IF YOU WOULD LIKE TO GET AN ACCOUNT, please write an
email to Administrator. User accounts are meant only to access repo
and report issues and/or generate pull requests.
This is a purpose-specific Git hosting for
BaseALT
projects. Thank you for your understanding!
Только зарегистрированные пользователи имеют доступ к сервису!
Для получения аккаунта, обратитесь к администратору.
commit 79cd2a11224eab86d6673fe8a11d2046ae9d2757 upstream.
The linker script arch/x86/kernel/vmlinux.lds.S matches the thunk
sections ".text.__x86.*" from arch/x86/lib/retpoline.S as follows:
.text {
[...]
TEXT_TEXT
[...]
__indirect_thunk_start = .;
*(.text.__x86.*)
__indirect_thunk_end = .;
[...]
}
Macro TEXT_TEXT references TEXT_MAIN which normally expands to only
".text". However, with CONFIG_LTO_CLANG, TEXT_MAIN becomes
".text .text.[0-9a-zA-Z_]*" which wrongly matches also the thunk
sections. The output layout is then different than expected. For
instance, the currently defined range [__indirect_thunk_start,
__indirect_thunk_end] becomes empty.
Prevent the problem by using ".." as the first separator, for example,
".text..__x86.indirect_thunk". This pattern is utilized by other
explicit section names which start with one of the standard prefixes,
such as ".text" or ".data", and that need to be individually selected in
the linker script.
[ nathan: Fix conflicts with SRSO and fold in fix issue brought up by
Andrew Cooper in post-review:
https://lore.kernel.org/20230803230323.1478869-1-andrew.cooper3@citrix.com ]
Fixes: dc5723b02e52 ("kbuild: add support for Clang LTO")
Signed-off-by: Petr Pavlu <petr.pavlu@suse.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Nathan Chancellor <nathan@kernel.org>
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Link: https://lore.kernel.org/r/20230711091952.27944-2-petr.pavlu@suse.com
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit e9fbc47b818b964ddff5df5b2d5c0f5f32f4a147 upstream.
Skip the srso cmd line parsing which is not needed on Zen1/2 with SMT
disabled and with the proper microcode applied (latter should be the
case anyway) as those are not affected.
Fixes: 5a15d8348881 ("x86/srso: Tie SBPB bit setting to microcode patch detection")
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Link: https://lore.kernel.org/r/20230813104517.3346-1-bp@alien8.de
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit f58d6fbcb7c848b7f2469be339bc571f2e9d245b upstream.
Initially, it was thought that doing an innocuous division in the #DE
handler would take care to prevent any leaking of old data from the
divider but by the time the fault is raised, the speculation has already
advanced too far and such data could already have been used by younger
operations.
Therefore, do the innocuous division on every exit to userspace so that
userspace doesn't see any potentially old data from integer divisions in
kernel space.
Do the same before VMRUN too, to protect host data from leaking into the
guest too.
Fixes: 77245f1c3c64 ("x86/CPU/AMD: Do not leak quotient data after a division by 0")
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Cc: <stable@kernel.org>
Link: https://lore.kernel.org/r/20230811213824.10025-1-bp@alien8.de
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit ba5ca5e5e6a1d55923e88b4a83da452166f5560e upstream.
Use LEA instead of ADD when adjusting %rsp in srso_safe_ret{,_alias}()
so as to avoid clobbering flags. Drop one of the INT3 instructions to
account for the LEA consuming one more byte than the ADD.
KVM's emulator makes indirect calls into a jump table of sorts, where
the destination of each call is a small blob of code that performs fast
emulation by executing the target instruction with fixed operands.
