addresses by
starting at (1UL << 62) and only using addresses below (1UL << 63) thus
avoiding the range currently used for MIO addresses.
Fixes: c7ff0e918a7c ("s390/pci: deal with devices that have no support for MIO instructions")
Cc: stable@vger.kernel.org # 5.3+
Reviewed-by: Pierre Morel <pmorel@linux.ibm.com>
Signed-off-by: Niklas Schnelle <schnelle@linux.ibm.com>
Signed-off-by: Heiko Carstens <hca@linux.ibm.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
[ Upstream commit 5dbc4cb4667457b0c53bcd7bff11500b3c362975 ]
There is a difference in how architectures treat "mem=" option. For some
that is an amount of online memory, for s390 and x86 this is the limiting
max address. Some memblock api like memblock_enforce_memory_limit()
take limit argument and explicitly treat it as the size of online memory,
and use __find_max_addr to convert it to an actual max address. Current
s390 usage:
memblock_enforce_memory_limit(memblock_end_of_DRAM());
yields different results depending on presence of memory holes (offline
memory blocks in between online memory). If there are no memory holes
limit == max_addr in memblock_enforce_memory_limit() and it does trim
online memory and reserved memory regions. With memory holes present it
actually does nothing.
Since we already use memblock_remove() explicitly to trim online memory
regions to potential limit (think mem=, kdump, addressing limits, etc.)
drop the usage of memblock_enforce_memory_limit() altogether. Trimming
reserved regions should not be required, since we now use
memblock_set_current_limit() to limit allocations and any explicit memory
reservations above the limit is an actual problem we should not hide.
Reviewed-by: Heiko Carstens <hca@linux.ibm.com>
Signed-off-by: Vasily Gorbik <gor@linux.ibm.com>
Signed-off-by: Heiko Carstens <hca@linux.ibm.com>
Signed-off-by: Sasha Levin <sashal@kernel.org>
commit fe3d10024073f06f04c74b9674bd71ccc1d787cf upstream.
We should not walk/touch page tables outside of VMA boundaries when
holding only the mmap sem in read mode. Evil user space can modify the
VMA layout just before this function runs and e.g., trigger races with
page table removal code since commit dd2283f2605e ("mm: mmap: zap pages
with read mmap_sem in munmap"). gfn_to_hva() will only translate using
KVM memory regions, but won't validate the VMA.
Further, we should not allocate page tables outside of VMA boundaries: if
evil user space decides to map hugetlbfs to these ranges, bad things will
happen because we suddenly have PTE or PMD page tables where we
shouldn't have them.
Similarly, we have to check if we suddenly find a hugetlbfs VMA, before
calling get_locked_pte().
Fixes: 2d42f9477320 ("s390/kvm: Add PGSTE manipulation functions")
Signed-off-by: David Hildenbrand <david@redhat.com>
Reviewed-by: Claudio Imbrenda <imbrenda@linux.ibm.com>
Acked-by: Heiko Carstens <hca@linux.ibm.com>
Link: https://lore.kernel.org/r/20210909162248.14969-4-david@redhat.com
Signed-off-by: Christian Borntraeger <borntraeger@de.ibm.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
[ Upstream commit 20c76e242e7025bd355619ba67beb243ba1a1e95 ]
kexec_file_add_ipl_report ignores that ipl_report_finish may fail and
can return an error pointer instead of a valid pointer.
Fix this and simplify by returning NULL in case of an error and let
the only caller handle this case.
Fixes: 99feaa717e55 ("s390/kexec_file: Create ipl report and pass to next kernel")
Signed-off-by: Heiko Carstens <hca@linux.ibm.com>
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit 85f517b29418158d3e6e90c3f0fc01b306d2f1a1 ]
If handle_sske cannot set the storage key, because there is no
page table entry or no present large page entry, it calls
fixup_user_fault.
However, currently, if the call succeeds, handle_sske returns
-EAGAIN, without having set the storage key.
Instead, retry by continue'ing the loop without incrementing the
address.
The same issue in handle_pfmf was fixed by
a11bdb1a6b78 ("KVM: s390: Fix pfmf and conditional skey emulation").
Fixes: bd096f644319 ("KVM: s390: Add skey emulation fault handling")
Signed-off-by: Janis Schoetterl-Glausch <scgl@linux.ibm.com>
Reviewed-by: Christian Borntraeger <borntraeger@de.ibm.com>
Reviewed-by: Claudio Imbrenda <imbrenda@linux.ibm.com>
Link: https://lore.kernel.org/r/20211022152648.26536-1-scgl@linux.ibm.com
Signed-off-by: Christian Borntraeger <borntraeger@de.ibm.com>
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit b159f94c86b43cf7e73e654bc527255b1f4eafc4 ]
... otherwise we will try unlocking a spinlock that was never locked via a
garbage pointer.
