IF YOU WOULD LIKE TO GET AN ACCOUNT, please write an
email to Administrator. User accounts are meant only to access repo
and report issues and/or generate pull requests.
This is a purpose-specific Git hosting for
BaseALT
projects. Thank you for your understanding!
Только зарегистрированные пользователи имеют доступ к сервису!
Для получения аккаунта, обратитесь к администратору.
Eric reported seeing this message while running generic/475
BTRFS: error (device dm-3) in btrfs_sync_log:3084: errno=-117 Filesystem corrupted
Full stack trace:
BTRFS: error (device dm-0) in btrfs_commit_transaction:2323: errno=-5 IO failure (Error while writing out transaction)
BTRFS info (device dm-0): forced readonly
BTRFS warning (device dm-0): Skipping commit of aborted transaction.
------------[ cut here ]------------
BTRFS: error (device dm-0) in cleanup_transaction:1894: errno=-5 IO failure
BTRFS: Transaction aborted (error -117)
BTRFS warning (device dm-0): direct IO failed ino 3555 rw 0,0 sector 0x1c6480 len 4096 err no 10
BTRFS warning (device dm-0): direct IO failed ino 3555 rw 0,0 sector 0x1c6488 len 4096 err no 10
BTRFS warning (device dm-0): direct IO failed ino 3555 rw 0,0 sector 0x1c6490 len 4096 err no 10
BTRFS warning (device dm-0): direct IO failed ino 3555 rw 0,0 sector 0x1c6498 len 4096 err no 10
BTRFS warning (device dm-0): direct IO failed ino 3555 rw 0,0 sector 0x1c64a0 len 4096 err no 10
BTRFS warning (device dm-0): direct IO failed ino 3555 rw 0,0 sector 0x1c64a8 len 4096 err no 10
BTRFS warning (device dm-0): direct IO failed ino 3555 rw 0,0 sector 0x1c64b0 len 4096 err no 10
BTRFS warning (device dm-0): direct IO failed ino 3555 rw 0,0 sector 0x1c64b8 len 4096 err no 10
BTRFS warning (device dm-0): direct IO failed ino 3555 rw 0,0 sector 0x1c64c0 len 4096 err no 10
BTRFS warning (device dm-0): direct IO failed ino 3572 rw 0,0 sector 0x1b85e8 len 4096 err no 10
BTRFS warning (device dm-0): direct IO failed ino 3572 rw 0,0 sector 0x1b85f0 len 4096 err no 10
WARNING: CPU: 3 PID: 23985 at fs/btrfs/tree-log.c:3084 btrfs_sync_log+0xbc8/0xd60 [btrfs]
BTRFS warning (device dm-0): direct IO failed ino 3548 rw 0,0 sector 0x1d4288 len 4096 err no 10
BTRFS warning (device dm-0): direct IO failed ino 3548 rw 0,0 sector 0x1d4290 len 4096 err no 10
BTRFS warning (device dm-0): direct IO failed ino 3548 rw 0,0 sector 0x1d4298 len 4096 err no 10
BTRFS warning (device dm-0): direct IO failed ino 3548 rw 0,0 sector 0x1d42a0 len 4096 err no 10
BTRFS warning (device dm-0): direct IO failed ino 3548 rw 0,0 sector 0x1d42a8 len 4096 err no 10
BTRFS warning (device dm-0): direct IO failed ino 3548 rw 0,0 sector 0x1d42b0 len 4096 err no 10
BTRFS warning (device dm-0): direct IO failed ino 3548 rw 0,0 sector 0x1d42b8 len 4096 err no 10
BTRFS warning (device dm-0): direct IO failed ino 3548 rw 0,0 sector 0x1d42c0 len 4096 err no 10
BTRFS warning (device dm-0): direct IO failed ino 3548 rw 0,0 sector 0x1d42c8 len 4096 err no 10
BTRFS warning (device dm-0): direct IO failed ino 3548 rw 0,0 sector 0x1d42d0 len 4096 err no 10
CPU: 3 PID: 23985 Comm: fsstress Tainted: G W L 5.8.0-rc4-default+ #1181
Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.12.0-59-gc9ba527-rebuilt.opensuse.org 04/01/2014
RIP: 0010:btrfs_sync_log+0xbc8/0xd60 [btrfs]
RSP: 0018:ffff909a44d17bd0 EFLAGS: 00010286
RAX: 0000000000000000 RBX: 0000000000000001 RCX: 0000000000000001
RDX: ffff8f3be41cb940 RSI: ffffffffb0108d2b RDI: ffffffffb0108ff7
RBP: ffff909a44d17e70 R08: 0000000000000000 R09: 0000000000000000
R10: 0000000000000000 R11: 0000000000037988 R12: ffff8f3bd20e4000
R13: ffff8f3bd20e4428 R14: 00000000ffffff8b R15: ffff909a44d17c70
FS: 00007f6a6ed3fb80(0000) GS:ffff8f3c3dc00000(0000) knlGS:0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: 00007f6a6ed3e000 CR3: 00000000525c0003 CR4: 0000000000160ee0
Call Trace:
? finish_wait+0x90/0x90
? __mutex_unlock_slowpath+0x45/0x2a0
? lock_acquire+0xa3/0x440
? lockref_put_or_lock+0x9/0x30
? dput+0x20/0x4a0
? dput+0x20/0x4a0
? do_raw_spin_unlock+0x4b/0xc0
? _raw_spin_unlock+0x1f/0x30
btrfs_sync_file+0x335/0x490 [btrfs]
do_fsync+0x38/0x70
__x64_sys_fsync+0x10/0x20
do_syscall_64+0x50/0xe0
entry_SYSCALL_64_after_hwframe+0x44/0xa9
RIP: 0033:0x7f6a6ef1b6e3
Code: Bad RIP value.
RSP: 002b:00007ffd01e20038 EFLAGS: 00000246 ORIG_RAX: 000000000000004a
RAX: ffffffffffffffda RBX: 000000000007a120 RCX: 00007f6a6ef1b6e3
RDX: 00007ffd01e1ffa0 RSI: 00007ffd01e1ffa0 RDI: 0000000000000003
RBP: 0000000000000003 R08: 0000000000000001 R09: 00007ffd01e2004c
R10: 0000000000000000 R11: 0000000000000246 R12: 000000000000009f
R13: 0000000000000000 R14: 0000000000000000 R15: 0000000000000000
irq event stamp: 0
hardirqs last enabled at (0): [<0000000000000000>] 0x0
hardirqs last disabled at (0): [<ffffffffb007fe0b>] copy_process+0x67b/0x1b00
softirqs last enabled at (0): [<ffffffffb007fe0b>] copy_process+0x67b/0x1b00
softirqs last disabled at (0): [<0000000000000000>] 0x0
---[ end trace af146e0e38433456 ]---
BTRFS: error (device dm-0) in btrfs_sync_log:3084: errno=-117 Filesystem corrupted
This ret came from btrfs_write_marked_extents(). If we get an aborted
transaction via EIO before, we'll see it in btree_write_cache_pages()
and return EUCLEAN, which gets printed as "Filesystem corrupted".
Except we shouldn't be returning EUCLEAN here, we need to be returning
EROFS because EUCLEAN is reserved for actual corruption, not IO errors.
We are inconsistent about our handling of BTRFS_FS_STATE_ERROR
elsewhere, but we want to use EROFS for this particular case. The
original transaction abort has the real error code for why we ended up
with an aborted transaction, all subsequent actions just need to return
EROFS because they may not have a trans handle and have no idea about
the original cause of the abort.
After patch "btrfs: don't WARN if we abort a transaction with EROFS" the
stacktrace will not be dumped either.
Reported-by: Eric Sandeen <esandeen@redhat.com>
CC: stable@vger.kernel.org # 5.4+
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
[ add full test stacktrace ]
Signed-off-by: David Sterba <dsterba@suse.com>
[ Upstream commit 3ef3959b29c4a5bd65526ab310a1a18ae533172a ]
Chris Murphy reported a problem where rpm ostree will bind mount a bunch
of things for whatever voodoo it's doing. But when it does this
/proc/mounts shows something like
/dev/sda /mnt/test btrfs rw,relatime,subvolid=256,subvol=/foo 0 0
/dev/sda /mnt/test/baz btrfs rw,relatime,subvolid=256,subvol=/foo/bar 0 0
Despite subvolid=256 being subvol=/foo. This is because we're just
spitting out the dentry of the mount point, which in the case of bind
mounts is the source path for the mountpoint. Instead we should spit
out the path to the actual subvol. Fix this by looking up the name for
the subvolid we have mounted. With this fix the same test looks like
this
/dev/sda /mnt/test btrfs rw,relatime,subvolid=256,subvol=/foo 0 0
/dev/sda /mnt/test/baz btrfs rw,relatime,subvolid=256,subvol=/foo 0 0
Reported-by: Chris Murphy <chris@colorremedies.com>
CC: stable@vger.kernel.org # 4.4+
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit c0c907a47dccf2cf26251a8fb4a8e7a3bf79ce84 ]
The functions will be used outside of export.c and super.c to allow
resolving subvolume name from a given id, eg. for subvolume deletion by
id ioctl.