E.g. to emulate ADC, fastop() invokes adcb_al_dl():
adcb_al_dl:
<+0>: adc %dl,%al
<+2>: jmp <__x86_return_thunk>
A major motivation for doing fast emulation is to leverage the CPU to
handle consumption and manipulation of arithmetic flags, i.e. RFLAGS is
both an input and output to the target of the call. fastop() collects
the RFLAGS result by pushing RFLAGS onto the stack and popping them back
into a variable (held in %rdi in this case):
asm("push %[flags]; popf; " CALL_NOSPEC " ; pushf; pop %[flags]\n"
<+71>: mov 0xc0(%r8),%rdx
<+78>: mov 0x100(%r8),%rcx
<+85>: push %rdi
<+86>: popf
<+87>: call *%rsi
<+89>: nop
<+90>: nop
<+91>: nop
<+92>: pushf
<+93>: pop %rdi
and then propagating the arithmetic flags into the vCPU's emulator state:
ctxt->eflags = (ctxt->eflags & ~EFLAGS_MASK) | (flags & EFLAGS_MASK);
<+64>: and $0xfffffffffffff72a,%r9
<+94>: and $0x8d5,%edi
<+109>: or %rdi,%r9
<+122>: mov %r9,0x10(%r8)
The failures can be most easily reproduced by running the "emulator"
test in KVM-Unit-Tests.
If you're feeling a bit of deja vu, see commit b63f20a778c8
("x86/retpoline: Don't clobber RFLAGS during CALL_NOSPEC on i386").
In addition, this breaks booting of clang-compiled guest on
a gcc-compiled host where the host contains the %rsp-modifying SRSO
mitigations.
[ bp: Massage commit message, extend, remove addresses. ]
Fixes: fb3bd914b3ec ("x86/srso: Add a Speculative RAS Overflow mitigation")
Closes: https://lore.kernel.org/all/de474347-122d-54cd-eabf-9dcc95ab9eae@amd.com
Reported-by: Srikanth Aithal <sraithal@amd.com>
Reported-by: Nathan Chancellor <nathan@kernel.org>
Signed-off-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Tested-by: Nathan Chancellor <nathan@kernel.org>
Cc: stable@vger.kernel.org
Link: https://lore.kernel.org/20230810013334.GA5354@dev-arch.thelio-3990X/
Link: https://lore.kernel.org/r/20230811155255.250835-1-seanjc@google.com
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 54097309620ef0dc2d7083783dc521c6a5fef957 upstream.
Christian reported spurious module load crashes after some of Song's
module memory layout patches.
Turns out that if the very last instruction on the very last page of the
module is a 'JMP __x86_return_thunk' then __static_call_fixup() will
trip a fault and die.
And while the module rework made this slightly more likely to happen,
it's always been possible.
Fixes: ee88d363d156 ("x86,static_call: Use alternative RET encoding")
Reported-by: Christian Bricart <christian@bricart.de>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Acked-by: Josh Poimboeuf <jpoimboe@kernel.org>
Link: https://lkml.kernel.org/r/20230816104419.GA982867@hirez.programming.kicks-ass.net
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 9dbd23e42ff0b10c9b02c9e649c76e5228241a8e upstream.
The goal is to eventually have a proper documentation about all this.
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Link: https://lore.kernel.org/r/20230814164447.GFZNpZ/64H4lENIe94@fat_crate.local
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit e7c25c441e9e0fa75b4c83e0b26306b702cfe90d upstream.
Since there can only be one active return_thunk, there only needs be
one (matching) untrain_ret. It fundamentally doesn't make sense to
allow multiple untrain_ret at the same time.
Fold all the 3 different untrain methods into a single (temporary)
helper stub.
Fixes: fb3bd914b3ec ("x86/srso: Add a Speculative RAS Overflow mitigation")
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Link: https://lore.kernel.org/r/20230814121149.042774962@infradead.org
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit d43490d0ab824023e11d0b57d0aeec17a6e0ca13 upstream.
Use the existing configurable return thunk. There is absolute no
justification for having created this __x86_return_thunk alternative.