At the time we reach this code path, we usually successfully looked up
a PGSTE already; however, evil user space could have manipulated the VMA
layout in the meantime and triggered removal of the page table.
Fixes: 1e133ab296f3 ("s390/mm: split arch/s390/mm/pgtable.c")
Signed-off-by: David Hildenbrand <david@redhat.com>
Reviewed-by: Claudio Imbrenda <imbrenda@linux.ibm.com>
Acked-by: Heiko Carstens <hca@linux.ibm.com>
Link: https://lore.kernel.org/r/20210909162248.14969-3-david@redhat.com
Signed-off-by: Christian Borntraeger <borntraeger@de.ibm.com>
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit 0e9ff65f455dfd0a8aea5e7843678ab6fe097e21 ]
Changing the deliverable mask in __airqs_kick_single_vcpu() is a bug. If
one idle vcpu can't take the interrupts we want to deliver, we should
look for another vcpu that can, instead of saying that we don't want
to deliver these interrupts by clearing the bits from the
deliverable_mask.
Fixes: 9f30f6216378 ("KVM: s390: add gib_alert_irq_handler()")
Signed-off-by: Halil Pasic <pasic@linux.ibm.com>
Reviewed-by: Christian Borntraeger <borntraeger@de.ibm.com>
Reviewed-by: Michael Mueller <mimu@linux.ibm.com>
Reviewed-by: Claudio Imbrenda <imbrenda@linux.ibm.com>
Link: https://lore.kernel.org/r/20211019175401.3757927-3-pasic@linux.ibm.com
Signed-off-by: Christian Borntraeger <borntraeger@de.ibm.com>
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit 9b57e9d5010bbed7c0d9d445085840f7025e6f9a ]
The idea behind kicked mask is that we should not re-kick a vcpu that
is already in the "kick" process, i.e. that was kicked and is
is about to be dispatched if certain conditions are met.
The problem with the current implementation is, that it assumes the
kicked vcpu is going to enter SIE shortly. But under certain
circumstances, the vcpu we just kicked will be deemed non-runnable and
will remain in wait state. This can happen, if the interrupt(s) this
vcpu got kicked to deal with got already cleared (because the interrupts
got delivered to another vcpu). In this case kvm_arch_vcpu_runnable()
would return false, and the vcpu would remain in kvm_vcpu_block(),
but this time with its kicked_mask bit set. So next time around we
wouldn't kick the vcpu form __airqs_kick_single_vcpu(), but would assume
that we just kicked it.
Let us make sure the kicked_mask is cleared before we give up on
re-dispatching the vcpu.
Fixes: 9f30f6216378 ("KVM: s390: add gib_alert_irq_handler()")
Reported-by: Matthew Rosato <mjrosato@linux.ibm.com>
Signed-off-by: Halil Pasic <pasic@linux.ibm.com>
Reviewed-by: Christian Borntraeger <borntraeger@de.ibm.com>
Reviewed-by: Michael Mueller <mimu@linux.ibm.com>
Reviewed-by: Claudio Imbrenda <imbrenda@linux.ibm.com>
Link: https://lore.kernel.org/r/20211019175401.3757927-2-pasic@linux.ibm.com
Signed-off-by: Christian Borntraeger <borntraeger@de.ibm.com>
Signed-off-by: Sasha Levin <sashal@kernel.org>
commit 8e0ab8e26b72a80e991c66a8abc16e6c856abe3d upstream.
Fix two problems found in the strrchr() implementation for s390
architectures: evaluate empty strings (return the string address instead of
NULL, if '\0' is passed as second argument); evaluate the first character
of non-empty strings (the current implementation stops at the second).
Fixes: 1da177e4c3f4 ("Linux-2.6.12-rc2")
Cc: stable@vger.kernel.org
Reported-by: Heiko Carstens <hca@linux.ibm.com> (incorrect behavior with empty strings)
Signed-off-by: Roberto Sassu <roberto.sassu@huawei.com>
Link: https://lore.kernel.org/r/20211005120836.60630-1-roberto.sassu@huawei.com
Signed-off-by: Heiko Carstens <hca@linux.ibm.com>
Signed-off-by: Vasily Gorbik <gor@linux.ibm.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>