Signed-off-by: Marcos Paulo de Souza <mpdesouza@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
[ split from the next patch ]
Signed-off-by: David Sterba <dsterba@suse.com>
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit 70499cdfeb3625c87eebe4f7a7ea06fa7447e5df ]
Before this patch, some functions started transactions then they called
gfs2_block_zero_range. However, gfs2_block_zero_range, like writes, can
start transactions, which results in a recursive transaction error.
For example:
do_shrink
trunc_start
gfs2_trans_begin <------------------------------------------------
gfs2_block_zero_range
iomap_zero_range(inode, from, length, NULL, &gfs2_iomap_ops);
iomap_apply ... iomap_zero_range_actor
iomap_begin
gfs2_iomap_begin
gfs2_iomap_begin_write
actor (iomap_zero_range_actor)
iomap_zero
iomap_write_begin
gfs2_iomap_page_prepare
gfs2_trans_begin <------------------------
This patch reorders the callers of gfs2_block_zero_range so that they
only start their transactions after the call. It also adds a BUG_ON to
ensure this doesn't happen again.
Fixes: 2257e468a63b ("gfs2: implement gfs2_block_zero_range using iomap_zero_range")
Cc: stable@vger.kernel.org # v5.5+
Signed-off-by: Bob Peterson <rpeterso@redhat.com>
Signed-off-by: Andreas Gruenbacher <agruenba@redhat.com>
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit 39c3a948ecf6e7b8f55f0e91a5febc924fede4d7 ]
When punching a hole in a file, use filemap_write_and_wait_range to
write back any dirty pages in the range of the hole. As a side effect,
if the hole isn't page aligned, this marks unaligned pages at the
beginning and the end of the hole read-only. This is required when the
block size is smaller than the page size: when those pages are written
to again after the hole punching, we must make sure that page_mkwrite is
called for those pages so that the page will be fully allocated and any
blocks turned into holes from the hole punching will be reallocated.
(If a page is writably mapped, page_mkwrite won't be called.)
Fixes xfstest generic/567.
Signed-off-by: Andreas Gruenbacher <agruenba@redhat.com>
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit 88b2e9b06381551b707d980627ad0591191f7a2d ]
The 64 bit ino is being compared to the product of two u32 values,
however, the multiplication is being performed using a 32 bit multiply so
there is a potential of an overflow. To be fully safe, cast uspi->s_ncg
to a u64 to ensure a 64 bit multiplication occurs to avoid any chance of
overflow.
Fixes: f3e2a520f5fb ("ufs: NFS support")
Signed-off-by: Colin Ian King <colin.king@canonical.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Cc: Evgeniy Dushistov <dushistov@mail.ru>
Cc: Alexey Dobriyan <adobriyan@gmail.com>
Link: http://lkml.kernel.org/r/20200715170355.1081713-1-colin.king@canonical.com
Addresses-Coverity: ("Unintentional integer overflow")
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit f666f9fb9a36f1c833b9d18923572f0e4d304754 ]
When truncating a file to a size within the last allowed logical block,
block_to_path() is called with the *next* block. This exceeds the limit,
causing the "block %ld too big" error message to be printed.
This case isn't actually an error; there are just no more blocks past that
point. So, remove this error message.
Fixes: 1da177e4c3f4 ("Linux-2.6.12-rc2")
Signed-off-by: Eric Biggers <ebiggers@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Cc: Alexander Viro <viro@zeniv.linux.org.uk>
Cc: Qiujun Huang <anenbupt@gmail.com>
Link: http://lkml.kernel.org/r/20200628060846.682158-7-ebiggers@kernel.org
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit 0a12c4a8069607247cb8edc3b035a664e636fd9a ]
The minix filesystem reads its maximum file size from its on-disk
superblock. This value isn't necessarily a multiple of the block size.
When it's not, the V1 block mapping code doesn't allow mapping the last
possible block. Commit 6ed6a722f9ab ("minixfs: fix block limit check")
fixed this in the V2 mapping code. Fix it in the V1 mapping code too.
Fixes: 1da177e4c3f4 ("Linux-2.6.12-rc2")
Signed-off-by: Eric Biggers <ebiggers@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Cc: Alexander Viro <viro@zeniv.linux.org.uk>
Cc: Qiujun Huang <anenbupt@gmail.com>
Link: http://lkml.kernel.org/r/20200628060846.682158-6-ebiggers@kernel.org
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit 32ac86efff91a3e4ef8c3d1cadd4559e23c8e73a ]
The minix filesystem leaves super_block::s_maxbytes at MAX_NON_LFS rather
than setting it to the actual filesystem-specific limit. This is broken
because it means userspace doesn't see the standard behavior like getting
EFBIG and SIGXFSZ when exceeding the maximum file size.
Fix this by setting s_maxbytes correctly.
Fixes: 1da177e4c3f4 ("Linux-2.6.12-rc2")
Signed-off-by: Eric Biggers <ebiggers@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Cc: Alexander Viro <viro@zeniv.linux.org.uk>
Cc: Qiujun Huang <anenbupt@gmail.com>
Link: http://lkml.kernel.org/r/20200628060846.682158-5-ebiggers@kernel.org
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit b4487b93545214a9db8cbf32e86411677b0cca21 ]
Move the buffer size check to decode_attr_security_label() before memcpy()
Only call memcpy() if the buffer is large enough
Fixes: aa9c2669626c ("NFS: Client implementation of Labeled-NFS")
Signed-off-by: Jeffrey Mitchell <jeffrey.mitchell@starlab.io>
[Trond: clean up duplicate test of label->len != 0]
Signed-off-by: Trond Myklebust <trond.myklebust@hammerspace.com>
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit ce368536dd614452407dc31e2449eb84681a06af ]
The NFS_CONTEXT_ERROR_WRITE flag (as well as the check of said flag) was
removed by commit 6fbda89b257f. The absence of an error check allows
writes to be continually queued up for a server that may no longer be
able to handle them. Fix it by adding an error check using the generic
error reporting functions.
Fixes: 6fbda89b257f ("NFS: Replace custom error reporting mechanism with generic one")
Signed-off-by: Scott Mayhew <smayhew@redhat.com>
Signed-off-by: Trond Myklebust <trond.myklebust@hammerspace.com>
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit 094b6d1295474f338201b846a1f15e72eb0b12cf ]
There a wrong orphan node deleting in error handling path in
ubifs_jnl_update() and ubifs_jnl_rename(), which may cause
following error msg:
UBIFS error (ubi0:0 pid 1522): ubifs_delete_orphan [ubifs]:
missing orphan ino 65
Fix this by checking whether the node has been operated for
adding to orphan list before being deleted,
Signed-off-by: Zhihao Cheng <chengzhihao1@huawei.com>
Fixes: 823838a486888cf484e ("ubifs: Add hashes to the tree node cache")
Signed-off-by: Richard Weinberger <richard@nod.at>
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit 67dd23f9e6fbaf163431912ef5599c5e0693476c ]
nfs_wb_all() calls filemap_write_and_wait(), which uses
filemap_check_errors() to determine the error to return.
filemap_check_errors() only looks at the mapping->flags and will
therefore only return either -ENOSPC or -EIO. To ensure that the
correct error is returned on close(), nfs{,4}_file_flush() should call
filemap_check_wb_err() which looks at the errseq value in
mapping->wb_err without consuming it.
Fixes: 6fbda89b257f ("NFS: Replace custom error reporting mechanism with
generic one")
Signed-off-by: Scott Mayhew <smayhew@redhat.com>
Signed-off-by: Trond Myklebust <trond.myklebust@hammerspace.com>
Signed-off-by: Sasha Levin <sashal@kernel.org>
commit ec95f1dedc9c64ac5a8b0bdb7c276936c70fdedd upstream.
Christoph Hellwig sent in a reversion of "orangefs: remember count
when reading." because:
->read_iter calls can race with each other and one or
more ->flush calls. Remove the the scheme to store the read
count in the file private data as is is completely racy and
can cause use after free or double free conditions
Christoph's reversion caused Orangefs not to work or to compile. I
added a patch that fixed that, but intel's kbuild test robot pointed
out that sending Christoph's patch followed by my patch upstream, it
would break bisection because of the failure to compile. So I have
combined the reversion plus my patch... here's the commit message
that was in my patch:
Logically, optimal Orangefs "pages" are 4 megabytes. Reading
large Orangefs files 4096 bytes at a time is like trying to
kick a dead whale down the beach. Before Christoph's "Revert
orangefs: remember count when reading." I tried to give users
a knob whereby they could, for example, use "count" in
read(2) or bs with dd(1) to get whatever they considered an
appropriate amount of bytes at a time from Orangefs and fill
as many page cache pages as they could at once.