To clarify, the whole thing looks like:
Zen3/4 does:
srso_alias_untrain_ret:
nop2
lfence
jmp srso_alias_return_thunk
int3
srso_alias_safe_ret: // aliasses srso_alias_untrain_ret just so
add $8, %rsp
ret
int3
srso_alias_return_thunk:
call srso_alias_safe_ret
ud2
While Zen1/2 does:
srso_untrain_ret:
movabs $foo, %rax
lfence
call srso_safe_ret (jmp srso_return_thunk ?)
int3
srso_safe_ret: // embedded in movabs instruction
add $8,%rsp
ret
int3
srso_return_thunk:
call srso_safe_ret
ud2
While retbleed does:
zen_untrain_ret:
test $0xcc, %bl
lfence
jmp zen_return_thunk
int3
zen_return_thunk: // embedded in the test instruction
ret
int3
Where Zen1/2 flush the BTB entry using the instruction decoder trick
(test,movabs) Zen3/4 use BTB aliasing. SRSO adds a return sequence
(srso_safe_ret()) which forces the function return instruction to
speculate into a trap (UD2). This RET will then mispredict and
execution will continue at the return site read from the top of the
stack.
Pick one of three options at boot (evey function can only ever return
once).
[ bp: Fixup commit message uarch details and add them in a comment in
the code too. Add a comment about the srso_select_mitigation()
dependency on retbleed_select_mitigation(). Add moar ifdeffery for
32-bit builds. Add a dummy srso_untrain_ret_alias() definition for
32-bit alternatives needing the symbol. ]
Fixes: fb3bd914b3ec ("x86/srso: Add a Speculative RAS Overflow mitigation")
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Link: https://lore.kernel.org/r/20230814121148.842775684@infradead.org
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 095b8303f3835c68ac4a8b6d754ca1c3b6230711 upstream.
There is infrastructure to rewrite return thunks to point to any
random thunk one desires, unwrap that from CALL_THUNKS, which up to
now was the sole user of that.
[ bp: Make the thunks visible on 32-bit and add ifdeffery for the
32-bit builds. ]
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Link: https://lore.kernel.org/r/20230814121148.775293785@infradead.org
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit af023ef335f13c8b579298fc432daeef609a9e60 upstream.
vmlinux.o: warning: objtool: srso_untrain_ret() falls through to next function __x86_return_skl()
vmlinux.o: warning: objtool: __x86_return_thunk() falls through to next function __x86_return_skl()
This is because these functions (can) end with CALL, which objtool
does not consider a terminating instruction. Therefore, replace the
INT3 instruction (which is a non-fatal trap) with UD2 (which is a
fatal-trap).
This indicates execution will not continue past this point.
Fixes: fb3bd914b3ec ("x86/srso: Add a Speculative RAS Overflow mitigation")
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Link: https://lore.kernel.org/r/20230814121148.637802730@infradead.org
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 77f67119004296a9b2503b377d610e08b08afc2a upstream.
Commit
fb3bd914b3ec ("x86/srso: Add a Speculative RAS Overflow mitigation")
reimplemented __x86_return_thunk with a mix of SYM_FUNC_START and
SYM_CODE_END, this is not a sane combination.
Since nothing should ever actually 'CALL' this, make it consistently
CODE.
Fixes: fb3bd914b3ec ("x86/srso: Add a Speculative RAS Overflow mitigation")
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Link: https://lore.kernel.org/r/20230814121148.571027074@infradead.org
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit eb3515dc99c7c85f4170b50838136b2a193f8012 upstream.
The declaration got placed in the .c file of the caller, but that
causes a warning for the definition:
arch/x86/kernel/cpu/bugs.c:682:6: error: no previous prototype for 'gds_ucode_mitigated' [-Werror=missing-prototypes]
Move it to a header where both sides can observe it instead.
Fixes: 81ac7e5d74174 ("KVM: Add GDS_NO support to KVM")
Signed-off-by: Arnd Bergmann <arnd@arndb.de>
Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com>
Tested-by: Daniel Sneddon <daniel.sneddon@linux.intel.com>
Cc: stable@kernel.org
Link: https://lore.kernel.org/all/20230809130530.1913368-2-arnd%40kernel.org
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit bee6cf1a80b54548a039e224c651bb15b644a480 upstream.
Tao Liu reported a boot hang on an Intel Atom machine due to an unmapped
EFI config table. The reason being that the CC blob which contains the
CPUID page for AMD SNP guests is parsed for before even checking
whether the machine runs on AMD hardware.
Usually that's not a problem on !AMD hw - it simply won't find the CC
blob's GUID and return. However, if any parts of the config table
pointers array is not mapped, the kernel will #PF very early in the
decompressor stage without any opportunity to recover.
Therefore, do a superficial CPUID check before poking for the CC blob.
This will fix the current issue on real hardware. It would also work as
a guest on a non-lying hypervisor.
For the lying hypervisor, the check is done again, *after* parsing the
CC blob as the real CPUID page will be present then.
Clear the #VC handler in case SEV-{ES,SNP} hasn't been detected, as
a precaution.
Fixes: c01fce9cef84 ("x86/compressed: Add SEV-SNP feature detection/setup")
Reported-by: Tao Liu <ltao@redhat.com>
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Acked-by: Tom Lendacky <thomas.lendacky@amd.com>
Tested-by: Tao Liu <ltao@redhat.com>
Cc: <stable@kernel.org>
Link: https://lore.kernel.org/r/20230601072043.24439-1-ltao@redhat.com
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 1b8b1aa90c9c0e825b181b98b8d9e249dc395470 upstream.
Yingcong has noticed that on the 5-level paging machine, VDSO and VVAR
VMAs are placed above the 47-bit border:
8000001a9000-8000001ad000 r--p 00000000 00:00 0 [vvar]
8000001ad000-8000001af000 r-xp 00000000 00:00 0 [vdso]
This might confuse users who are not aware of 5-level paging and expect
all userspace addresses to be under the 47-bit border.
So far problem has only been triggered with ASLR disabled, although it
may also occur with ASLR enabled if the layout is randomized in a just
right way.
The problem happens due to custom placement for the VMAs in the VDSO
code: vdso_addr() tries to place them above the stack and checks the
result against TASK_SIZE_MAX, which is wrong. TASK_SIZE_MAX is set to
the 56-bit border on 5-level paging machines. Use DEFAULT_MAP_WINDOW
instead.
Fixes: b569bab78d8d ("x86/mm: Prepare to expose larger address space to userspace")
Reported-by: Yingcong Wu <yingcong.wu@intel.com>
Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com>
Cc: stable@vger.kernel.org
Link: https://lore.kernel.org/all/20230803151609.22141-1-kirill.shutemov%40linux.intel.com
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 6dbef74aeb090d6bee7d64ef3fa82ae6fa53f271 upstream.
Commit
522b1d69219d ("x86/cpu/amd: Add a Zenbleed fix")
provided a fix for the Zen2 VZEROUPPER data corruption bug affecting
a range of CPU models, but the AMD Custom APU 0405 found on SteamDeck
was not listed, although it is clearly affected by the vulnerability.
Add this CPU variant to the Zenbleed erratum list, in order to
unconditionally enable the fallback fix until a proper microcode update
is available.
Fixes: 522b1d69219d ("x86/cpu/amd: Add a Zenbleed fix")
Signed-off-by: Cristian Ciocaltea <cristian.ciocaltea@collabora.com>
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Cc: stable@vger.kernel.org
Link: https://lore.kernel.org/r/20230811203705.1699914-1-cristian.ciocaltea@collabora.com
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit cbe8ded48b939b9d55d2c5589ab56caa7b530709 upstream.
The assertion added to verify the difference in bits set of the
addresses of srso_untrain_ret_alias() and srso_safe_ret_alias() would fail
to link in LLVM's ld.lld linker with the following error:
ld.lld: error: ./arch/x86/kernel/vmlinux.lds:210: at least one side of
the expression must be absolute
ld.lld: error: ./arch/x86/kernel/vmlinux.lds:211: at least one side of
the expression must be absolute
Use ABSOLUTE to evaluate the expression referring to at least one of the
symbols so that LLD can evaluate the linker script.
Also, add linker version info to the comment about XOR being unsupported
in either ld.bfd or ld.lld until somewhat recently.