Without the racy code that Christoph reverted Orangefs won't
even compile, much less work. So this replaces the logic that
used the private file data that Christoph reverted with
a static number of bytes to read from Orangefs.
I ran tests like the following to determine what a
reasonable static number of bytes might be:
dd if=/pvfsmnt/asdf of=/dev/null count=128 bs=4194304
dd if=/pvfsmnt/asdf of=/dev/null count=256 bs=2097152
dd if=/pvfsmnt/asdf of=/dev/null count=512 bs=1048576
.
.
.
dd if=/pvfsmnt/asdf of=/dev/null count=4194304 bs=128
Reads seem faster using the static number, so my "knob code"
wasn't just racy, it wasn't even a good idea...
Signed-off-by: Mike Marshall <hubcap@omnibond.com>
Reported-by: kbuild test robot <lkp@intel.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 02e37571f9e79022498fd0525c073b07e9d9ac69 upstream.
Most session messages contain a feature mask, but the MDS will
routinely send a REJECT message with one that is zero-length.
Commit 0fa8263367db ("ceph: fix endianness bug when handling MDS
session feature bits") fixed the decoding of the feature mask,
but failed to account for the MDS sending a zero-length feature
mask. This causes REJECT message decoding to fail.
Skip trying to decode a feature mask if the word count is zero.
Cc: stable@vger.kernel.org
URL: https://tracker.ceph.com/issues/46823
Fixes: 0fa8263367db ("ceph: fix endianness bug when handling MDS session feature bits")
Signed-off-by: Jeff Layton <jlayton@kernel.org>
Reviewed-by: Ilya Dryomov <idryomov@gmail.com>
Tested-by: Patrick Donnelly <pdonnell@redhat.com>
Signed-off-by: Ilya Dryomov <idryomov@gmail.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit b748fc7a8763a5b3f8149f12c45711cd73ef8176 upstream.
Symlink inodes should have the security context set in their xattrs on
creation. We already set the context on creation, but we don't attach
the pagelist. The effect is that symlink inodes don't get an SELinux
context set on them at creation, so they end up unlabeled instead of
inheriting the proper context. Make it do so.
Cc: stable@vger.kernel.org
Signed-off-by: Jeff Layton <jlayton@kernel.org>
Reviewed-by: Ilya Dryomov <idryomov@gmail.com>
Signed-off-by: Ilya Dryomov <idryomov@gmail.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 38d51b2dd171ad973afc1f5faab825ed05a2d5e9 upstream.
Dan Carpenter reported the following static checker warning.
fs/ocfs2/super.c:1269 ocfs2_parse_options() warn: '(-1)' 65535 can't fit into 32767 'mopt->slot'
fs/ocfs2/suballoc.c:859 ocfs2_init_inode_steal_slot() warn: '(-1)' 65535 can't fit into 32767 'osb->s_inode_steal_slot'
fs/ocfs2/suballoc.c:867 ocfs2_init_meta_steal_slot() warn: '(-1)' 65535 can't fit into 32767 'osb->s_meta_steal_slot'
That's because OCFS2_INVALID_SLOT is (u16)-1. Slot number in ocfs2 can be
never negative, so change s16 to u16.
Fixes: 9277f8334ffc ("ocfs2: fix value of OCFS2_INVALID_SLOT")
Reported-by: Dan Carpenter <dan.carpenter@oracle.com>
Signed-off-by: Junxiao Bi <junxiao.bi@oracle.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Joseph Qi <joseph.qi@linux.alibaba.com>
Reviewed-by: Gang He <ghe@suse.com>
Cc: Mark Fasheh <mark@fasheh.com>
Cc: Joel Becker <jlbec@evilplan.org>
Cc: Junxiao Bi <junxiao.bi@oracle.com>
Cc: Changwei Ge <gechangwei@live.cn>
Cc: Jun Piao <piaojun@huawei.com>
Cc: <stable@vger.kernel.org>
Link: http://lkml.kernel.org/r/20200627001259.19757-1-junxiao.bi@oracle.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit bc2fbaa4d3808aef82dd1064a8e61c16549fe956 upstream.
sbi->s_freeinodes_counter is only decreased by the ext2 code, it is never
increased. This patch fixes it.
Note that sbi->s_freeinodes_counter is only used in the algorithm that
tries to find the group for new allocations, so this bug is not easily
visible (the only visibility is that the group finding algorithm selects
inoptinal result).
Link: https://lore.kernel.org/r/alpine.LRH.2.02.2004201538300.19436@file01.intranet.prod.int.rdu2.redhat.com
Signed-off-by: Mikulas Patocka <mpatocka@redhat.com>
Cc: stable@vger.kernel.org
Signed-off-by: Jan Kara <jack@suse.cz>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit faa008899a4db21a2df99833cb4ff6fa67009a20 upstream.
There's some inconsistency around SB_I_VERSION handling with mount and
remount. Since we don't really want it to be off ever just work around
this by making sure we don't get the flag cleared on remount.
There's a tiny cpu cost of setting the bit, otherwise all changes to
i_version also change some of the times (ctime/mtime) so the inode needs
to be synced. We wouldn't save anything by disabling it.
Reported-by: Eric Sandeen <sandeen@redhat.com>
CC: stable@vger.kernel.org # 5.4+
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
[ add perf impact analysis ]
Signed-off-by: David Sterba <dsterba@suse.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 4f26433e9b3eb7a55ed70d8f882ae9cd48ba448b upstream.
While logging an inode, at copy_items(), if we fail to lookup the checksums
for an extent we release the destination path, free the ins_data array and
then return immediately. However a previous iteration of the for loop may
have added checksums to the ordered_sums list, in which case we leak the
memory used by them.
So fix this by making sure we iterate the ordered_sums list and free all
its checksums before returning.
Fixes: 3650860b90cc2a ("Btrfs: remove almost all of the BUG()'s from tree-log.c")
CC: stable@vger.kernel.org # 4.4+
Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 1e6e238c3002ea3611465ce5f32777ddd6a40126 upstream.
[BUG]
There is a bug report of NULL pointer dereference caused in
compress_file_extent():
Oops: Kernel access of bad area, sig: 11 [#1]
LE PAGE_SIZE=64K MMU=Hash SMP NR_CPUS=2048 NUMA pSeries
Workqueue: btrfs-delalloc btrfs_delalloc_helper [btrfs]
NIP [c008000006dd4d34] compress_file_range.constprop.41+0x75c/0x8a0 [btrfs]
LR [c008000006dd4d1c] compress_file_range.constprop.41+0x744/0x8a0 [btrfs]
Call Trace:
[c000000c69093b00] [c008000006dd4d1c] compress_file_range.constprop.41+0x744/0x8a0 [btrfs] (unreliable)
[c000000c69093bd0] [c008000006dd4ebc] async_cow_start+0x44/0xa0 [btrfs]
[c000000c69093c10] [c008000006e14824] normal_work_helper+0xdc/0x598 [btrfs]
[c000000c69093c80] [c0000000001608c0] process_one_work+0x2c0/0x5b0
[c000000c69093d10] [c000000000160c38] worker_thread+0x88/0x660
[c000000c69093db0] [c00000000016b55c] kthread+0x1ac/0x1c0
[c000000c69093e20] [c00000000000b660] ret_from_kernel_thread+0x5c/0x7c
---[ end trace f16954aa20d822f6 ]---
[CAUSE]
For the following execution route of compress_file_range(), it's
possible to hit NULL pointer dereference:
compress_file_extent()
|- pages = NULL;
|- start = async_chunk->start = 0;
|- end = async_chunk = 4095;
|- nr_pages = 1;
|- inode_need_compress() == false; <<< Possible, see later explanation
| Now, we have nr_pages = 1, pages = NULL
|- cont:
|- ret = cow_file_range_inline();
|- if (ret <= 0) {
|- for (i = 0; i < nr_pages; i++) {
|- WARN_ON(pages[i]->mapping); <<< Crash
To enter above call execution branch, we need the following race:
Thread 1 (chattr) | Thread 2 (writeback)
--------------------------+------------------------------
| btrfs_run_delalloc_range
| |- inode_need_compress = true
| |- cow_file_range_async()
btrfs_ioctl_set_flag() |
|- binode_flags |= |
BTRFS_INODE_NOCOMPRESS |
| compress_file_range()
| |- inode_need_compress = false
| |- nr_page = 1 while pages = NULL
| | Then hit the crash
[FIX]
This patch will fix it by checking @pages before doing accessing it.
This patch is only designed as a hot fix and easy to backport.
More elegant fix may make btrfs only check inode_need_compress() once to
avoid such race, but that would be another story.