Fixes: fb3bd914b3ec ("x86/srso: Add a Speculative RAS Overflow mitigation")
Closes: https://lore.kernel.org/llvm/CA+G9fYsdUeNu-gwbs0+T6XHi4hYYk=Y9725-wFhZ7gJMspLDRA@mail.gmail.com/
Reported-by: Nathan Chancellor <nathan@kernel.org>
Reported-by: Daniel Kolesa <daniel@octaforge.org>
Reported-by: Naresh Kamboju <naresh.kamboju@linaro.org>
Suggested-by: Sven Volkinsfeld <thyrc@gmx.net>
Signed-off-by: Nick Desaulniers <ndesaulniers@google.com>
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Link: https://github.com/ClangBuiltLinux/linux/issues/1907
Link: https://lore.kernel.org/r/20230809-gds-v1-1-eaac90b0cbcc@google.com
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 7588dbcebcbf0193ab5b76987396d0254270b04a upstream.
A KVM guest using SEV-ES or SEV-SNP with multiple vCPUs can trigger
a double fetch race condition vulnerability and invoke the VMGEXIT
handler recursively.
sev_handle_vmgexit() maps the GHCB page using kvm_vcpu_map() and then
fetches the exit code using ghcb_get_sw_exit_code(). Soon after,
sev_es_validate_vmgexit() fetches the exit code again. Since the GHCB
page is shared with the guest, the guest is able to quickly swap the
values with another vCPU and hence bypass the validation. One vmexit code
that can be rejected by sev_es_validate_vmgexit() is SVM_EXIT_VMGEXIT;
if sev_handle_vmgexit() observes it in the second fetch, the call
to svm_invoke_exit_handler() will invoke sev_handle_vmgexit() again
recursively.
To avoid the race, always fetch the GHCB data from the places where
sev_es_sync_from_ghcb stores it.
Exploiting recursions on linux kernel has been proven feasible
in the past, but the impact is mitigated by stack guard pages
(CONFIG_VMAP_STACK). Still, if an attacker manages to call the handler
multiple times, they can theoretically trigger a stack overflow and
cause a denial-of-service, or potentially guest-to-host escape in kernel
configurations without stack guard pages.
Note that winning the race reliably in every iteration is very tricky
due to the very tight window of the fetches; depending on the compiler
settings, they are often consecutive because of optimization and inlining.
Tested by booting an SEV-ES RHEL9 guest.
Fixes: CVE-2023-4155
Fixes: 291bd20d5d88 ("KVM: SVM: Add initial support for a VMGEXIT VMEXIT")
Cc: stable@vger.kernel.org
Reported-by: Andy Nguyen <theflow@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 4e15a0ddc3ff40e8ea84032213976ecf774d7f77 upstream.
Validation of the GHCB is susceptible to time-of-check/time-of-use vulnerabilities.
To avoid them, we would like to always snapshot the fields that are read in
sev_es_validate_vmgexit(), and not use the GHCB anymore after it returns.
This means:
- invoking sev_es_sync_from_ghcb() before any GHCB access, including before
sev_es_validate_vmgexit()
- snapshotting all fields including the valid bitmap and the sw_scratch field,
which are currently not caching anywhere.
The valid bitmap is the first thing to be copied out of the GHCB; then,
further accesses will use the copy in svm->sev_es.
Fixes: 291bd20d5d88 ("KVM: SVM: Add initial support for a VMGEXIT VMEXIT")
Cc: stable@vger.kernel.org
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 77245f1c3c6495521f6a3af082696ee2f8ce3921 upstream.
Under certain circumstances, an integer division by 0 which faults, can
leave stale quotient data from a previous division operation on Zen1
microarchitectures.
Do a dummy division 0/1 before returning from the #DE exception handler
in order to avoid any leaks of potentially sensitive data.
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Cc: <stable@kernel.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit d5ace2a776442d80674eff9ed42e737f7dd95056 upstream.