Reported-by: Luciano Chavez <chavez@us.ibm.com>
Fixes: 4d3a800ebb12 ("btrfs: merge nr_pages input and output parameter in compress_pages")
CC: stable@vger.kernel.org # 4.14.x: cecc8d9038d16: btrfs: Move free_pages_out label in inline extent handling branch in compress_file_range
CC: stable@vger.kernel.org # 4.14+
Signed-off-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit bf53d4687b8f3f6b752f091eb85f62369a515dfd upstream.
In try_to_merge_free_space we attempt to find entries to the left and
right of the entry we are adding to see if they can be merged. We
search for an entry past our current info (saved into right_info), and
then if right_info exists and it has a rb_prev() we save the rb_prev()
into left_info.
However there's a slight problem in the case that we have a right_info,
but no entry previous to that entry. At that point we will search for
an entry just before the info we're attempting to insert. This will
simply find right_info again, and assign it to left_info, making them
both the same pointer.
Now if right_info _can_ be merged with the range we're inserting, we'll
add it to the info and free right_info. However further down we'll
access left_info, which was right_info, and thus get a use-after-free.
Fix this by only searching for the left entry if we don't find a right
entry at all.
The CVE referenced had a specially crafted file system that could
trigger this use-after-free. However with the tree checker improvements
we no longer trigger the conditions for the UAF. But the original
conditions still apply, hence this fix.
Reference: CVE-2019-19448
Fixes: 963030817060 ("Btrfs: use hybrid extents+bitmap rb tree for free space")
CC: stable@vger.kernel.org # 4.4+
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 27942c9971cc405c60432eca9395e514a2ae9f5e upstream.
Reported by Forza on IRC that remounting with compression options does
not reflect the change in level, or at least it does not appear to do so
according to the messages:
mount -o compress=zstd:1 /dev/sda /mnt
mount -o remount,compress=zstd:15 /mnt
does not print the change to the level to syslog:
[ 41.366060] BTRFS info (device vda): use zstd compression, level 1
[ 41.368254] BTRFS info (device vda): disk space caching is enabled
[ 41.390429] BTRFS info (device vda): disk space caching is enabled
What really happens is that the message is lost but the level is actualy
changed.
There's another weird output, if compression is reset to 'no':
[ 45.413776] BTRFS info (device vda): use no compression, level 4
To fix that, save the previous compression level and print the message
in that case too and use separate message for 'no' compression.
CC: stable@vger.kernel.org # 4.19+
Signed-off-by: David Sterba <dsterba@suse.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 3d6448e631591756da36efb3ea6355ff6f383c3a upstream.
When releasing an extent map, done through the page release callback, we
can race with an ongoing fast fsync and cause the fsync to miss a new
extent and not log it. The steps for this to happen are the following:
1) A page is dirtied for some inode I;
2) Writeback for that page is triggered by a path other than fsync, for
example by the system due to memory pressure;
3) When the ordered extent for the extent (a single 4K page) finishes,
we unpin the corresponding extent map and set its generation to N,
the current transaction's generation;
4) The btrfs_releasepage() callback is invoked by the system due to
memory pressure for that no longer dirty page of inode I;
5) At the same time, some task calls fsync on inode I, joins transaction
N, and at btrfs_log_inode() it sees that the inode does not have the
full sync flag set, so we proceed with a fast fsync. But before we get
into btrfs_log_changed_extents() and lock the inode's extent map tree:
6) Through btrfs_releasepage() we end up at try_release_extent_mapping()
and we remove the extent map for the new 4Kb extent, because it is
neither pinned anymore nor locked. By calling remove_extent_mapping(),
we remove the extent map from the list of modified extents, since the
extent map does not have the logging flag set. We unlock the inode's
extent map tree;
7) The task doing the fast fsync now enters btrfs_log_changed_extents(),
locks the inode's extent map tree and iterates its list of modified
extents, which no longer has the 4Kb extent in it, so it does not log
the extent;
8) The fsync finishes;
9) Before transaction N is committed, a power failure happens. After
replaying the log, the 4K extent of inode I will be missing, since
it was not logged due to the race with try_release_extent_mapping().
So fix this by teaching try_release_extent_mapping() to not remove an
extent map if it's still in the list of modified extents.
Fixes: ff44c6e36dc9dc ("Btrfs: do not hold the write_lock on the extent tree while logging")
CC: stable@vger.kernel.org # 5.4+
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit f95ebdbed46a4d8b9fdb7bff109fdbb6fc9a6dc8 upstream.
If we got some sort of corruption via a read and call
btrfs_handle_fs_error() we'll set BTRFS_FS_STATE_ERROR on the fs and
complain. If a subsequent trans handle trips over this it'll get EROFS
and then abort. However at that point we're not aborting for the
original reason, we're aborting because we've been flipped read only.
We do not need to WARN_ON() here.
CC: stable@vger.kernel.org # 5.4+
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit f3e3d9cc35252a70a2fd698762c9687718268ec6 upstream.
[BUG]
There is a bug report about bad signal timing could lead to read-only
fs during balance:
BTRFS info (device xvdb): balance: start -d -m -s
BTRFS info (device xvdb): relocating block group 73001861120 flags metadata
BTRFS info (device xvdb): found 12236 extents, stage: move data extents
BTRFS info (device xvdb): relocating block group 71928119296 flags data
BTRFS info (device xvdb): found 3 extents, stage: move data extents
BTRFS info (device xvdb): found 3 extents, stage: update data pointers
BTRFS info (device xvdb): relocating block group 60922265600 flags metadata
BTRFS: error (device xvdb) in btrfs_drop_snapshot:5505: errno=-4 unknown
BTRFS info (device xvdb): forced readonly
BTRFS info (device xvdb): balance: ended with status: -4
[CAUSE]
The direct cause is the -EINTR from the following call chain when a
fatal signal is pending:
relocate_block_group()
|- clean_dirty_subvols()
|- btrfs_drop_snapshot()
|- btrfs_start_transaction()
|- btrfs_delayed_refs_rsv_refill()
|- btrfs_reserve_metadata_bytes()
|- __reserve_metadata_bytes()
|- wait_reserve_ticket()
|- prepare_to_wait_event();
|- ticket->error = -EINTR;
Normally this behavior is fine for most btrfs_start_transaction()
callers, as they need to catch any other error, same for the signal, and
exit ASAP.
However for balance, especially for the clean_dirty_subvols() case, we're
already doing cleanup works, getting -EINTR from btrfs_drop_snapshot()
could cause a lot of unexpected problems.
From the mentioned forced read-only report, to later balance error due
to half dropped reloc trees.
[FIX]
Fix this problem by using btrfs_join_transaction() if
btrfs_drop_snapshot() is called from relocation context.
Since btrfs_join_transaction() won't get interrupted by signal, we can
continue the cleanup.
CC: stable@vger.kernel.org # 5.4+
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>3
Signed-off-by: David Sterba <dsterba@suse.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit f37c563bab4297024c300b05c8f48430e323809d upstream.
User Forza reported on IRC that some invalid combinations of file
attributes are accepted by chattr.
The NODATACOW and compression file flags/attributes are mutually
exclusive, but they could be set by 'chattr +c +C' on an empty file. The
nodatacow will be in effect because it's checked first in
btrfs_run_delalloc_range.
Extend the flag validation to catch the following cases:
- input flags are conflicting
- old and new flags are conflicting
- initialize the local variable with inode flags after inode ls locked
Inode attributes take precedence over mount options and are an
independent setting.
Nocompress would be a no-op with nodatacow, but we don't want to mix
any compression-related options with nodatacow.
CC: stable@vger.kernel.org # 4.4+
Signed-off-by: David Sterba <dsterba@suse.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 44d354abf33e92a5e73b965c84caf5a5d5e58a0b upstream.
Since most metadata reservation calls can return -EINTR when get
interrupted by fatal signal, we need to review the all the metadata
reservation call sites.
In relocation code, the metadata reservation happens in the following
sites:
- btrfs_block_rsv_refill() in merge_reloc_root()
merge_reloc_root() is a pretty critical section, we don't want to be
interrupted by signal, so change the flush status to
BTRFS_RESERVE_FLUSH_LIMIT, so it won't get interrupted by signal.
Since such change can be ENPSPC-prone, also shrink the amount of
metadata to reserve least amount avoid deadly ENOSPC there.
- btrfs_block_rsv_refill() in reserve_metadata_space()
It calls with BTRFS_RESERVE_FLUSH_LIMIT, which won't get interrupted
by signal.
- btrfs_block_rsv_refill() in prepare_to_relocate()
- btrfs_block_rsv_add() in prepare_to_relocate()
- btrfs_block_rsv_refill() in relocate_block_group()
- btrfs_delalloc_reserve_metadata() in relocate_file_extent_cluster()
- btrfs_start_transaction() in relocate_block_group()
- btrfs_start_transaction() in create_reloc_inode()
Can be interrupted by fatal signal and we can handle it easily.