On hardware that supports Indirect Branch Tracking (IBT), Hyper-V VMs
with ConfigVersion 9.3 or later support IBT in the guest. However,
current versions of Hyper-V have a bug in that there's not an ENDBR64
instruction at the beginning of the hypercall page. Since hypercalls are
made with an indirect call to the hypercall page, all hypercall attempts
fail with an exception and Linux panics.
A Hyper-V fix is in progress to add ENDBR64. But guard against the Linux
panic by clearing X86_FEATURE_IBT if the hypercall page doesn't start
with ENDBR. The VM will boot and run without IBT.
If future Linux 32-bit kernels were to support IBT, additional hypercall
page hackery would be needed to make IBT work for such kernels in a
Hyper-V VM.
Cc: stable@vger.kernel.org
Signed-off-by: Michael Kelley <mikelley@microsoft.com>
Link: https://lore.kernel.org/r/1690001476-98594-1-git-send-email-mikelley@microsoft.com
Signed-off-by: Wei Liu <wei.liu@kernel.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Stable-tree-only change.
Due to the way the GDS and SRSO patches flowed into the stable tree, it
was a 50% chance that the merge of the which value GDS and SRSO should
be. Of course, I lost that bet, and chose the opposite of what Linus
chose in commit 64094e7e3118 ("Merge tag 'gds-for-linus-2023-08-01' of
git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip")
Fix this up by switching the values to match what is now in Linus's tree
as that is the correct value to mirror.
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 5a15d8348881e9371afdf9f5357a135489496955 upstream.
The SBPB bit in MSR_IA32_PRED_CMD is supported only after a microcode
patch has been applied so set X86_FEATURE_SBPB only then. Otherwise,
guests would attempt to set that bit and #GP on the MSR write.
While at it, make SMT detection more robust as some guests - depending
on how and what CPUID leafs their report - lead to cpu_smt_control
getting set to CPU_SMT_NOT_SUPPORTED but SRSO_NO should be set for any
guest incarnation where one simply cannot do SMT, for whatever reason.
Fixes: fb3bd914b3ec ("x86/srso: Add a Speculative RAS Overflow mitigation")
Reported-by: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
Reported-by: Salvatore Bonaccorso <carnil@debian.org>
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Upstream commit: d893832d0e1ef41c72cdae444268c1d64a2be8ad
Add the option to flush IBPB only on VMEXIT in order to protect from
malicious guests but one otherwise trusts the software that runs on the
hypervisor.
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Upstream commit: 233d6f68b98d480a7c42ebe78c38f79d44741ca9
Add the option to mitigate using IBPB on a kernel entry. Pull in the
Retbleed alternative so that the IBPB call from there can be used. Also,
if Retbleed mitigation is done using IBPB, the same mitigation can and
must be used here.
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Upstream commit: 1b5277c0ea0b247393a9c426769fde18cff5e2f6
Add support for the CPUID flag which denotes that the CPU is not
affected by SRSO.
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Upstream commit: 79113e4060aba744787a81edb9014f2865193854
Add support for the synthetic CPUID flag which "if this bit is 1,
it indicates that MSR 49h (PRED_CMD) bit 0 (IBPB) flushes all branch
type predictions from the CPU branch predictor."
This flag is there so that this capability in guests can be detected
easily (otherwise one would have to track microcode revisions which is
impossible for guests).
It is also needed only for Zen3 and -4. The other two (Zen1 and -2)
always flush branch type predictions by default.
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Upstream commit: fb3bd914b3ec28f5fb697ac55c4846ac2d542855
Add a mitigation for the speculative return address stack overflow
vulnerability found on AMD processors.
The mitigation works by ensuring all RET instructions speculate to
a controlled location, similar to how speculation is controlled in the
retpoline sequence. To accomplish this, the __x86_return_thunk forces
the CPU to mispredict every function return using a 'safe return'
sequence.
To ensure the safety of this mitigation, the kernel must ensure that the
safe return sequence is itself free from attacker interference. In Zen3
and Zen4, this is accomplished by creating a BTB alias between the
untraining function srso_untrain_ret_alias() and the safe return
function srso_safe_ret_alias() which results in evicting a potentially
poisoned BTB entry and using that safe one for all function returns.