For these call sites, just catch the -EINTR value in btrfs_balance()
and count them as canceled.
CC: stable@vger.kernel.org # 5.4+
Signed-off-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 01d01caf19ff7c537527d352d169c4368375c0a1 upstream.
We are currently getting this lockdep splat in btrfs/161:
======================================================
WARNING: possible circular locking dependency detected
5.8.0-rc5+ #20 Tainted: G E
------------------------------------------------------
mount/678048 is trying to acquire lock:
ffff9b769f15b6e0 (&fs_devs->device_list_mutex){+.+.}-{3:3}, at: clone_fs_devices+0x4d/0x170 [btrfs]
but task is already holding lock:
ffff9b76abdb08d0 (&fs_info->chunk_mutex){+.+.}-{3:3}, at: btrfs_read_chunk_tree+0x6a/0x800 [btrfs]
which lock already depends on the new lock.
the existing dependency chain (in reverse order) is:
-> #1 (&fs_info->chunk_mutex){+.+.}-{3:3}:
__mutex_lock+0x8b/0x8f0
btrfs_init_new_device+0x2d2/0x1240 [btrfs]
btrfs_ioctl+0x1de/0x2d20 [btrfs]
ksys_ioctl+0x87/0xc0
__x64_sys_ioctl+0x16/0x20
do_syscall_64+0x52/0xb0
entry_SYSCALL_64_after_hwframe+0x44/0xa9
-> #0 (&fs_devs->device_list_mutex){+.+.}-{3:3}:
__lock_acquire+0x1240/0x2460
lock_acquire+0xab/0x360
__mutex_lock+0x8b/0x8f0
clone_fs_devices+0x4d/0x170 [btrfs]
btrfs_read_chunk_tree+0x330/0x800 [btrfs]
open_ctree+0xb7c/0x18ce [btrfs]
btrfs_mount_root.cold+0x13/0xfa [btrfs]
legacy_get_tree+0x30/0x50
vfs_get_tree+0x28/0xc0
fc_mount+0xe/0x40
vfs_kern_mount.part.0+0x71/0x90
btrfs_mount+0x13b/0x3e0 [btrfs]
legacy_get_tree+0x30/0x50
vfs_get_tree+0x28/0xc0
do_mount+0x7de/0xb30
__x64_sys_mount+0x8e/0xd0
do_syscall_64+0x52/0xb0
entry_SYSCALL_64_after_hwframe+0x44/0xa9
other info that might help us debug this:
Possible unsafe locking scenario:
CPU0 CPU1
---- ----
lock(&fs_info->chunk_mutex);
lock(&fs_devs->device_list_mutex);
lock(&fs_info->chunk_mutex);
lock(&fs_devs->device_list_mutex);
*** DEADLOCK ***
3 locks held by mount/678048:
#0: ffff9b75ff5fb0e0 (&type->s_umount_key#63/1){+.+.}-{3:3}, at: alloc_super+0xb5/0x380
#1: ffffffffc0c2fbc8 (uuid_mutex){+.+.}-{3:3}, at: btrfs_read_chunk_tree+0x54/0x800 [btrfs]
#2: ffff9b76abdb08d0 (&fs_info->chunk_mutex){+.+.}-{3:3}, at: btrfs_read_chunk_tree+0x6a/0x800 [btrfs]
stack backtrace:
CPU: 2 PID: 678048 Comm: mount Tainted: G E 5.8.0-rc5+ #20
Hardware name: To Be Filled By O.E.M. To Be Filled By O.E.M./890FX Deluxe5, BIOS P1.40 05/03/2011
Call Trace:
dump_stack+0x96/0xd0
check_noncircular+0x162/0x180
__lock_acquire+0x1240/0x2460
? asm_sysvec_apic_timer_interrupt+0x12/0x20
lock_acquire+0xab/0x360
? clone_fs_devices+0x4d/0x170 [btrfs]
__mutex_lock+0x8b/0x8f0
? clone_fs_devices+0x4d/0x170 [btrfs]
? rcu_read_lock_sched_held+0x52/0x60
? cpumask_next+0x16/0x20
? module_assert_mutex_or_preempt+0x14/0x40
? __module_address+0x28/0xf0
? clone_fs_devices+0x4d/0x170 [btrfs]
? static_obj+0x4f/0x60
? lockdep_init_map_waits+0x43/0x200
? clone_fs_devices+0x4d/0x170 [btrfs]
clone_fs_devices+0x4d/0x170 [btrfs]
btrfs_read_chunk_tree+0x330/0x800 [btrfs]
open_ctree+0xb7c/0x18ce [btrfs]
? super_setup_bdi_name+0x79/0xd0
btrfs_mount_root.cold+0x13/0xfa [btrfs]
? vfs_parse_fs_string+0x84/0xb0
? rcu_read_lock_sched_held+0x52/0x60
? kfree+0x2b5/0x310
legacy_get_tree+0x30/0x50
vfs_get_tree+0x28/0xc0
fc_mount+0xe/0x40
vfs_kern_mount.part.0+0x71/0x90
btrfs_mount+0x13b/0x3e0 [btrfs]
? cred_has_capability+0x7c/0x120
? rcu_read_lock_sched_held+0x52/0x60
? legacy_get_tree+0x30/0x50
legacy_get_tree+0x30/0x50
vfs_get_tree+0x28/0xc0
do_mount+0x7de/0xb30
? memdup_user+0x4e/0x90
__x64_sys_mount+0x8e/0xd0
do_syscall_64+0x52/0xb0
entry_SYSCALL_64_after_hwframe+0x44/0xa9
This is because btrfs_read_chunk_tree() can come upon DEV_EXTENT's and
then read the device, which takes the device_list_mutex. The
device_list_mutex needs to be taken before the chunk_mutex, so this is a
problem. We only really need the chunk mutex around adding the chunk,
so move the mutex around read_one_chunk.
An argument could be made that we don't even need the chunk_mutex here
as it's during mount, and we are protected by various other locks.
However we already have special rules for ->device_list_mutex, and I'd
rather not have another special case for ->chunk_mutex.
CC: stable@vger.kernel.org # 4.19+
Reviewed-by: Anand Jain <anand.jain@oracle.com>
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 18c850fdc5a801bad4977b0f1723761d42267e45 upstream.
There's long existed a lockdep splat because we open our bdev's under
the ->device_list_mutex at mount time, which acquires the bd_mutex.
Usually this goes unnoticed, but if you do loopback devices at all
suddenly the bd_mutex comes with a whole host of other dependencies,
which results in the splat when you mount a btrfs file system.
======================================================
WARNING: possible circular locking dependency detected
5.8.0-0.rc3.1.fc33.x86_64+debug #1 Not tainted
------------------------------------------------------
systemd-journal/509 is trying to acquire lock:
ffff970831f84db0 (&fs_info->reloc_mutex){+.+.}-{3:3}, at: btrfs_record_root_in_trans+0x44/0x70 [btrfs]
but task is already holding lock:
ffff97083144d598 (sb_pagefaults){.+.+}-{0:0}, at: btrfs_page_mkwrite+0x59/0x560 [btrfs]
which lock already depends on the new lock.
the existing dependency chain (in reverse order) is:
-> #6 (sb_pagefaults){.+.+}-{0:0}:
__sb_start_write+0x13e/0x220
btrfs_page_mkwrite+0x59/0x560 [btrfs]
do_page_mkwrite+0x4f/0x130
do_wp_page+0x3b0/0x4f0
handle_mm_fault+0xf47/0x1850
do_user_addr_fault+0x1fc/0x4b0
exc_page_fault+0x88/0x300
asm_exc_page_fault+0x1e/0x30
-> #5 (&mm->mmap_lock#2){++++}-{3:3}:
__might_fault+0x60/0x80
_copy_from_user+0x20/0xb0
get_sg_io_hdr+0x9a/0xb0
scsi_cmd_ioctl+0x1ea/0x2f0
cdrom_ioctl+0x3c/0x12b4
sr_block_ioctl+0xa4/0xd0
block_ioctl+0x3f/0x50
ksys_ioctl+0x82/0xc0
__x64_sys_ioctl+0x16/0x20
do_syscall_64+0x52/0xb0
entry_SYSCALL_64_after_hwframe+0x44/0xa9
-> #4 (&cd->lock){+.+.}-{3:3}:
__mutex_lock+0x7b/0x820
sr_block_open+0xa2/0x180
__blkdev_get+0xdd/0x550
blkdev_get+0x38/0x150
do_dentry_open+0x16b/0x3e0
path_openat+0x3c9/0xa00
do_filp_open+0x75/0x100
do_sys_openat2+0x8a/0x140
__x64_sys_openat+0x46/0x70
do_syscall_64+0x52/0xb0
entry_SYSCALL_64_after_hwframe+0x44/0xa9
-> #3 (&bdev->bd_mutex){+.+.}-{3:3}:
__mutex_lock+0x7b/0x820
__blkdev_get+0x6a/0x550
blkdev_get+0x85/0x150
blkdev_get_by_path+0x2c/0x70
btrfs_get_bdev_and_sb+0x1b/0xb0 [btrfs]
open_fs_devices+0x88/0x240 [btrfs]
btrfs_open_devices+0x92/0xa0 [btrfs]
btrfs_mount_root+0x250/0x490 [btrfs]
legacy_get_tree+0x30/0x50
vfs_get_tree+0x28/0xc0
vfs_kern_mount.part.0+0x71/0xb0
btrfs_mount+0x119/0x380 [btrfs]
legacy_get_tree+0x30/0x50
vfs_get_tree+0x28/0xc0
do_mount+0x8c6/0xca0
__x64_sys_mount+0x8e/0xd0
do_syscall_64+0x52/0xb0
entry_SYSCALL_64_after_hwframe+0x44/0xa9
-> #2 (&fs_devs->device_list_mutex){+.+.}-{3:3}:
__mutex_lock+0x7b/0x820
btrfs_run_dev_stats+0x36/0x420 [btrfs]
commit_cowonly_roots+0x91/0x2d0 [btrfs]
btrfs_commit_transaction+0x4e6/0x9f0 [btrfs]
btrfs_sync_file+0x38a/0x480 [btrfs]
__x64_sys_fdatasync+0x47/0x80
do_syscall_64+0x52/0xb0
entry_SYSCALL_64_after_hwframe+0x44/0xa9
-> #1 (&fs_info->tree_log_mutex){+.+.}-{3:3}:
__mutex_lock+0x7b/0x820
btrfs_commit_transaction+0x48e/0x9f0 [btrfs]
btrfs_sync_file+0x38a/0x480 [btrfs]
__x64_sys_fdatasync+0x47/0x80
do_syscall_64+0x52/0xb0
entry_SYSCALL_64_after_hwframe+0x44/0xa9
-> #0 (&fs_info->reloc_mutex){+.+.}-{3:3}:
__lock_acquire+0x1241/0x20c0
lock_acquire+0xb0/0x400
__mutex_lock+0x7b/0x820
btrfs_record_root_in_trans+0x44/0x70 [btrfs]
start_transaction+0xd2/0x500 [btrfs]
btrfs_dirty_inode+0x44/0xd0 [btrfs]
file_update_time+0xc6/0x120
btrfs_page_mkwrite+0xda/0x560 [btrfs]
do_page_mkwrite+0x4f/0x130
do_wp_page+0x3b0/0x4f0
handle_mm_fault+0xf47/0x1850
do_user_addr_fault+0x1fc/0x4b0
exc_page_fault+0x88/0x300
asm_exc_page_fault+0x1e/0x30
other info that might help us debug this:
Chain exists of:
&fs_info->reloc_mutex --> &mm->mmap_lock#2 --> sb_pagefaults
Possible unsafe locking scenario:
CPU0 CPU1
---- ----
lock(sb_pagefaults);
lock(&mm->mmap_lock#2);
lock(sb_pagefaults);
lock(&fs_info->reloc_mutex);
*** DEADLOCK ***
3 locks held by systemd-journal/509:
#0: ffff97083bdec8b8 (&mm->mmap_lock#2){++++}-{3:3}, at: do_user_addr_fault+0x12e/0x4b0
#1: ffff97083144d598 (sb_pagefaults){.+.+}-{0:0}, at: btrfs_page_mkwrite+0x59/0x560 [btrfs]
#2: ffff97083144d6a8 (sb_internal){.+.+}-{0:0}, at: start_transaction+0x3f8/0x500 [btrfs]
stack backtrace:
CPU: 0 PID: 509 Comm: systemd-journal Not tainted 5.8.0-0.rc3.1.fc33.x86_64+debug #1
Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS 0.0.0 02/06/2015
Call Trace:
dump_stack+0x92/0xc8
check_noncircular+0x134/0x150
__lock_acquire+0x1241/0x20c0
lock_acquire+0xb0/0x400
? btrfs_record_root_in_trans+0x44/0x70 [btrfs]
? lock_acquire+0xb0/0x400
? btrfs_record_root_in_trans+0x44/0x70 [btrfs]
__mutex_lock+0x7b/0x820
? btrfs_record_root_in_trans+0x44/0x70 [btrfs]
? kvm_sched_clock_read+0x14/0x30
? sched_clock+0x5/0x10
? sched_clock_cpu+0xc/0xb0
btrfs_record_root_in_trans+0x44/0x70 [btrfs]
start_transaction+0xd2/0x500 [btrfs]
btrfs_dirty_inode+0x44/0xd0 [btrfs]
file_update_time+0xc6/0x120
btrfs_page_mkwrite+0xda/0x560 [btrfs]
? sched_clock+0x5/0x10
do_page_mkwrite+0x4f/0x130
do_wp_page+0x3b0/0x4f0
handle_mm_fault+0xf47/0x1850
do_user_addr_fault+0x1fc/0x4b0
exc_page_fault+0x88/0x300
? asm_exc_page_fault+0x8/0x30
asm_exc_page_fault+0x1e/0x30
RIP: 0033:0x7fa3972fdbfe
Code: Bad RIP value.
Fix this by not holding the ->device_list_mutex at this point. The
device_list_mutex exists to protect us from modifying the device list
while the file system is running.
However it can also be modified by doing a scan on a device. But this
action is specifically protected by the uuid_mutex, which we are holding
here. We cannot race with opening at this point because we have the
->s_mount lock held during the mount. Not having the
->device_list_mutex here is perfectly safe as we're not going to change
the devices at this point.
CC: stable@vger.kernel.org # 4.19+
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
[ add some comments ]
Signed-off-by: David Sterba <dsterba@suse.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 4faf55b03823e96c44dc4e364520000ed3b12fdb upstream.
->show_devname currently shows the lowest devid in the list. As the seed
devices have the lowest devid in the sprouted filesystem, the userland
tool such as findmnt end up seeing seed device instead of the device from
the read-writable sprouted filesystem. As shown below.
mount /dev/sda /btrfs
mount: /btrfs: WARNING: device write-protected, mounted read-only.
findmnt --output SOURCE,TARGET,UUID /btrfs
SOURCE TARGET UUID
/dev/sda /btrfs 899f7027-3e46-4626-93e7-7d4c9ad19111
btrfs dev add -f /dev/sdb /btrfs
umount /btrfs
mount /dev/sdb /btrfs
findmnt --output SOURCE,TARGET,UUID /btrfs
SOURCE TARGET UUID
/dev/sda /btrfs 899f7027-3e46-4626-93e7-7d4c9ad19111
All sprouts from a single seed will show the same seed device and the
same fsid. That's confusing.
This is causing problems in our prototype as there isn't any reference
to the sprout file-system(s) which is being used for actual read and
write.
This was added in the patch which implemented the show_devname in btrfs
commit 9c5085c14798 ("Btrfs: implement ->show_devname").
I tried to look for any particular reason that we need to show the seed
device, there isn't any.
So instead, do not traverse through the seed devices, just show the
lowest devid in the sprouted fsid.
After the patch:
mount /dev/sda /btrfs
mount: /btrfs: WARNING: device write-protected, mounted read-only.
findmnt --output SOURCE,TARGET,UUID /btrfs
SOURCE TARGET UUID
/dev/sda /btrfs 899f7027-3e46-4626-93e7-7d4c9ad19111
btrfs dev add -f /dev/sdb /btrfs
mount -o rw,remount /dev/sdb /btrfs
findmnt --output SOURCE,TARGET,UUID /btrfs
SOURCE TARGET UUID
/dev/sdb /btrfs 595ca0e6-b82e-46b5-b9e2-c72a6928be48
mount /dev/sda /btrfs1
mount: /btrfs1: WARNING: device write-protected, mounted read-only.
btrfs dev add -f /dev/sdc /btrfs1
findmnt --output SOURCE,TARGET,UUID /btrfs1
SOURCE TARGET UUID
/dev/sdc /btrfs1 ca1dbb7a-8446-4f95-853c-a20f3f82bdbb
cat /proc/self/mounts | grep btrfs
/dev/sdb /btrfs btrfs rw,relatime,noacl,space_cache,subvolid=5,subvol=/ 0 0
/dev/sdc /btrfs1 btrfs ro,relatime,noacl,space_cache,subvolid=5,subvol=/ 0 0
Reported-by: Martin K. Petersen <martin.petersen@oracle.com>
CC: stable@vger.kernel.org # 4.19+
Tested-by: Martin K. Petersen <martin.petersen@oracle.com>
Signed-off-by: Anand Jain <anand.jain@oracle.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit a93e01682e283f6de09d6ce8f805dc52a2e942fb upstream.