In older Zen1 and Zen2, this is accomplished using a reinterpretation
technique similar to Retbleed one: srso_untrain_ret() and
srso_safe_ret().
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 8415a74852d7c24795007ee9862d25feb519007c upstream.
Add support for CPUID leaf 80000021, EAX. The majority of the features will be
used in the kernel and thus a separate leaf is appropriate.
Include KVM's reverse_cpuid entry because features are used by VM guests, too.
[ bp: Massage commit message. ]
Signed-off-by: Kim Phillips <kim.phillips@amd.com>
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Acked-by: Sean Christopherson <seanjc@google.com>
Link: https://lore.kernel.org/r/20230124163319.2277355-2-kim.phillips@amd.com
[bwh: Backported to 6.1: adjust context]
Signed-off-by: Ben Hutchings <benh@debian.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Upstream commit: 0e52740ffd10c6c316837c6c128f460f1aaba1ea
There was never a doubt in my mind that they would not fit into a single
u32 eventually.
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 3f4c8211d982099be693be9aa7d6fc4607dff290 upstream.
Instead of duplicating init_mm, allocate a fresh mm. The advantage is
that mm_alloc() has much simpler dependencies. Additionally it makes
more conceptual sense, init_mm has no (and must not have) user state
to duplicate.
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/20221025201057.816175235@infradead.org
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 26ce6ec364f18d2915923bc05784084e54a5c4cc upstream.
Commit 3f4c8211d982 ("x86/mm: Use mm_alloc() in poking_init()") broke
the kernel for running as Xen PV guest.
It seems as if the new address space is never activated before being
used, resulting in Xen rejecting to accept the new CR3 value (the PGD
isn't pinned).
Fix that by adding the now missing call of paravirt_arch_dup_mmap() to
poking_init(). That call was previously done by dup_mm()->dup_mmap() and
it is a NOP for all cases but for Xen PV, where it is just doing the
pinning of the PGD.
Fixes: 3f4c8211d982 ("x86/mm: Use mm_alloc() in poking_init()")
Signed-off-by: Juergen Gross <jgross@suse.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/20230109150922.10578-1-jgross@suse.com
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit fe3e0a13e597c1c8617814bf9b42ab732db5c26e upstream.
Moving the call of fpu__init_cpu() from cpu_init() to start_secondary()
broke Xen PV guests, as those don't call start_secondary() for APs.
Call fpu__init_cpu() in Xen's cpu_bringup(), which is the Xen PV
replacement of start_secondary().
Fixes: b81fac906a8f ("x86/fpu: Move FPU initialization into arch_cpu_finalize_init()")
Signed-off-by: Juergen Gross <jgross@suse.com>
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Reviewed-by: Boris Ostrovsky <boris.ostrovsky@oracle.com>
Acked-by: Thomas Gleixner <tglx@linutronix.de>
Link: https://lore.kernel.org/r/20230703130032.22916-1-jgross@suse.com
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 0a9567ac5e6a40cdd9c8cd15b19a62a15250f450 upstream.
Moving mem_encrypt_init() broke the AMD_MEM_ENCRYPT=n because the
declaration of that function was under #ifdef CONFIG_AMD_MEM_ENCRYPT and
the obvious placement for the inline stub was the #else path.
This is a leftover of commit 20f07a044a76 ("x86/sev: Move common memory
encryption code to mem_encrypt.c") which made mem_encrypt_init() depend on
X86_MEM_ENCRYPT without moving the prototype. That did not fail back then
because there was no stub inline as the core init code had a weak function.
Move both the declaration and the stub out of the CONFIG_AMD_MEM_ENCRYPT
section and guard it with CONFIG_X86_MEM_ENCRYPT.