When syncing the log, we used to update the log root tree without holding
neither the log_mutex of the subvolume root nor the log_mutex of log root
tree.
We used to have two critical sections delimited by the log_mutex of the
log root tree, so in the first one we incremented the log_writers of the
log root tree and on the second one we decremented it and waited for the
log_writers counter to go down to zero. This was because the update of
the log root tree happened between the two critical sections.
The use of two critical sections allowed a little bit more of parallelism
and required the use of the log_writers counter, necessary to make sure
we didn't miss any log root tree update when we have multiple tasks trying
to sync the log in parallel.
However after commit 06989c799f0481 ("Btrfs: fix race updating log root
item during fsync") the log root tree update was moved into a critical
section delimited by the subvolume's log_mutex. Later another commit
moved the log tree update from that critical section into the second
critical section delimited by the log_mutex of the log root tree. Both
commits addressed different bugs.
The end result is that the first critical section delimited by the
log_mutex of the log root tree became pointless, since there's nothing
done between it and the second critical section, we just have an unlock
of the log_mutex followed by a lock operation. This means we can merge
both critical sections, as the first one does almost nothing now, and we
can stop using the log_writers counter of the log root tree, which was
incremented in the first critical section and decremented in the second
criticial section, used to make sure no one in the second critical section
started writeback of the log root tree before some other task updated it.
So just remove the mutex_unlock() followed by mutex_lock() of the log root
tree, as well as the use of the log_writers counter for the log root tree.
This patch is part of a series that has the following patches:
1/4 btrfs: only commit the delayed inode when doing a full fsync
2/4 btrfs: only commit delayed items at fsync if we are logging a directory
3/4 btrfs: stop incremening log_batch for the log root tree when syncing log
4/4 btrfs: remove no longer needed use of log_writers for the log root tree
After the entire patchset applied I saw about 12% decrease on max latency
reported by dbench. The test was done on a qemu vm, with 8 cores, 16Gb of
ram, using kvm and using a raw NVMe device directly (no intermediary fs on
the host). The test was invoked like the following:
mkfs.btrfs -f /dev/sdk
mount -o ssd -o nospace_cache /dev/sdk /mnt/sdk
dbench -D /mnt/sdk -t 300 8
umount /mnt/dsk
CC: stable@vger.kernel.org # 5.4+
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 28a9579561bcb9082715e720eac93012e708ab94 upstream.
We are incrementing the log_batch atomic counter of the root log tree but
we never use that counter, it's used only for the log trees of subvolume
roots. We started doing it when we moved the log_batch and log_write
counters from the global, per fs, btrfs_fs_info structure, into the
btrfs_root structure in commit 7237f1833601dc ("Btrfs: fix tree logs
parallel sync").
So just stop doing it for the log root tree and add a comment over the
field declaration so inform it's used only for log trees of subvolume
roots.
This patch is part of a series that has the following patches:
1/4 btrfs: only commit the delayed inode when doing a full fsync
2/4 btrfs: only commit delayed items at fsync if we are logging a directory
3/4 btrfs: stop incremening log_batch for the log root tree when syncing log
4/4 btrfs: remove no longer needed use of log_writers for the log root tree
After the entire patchset applied I saw about 12% decrease on max latency
reported by dbench. The test was done on a qemu vm, with 8 cores, 16Gb of
ram, using kvm and using a raw NVMe device directly (no intermediary fs on
the host). The test was invoked like the following:
mkfs.btrfs -f /dev/sdk
mount -o ssd -o nospace_cache /dev/sdk /mnt/sdk
dbench -D /mnt/sdk -t 300 8
umount /mnt/dsk
CC: stable@vger.kernel.org # 5.4+
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit d60ba8de1164e1b42e296ff270c622a070ef8fe7 upstream.
clang static analysis flags this error
fs/btrfs/ref-verify.c:290:3: warning: Potential leak of memory pointed to by 're' [unix.Malloc]
kfree(be);
^~~~~
The problem is in this block of code:
if (root_objectid) {
struct root_entry *exist_re;
exist_re = insert_root_entry(&exist->roots, re);
if (exist_re)
kfree(re);
}
There is no 'else' block freeing when root_objectid is 0. Add the
missing kfree to the else branch.
Fixes: fd708b81d972 ("Btrfs: add a extent ref verify tool")
CC: stable@vger.kernel.org # 4.19+
Signed-off-by: Tom Rix <trix@redhat.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 851fd730a743e072badaf67caf39883e32439431 upstream.
[BUG]
When a lot of subvolumes are created, there is a user report about
transaction aborted:
BTRFS: Transaction aborted (error -24)
WARNING: CPU: 17 PID: 17041 at fs/btrfs/transaction.c:1576 create_pending_snapshot+0xbc4/0xd10 [btrfs]
RIP: 0010:create_pending_snapshot+0xbc4/0xd10 [btrfs]
Call Trace:
create_pending_snapshots+0x82/0xa0 [btrfs]
btrfs_commit_transaction+0x275/0x8c0 [btrfs]
btrfs_mksubvol+0x4b9/0x500 [btrfs]
btrfs_ioctl_snap_create_transid+0x174/0x180 [btrfs]
btrfs_ioctl_snap_create_v2+0x11c/0x180 [btrfs]
btrfs_ioctl+0x11a4/0x2da0 [btrfs]
do_vfs_ioctl+0xa9/0x640
ksys_ioctl+0x67/0x90
__x64_sys_ioctl+0x1a/0x20
do_syscall_64+0x5a/0x110
entry_SYSCALL_64_after_hwframe+0x44/0xa9
---[ end trace 33f2f83f3d5250e9 ]---
BTRFS: error (device sda1) in create_pending_snapshot:1576: errno=-24 unknown
BTRFS info (device sda1): forced readonly
BTRFS warning (device sda1): Skipping commit of aborted transaction.
BTRFS: error (device sda1) in cleanup_transaction:1831: errno=-24 unknown
[CAUSE]
The error is EMFILE (Too many files open) and comes from the anonymous
block device allocation. The ids are in a shared pool of size 1<<20.
The ids are assigned to live subvolumes, ie. the root structure exists
in memory (eg. after creation or after the root appears in some path).
The pool could be exhausted if the numbers are not reclaimed fast
enough, after subvolume deletion or if other system component uses the
anon block devices.
[WORKAROUND]
Since it's not possible to completely solve the problem, we can only
minimize the time the id is allocated to a subvolume root.
Firstly, we can reduce the use of anon_dev by trees that are not
subvolume roots, like data reloc tree.
This patch will do extra check on root objectid, to skip roots that
don't need anon_dev. Currently it's only data reloc tree and orphan
roots.
Reported-by: Greed Rong <greedrong@gmail.com>
Link: https://lore.kernel.org/linux-btrfs/CA+UqX+NTrZ6boGnWHhSeZmEY5J76CTqmYjO2S+=tHJX7nb9DPw@mail.gmail.com/
CC: stable@vger.kernel.org # 4.4+
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 082b6c970f02fefd278c7833880cda29691a5f34 upstream.
[BUG]
When a lot of subvolumes are created, there is a user report about
transaction aborted caused by slow anonymous block device reclaim:
BTRFS: Transaction aborted (error -24)
WARNING: CPU: 17 PID: 17041 at fs/btrfs/transaction.c:1576 create_pending_snapshot+0xbc4/0xd10 [btrfs]
RIP: 0010:create_pending_snapshot+0xbc4/0xd10 [btrfs]
Call Trace:
create_pending_snapshots+0x82/0xa0 [btrfs]
btrfs_commit_transaction+0x275/0x8c0 [btrfs]
btrfs_mksubvol+0x4b9/0x500 [btrfs]
btrfs_ioctl_snap_create_transid+0x174/0x180 [btrfs]
btrfs_ioctl_snap_create_v2+0x11c/0x180 [btrfs]
btrfs_ioctl+0x11a4/0x2da0 [btrfs]
do_vfs_ioctl+0xa9/0x640
ksys_ioctl+0x67/0x90
__x64_sys_ioctl+0x1a/0x20
do_syscall_64+0x5a/0x110
entry_SYSCALL_64_after_hwframe+0x44/0xa9
---[ end trace 33f2f83f3d5250e9 ]---
BTRFS: error (device sda1) in create_pending_snapshot:1576: errno=-24 unknown
BTRFS info (device sda1): forced readonly
BTRFS warning (device sda1): Skipping commit of aborted transaction.
BTRFS: error (device sda1) in cleanup_transaction:1831: errno=-24 unknown
[CAUSE]
The anonymous device pool is shared and its size is 1M. It's possible to
hit that limit if the subvolume deletion is not fast enough and the
subvolumes to be cleaned keep the ids allocated.
[WORKAROUND]
We can't avoid the anon device pool exhaustion but we can shorten the
time the id is attached to the subvolume root once the subvolume becomes
invisible to the user.
Reported-by: Greed Rong <greedrong@gmail.com>
Link: https://lore.kernel.org/linux-btrfs/CA+UqX+NTrZ6boGnWHhSeZmEY5J76CTqmYjO2S+=tHJX7nb9DPw@mail.gmail.com/
CC: stable@vger.kernel.org # 4.4+
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 3502a8c0dc1bd4b4970b59b06e348f22a1c05581 upstream.
On a filesystem with exhausted metadata, but still enough to start
balance, it's possible to hit this error:
[324402.053842] BTRFS info (device loop0): 1 enospc errors during balance
[324402.060769] BTRFS info (device loop0): balance: ended with status: -28
[324402.172295] BTRFS: error (device loop0) in reset_balance_state:3321: errno=-28 No space left
It fails inside reset_balance_state and turns the filesystem to
read-only, which is unnecessary and should be fixed too, but the problem
is caused by lack for space when the balance item is deleted. This is a
one-time operation and from the same rank as unlink that is allowed to
use the global block reserve. So do the same for the balance item.
Status of the filesystem (100GiB) just after the balance fails:
$ btrfs fi df mnt
Data, single: total=80.01GiB, used=38.58GiB
System, single: total=4.00MiB, used=16.00KiB
Metadata, single: total=19.99GiB, used=19.48GiB
GlobalReserve, single: total=512.00MiB, used=50.11MiB
CC: stable@vger.kernel.org # 4.4+
Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 0a018944eee913962bce8ffebbb121960d5125d9 upstream.
When mounting with Kerberos, users have been confused about the
default error returned in scenarios in which either keyutils is
not installed or the user did not properly acquire a krb5 ticket.
Log a warning message in the case that "ENOKEY" is returned
from the get_spnego_key upcall so that users can better understand
why mount failed in those two cases.
CC: Stable <stable@vger.kernel.org>
Signed-off-by: Steve French <stfrench@microsoft.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 270ef41094e9fa95273f288d7d785313ceab2ff3 upstream.
If the minix filesystem tries to map a very large logical block number to
its on-disk location, block_to_path() can return offsets that are too
large, causing out-of-bounds memory accesses when accessing indirect index
blocks. This should be prevented by the check against the maximum file
size, but this doesn't work because the maximum file size is read directly
from the on-disk superblock and isn't validated itself.
Fix this by validating the maximum file size at mount time.
Fixes: 1da177e4c3f4 ("Linux-2.6.12-rc2")
Reported-by: syzbot+c7d9ec7a1a7272dd71b3@syzkaller.appspotmail.com
Reported-by: syzbot+3b7b03a0c28948054fb5@syzkaller.appspotmail.com
Reported-by: syzbot+6e056ee473568865f3e6@syzkaller.appspotmail.com
Signed-off-by: Eric Biggers <ebiggers@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Cc: Alexander Viro <viro@zeniv.linux.org.uk>
Cc: Qiujun Huang <anenbupt@gmail.com>
Cc: <stable@vger.kernel.org>
Link: http://lkml.kernel.org/r/20200628060846.682158-4-ebiggers@kernel.org
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit facb03dddec04e4aac1bb2139accdceb04deb1f3 upstream.
If an inode has no links, we need to mark it bad rather than allowing it
to be accessed. This avoids WARNINGs in inc_nlink() and drop_nlink() when
doing directory operations on a fuzzed filesystem.
Fixes: 1da177e4c3f4 ("Linux-2.6.12-rc2")
Reported-by: syzbot+a9ac3de1b5de5fb10efc@syzkaller.appspotmail.com
Reported-by: syzbot+df958cf5688a96ad3287@syzkaller.appspotmail.com
Signed-off-by: Eric Biggers <ebiggers@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Cc: Alexander Viro <viro@zeniv.linux.org.uk>
Cc: Qiujun Huang <anenbupt@gmail.com>
Cc: <stable@vger.kernel.org>
Link: http://lkml.kernel.org/r/20200628060846.682158-3-ebiggers@kernel.org
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit da27e0a0e5f655f0d58d4e153c3182bb2b290f64 upstream.
Patch series "fs/minix: fix syzbot bugs and set s_maxbytes".
This series fixes all syzbot bugs in the minix filesystem:
KASAN: null-ptr-deref Write in get_block
KASAN: use-after-free Write in get_block
KASAN: use-after-free Read in get_block
WARNING in inc_nlink
KMSAN: uninit-value in get_block
WARNING in drop_nlink
It also fixes the minix filesystem to set s_maxbytes correctly, so that
userspace sees the correct behavior when exceeding the max file size.
This patch (of 6):
sb_getblk() can fail, so check its return value.
This fixes a NULL pointer dereference.
Originally from Qiujun Huang.
Fixes: 1da177e4c3f4 ("Linux-2.6.12-rc2")
Reported-by: syzbot+4a88b2b9dc280f47baf4@syzkaller.appspotmail.com
Signed-off-by: Eric Biggers <ebiggers@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Cc: Qiujun Huang <anenbupt@gmail.com>
Cc: Alexander Viro <viro@zeniv.linux.org.uk>
Cc: <stable@vger.kernel.org>
Link: http://lkml.kernel.org/r/20200628060846.682158-1-ebiggers@kernel.org
Link: http://lkml.kernel.org/r/20200628060846.682158-2-ebiggers@kernel.org
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit fd49e03280e596e54edb93a91bc96170f8e97e4a upstream.
When building a kernel with CONFIG_PSTORE=y and CONFIG_CRYPTO not set,
a build error happens:
ld: fs/pstore/platform.o: in function `pstore_dump':
platform.c:(.text+0x3f9): undefined reference to `crypto_comp_compress'
ld: fs/pstore/platform.o: in function `pstore_get_backend_records':
platform.c:(.text+0x784): undefined reference to `crypto_comp_decompress'
This because some pstore code uses crypto_comp_(de)compress regardless
of the CONFIG_CRYPTO status. Fix it by wrapping the (de)compress usage
by IS_ENABLED(CONFIG_PSTORE_COMPRESS)
Signed-off-by: Matteo Croce <mcroce@linux.microsoft.com>
Link: https://lore.kernel.org/lkml/20200706234045.9516-1-mcroce@linux.microsoft.com
Fixes: cb3bee0369bc ("pstore: Use crypto compress API")
Cc: stable@vger.kernel.org
Signed-off-by: Kees Cook <keescook@chromium.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 0dcd3c94e02438f4a571690e26f4ee997524102a upstream.
Each ondisk inode should be aligned with inode slot boundary
(32-byte alignment) because of nid calculation formula, so all
compact inodes (32 byte) cannot across page boundary. However,
extended inode is now 64-byte form, which can across page boundary
in principle if the location is specified on purpose, although
it's hard to be generated by mkfs due to the allocation policy
and rarely used by Android use case now mainly for > 4GiB files.
For now, only two fields `i_ctime_nsec` and `i_nlink' couldn't
be read from disk properly and cause out-of-bound memory read
with random value.
Let's fix now.
Fixes: 431339ba9042 ("staging: erofs: add inode operations")
Cc: <stable@vger.kernel.org> # 4.19+
Link: https://lore.kernel.org/r/20200729175801.GA23973@xiangao.remote.csb
Reviewed-by: Chao Yu <yuchao0@huawei.com>
Signed-off-by: Gao Xiang <hsiangkao@redhat.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit d474f96104bd4377573526ebae2ee212205a6839 upstream.
If the NFS_LAYOUT_RETURN_REQUESTED flag is set, we want to return the
layout as soon as possible, meaning that the affected layout segments
should be marked as invalid, and should no longer be in use for I/O.
Fixes: f0b429819b5f ("pNFS: Ignore non-recalled layouts in pnfs_layout_need_return()")
Cc: stable@vger.kernel.org # v4.19+
Signed-off-by: Trond Myklebust <trond.myklebust@hammerspace.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit ff041727e9e029845857cac41aae118ead5e261b upstream.
If the layout segment is still in use for a read or a write, we should
not move it to the layout plh_return_segs list. If we do, we can end
up returning the layout while I/O is still in progress.
Fixes: e0b7d420f72a ("pNFS: Don't discard layout segments that are marked for return")
Cc: stable@vger.kernel.org # v4.19+
Signed-off-by: Trond Myklebust <trond.myklebust@hammerspace.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit bd74048108c179cea0ff52979506164c80f29da7 upstream.
If we hit an earlier error path in io_uring_create(), then we will have
accounted memory, but not set ctx->{sq,cq}_entries yet. Then when the
ring is torn down in error, we use those values to unaccount the memory.
Ensure we set the ctx entries before we're able to hit a potential error
path.
Cc: stable@vger.kernel.org
Reported-by: Tomáš Chaloupka <chalucha@gmail.com>
Tested-by: Tomáš Chaloupka <chalucha@gmail.com>
Reviewed-by: Stefano Garzarella <sgarzare@redhat.com>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>