Fixes: 439e17576eb4 ("init, x86: Move mem_encrypt_init() into arch_cpu_finalize_init()")
Reported-by: kernel test robot <lkp@intel.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Closes: https://lore.kernel.org/oe-kbuild-all/202306170247.eQtCJPE8-lkp@intel.com/
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 81ac7e5d741742d650b4ed6186c4826c1a0631a7 upstream
Gather Data Sampling (GDS) is a transient execution attack using
gather instructions from the AVX2 and AVX512 extensions. This attack
allows malicious code to infer data that was previously stored in
vector registers. Systems that are not vulnerable to GDS will set the
GDS_NO bit of the IA32_ARCH_CAPABILITIES MSR. This is useful for VM
guests that may think they are on vulnerable systems that are, in
fact, not affected. Guests that are running on affected hosts where
the mitigation is enabled are protected as if they were running
on an unaffected system.
On all hosts that are not affected or that are mitigated, set the
GDS_NO bit.
Signed-off-by: Daniel Sneddon <daniel.sneddon@linux.intel.com>
Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com>
Acked-by: Josh Poimboeuf <jpoimboe@kernel.org>
Signed-off-by: Daniel Sneddon <daniel.sneddon@linux.intel.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 53cf5797f114ba2bd86d23a862302119848eff19 upstream
Gather Data Sampling (GDS) is mitigated in microcode. However, on
systems that haven't received the updated microcode, disabling AVX
can act as a mitigation. Add a Kconfig option that uses the microcode
mitigation if available and disables AVX otherwise. Setting this
option has no effect on systems not affected by GDS. This is the
equivalent of setting gather_data_sampling=force.
Signed-off-by: Daniel Sneddon <daniel.sneddon@linux.intel.com>
Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com>
Acked-by: Josh Poimboeuf <jpoimboe@kernel.org>
Signed-off-by: Daniel Sneddon <daniel.sneddon@linux.intel.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 553a5c03e90a6087e88f8ff878335ef0621536fb upstream
The Gather Data Sampling (GDS) vulnerability allows malicious software
to infer stale data previously stored in vector registers. This may
include sensitive data such as cryptographic keys. GDS is mitigated in
microcode, and systems with up-to-date microcode are protected by
default. However, any affected system that is running with older
microcode will still be vulnerable to GDS attacks.
Since the gather instructions used by the attacker are part of the
AVX2 and AVX512 extensions, disabling these extensions prevents gather
instructions from being executed, thereby mitigating the system from
GDS. Disabling AVX2 is sufficient, but we don't have the granularity
to do this. The XCR0[2] disables AVX, with no option to just disable
AVX2.
Add a kernel parameter gather_data_sampling=force that will enable the
microcode mitigation if available, otherwise it will disable AVX on
affected systems.
This option will be ignored if cmdline mitigations=off.
This is a *big* hammer. It is known to break buggy userspace that
uses incomplete, buggy AVX enumeration. Unfortunately, such userspace
does exist in the wild:
https://www.mail-archive.com/bug-coreutils@gnu.org/msg33046.html
[ dhansen: add some more ominous warnings about disabling AVX ]
Signed-off-by: Daniel Sneddon <daniel.sneddon@linux.intel.com>
Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com>
Acked-by: Josh Poimboeuf <jpoimboe@kernel.org>
Signed-off-by: Daniel Sneddon <daniel.sneddon@linux.intel.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 8974eb588283b7d44a7c91fa09fcbaf380339f3a upstream
Gather Data Sampling (GDS) is a hardware vulnerability which allows
unprivileged speculative access to data which was previously stored in
vector registers.
Intel processors that support AVX2 and AVX512 have gather instructions
that fetch non-contiguous data elements from memory. On vulnerable
hardware, when a gather instruction is transiently executed and
encounters a fault, stale data from architectural or internal vector
registers may get transiently stored to the destination vector
register allowing an attacker to infer the stale data using typical
side channel techniques like cache timing attacks.
This mitigation is different from many earlier ones for two reasons.
First, it is enabled by default and a bit must be set to *DISABLE* it.
This is the opposite of normal mitigation polarity. This means GDS can
be mitigated simply by updating microcode and leaving the new control
bit alone.
Second, GDS has a "lock" bit. This lock bit is there because the
mitigation affects the hardware security features KeyLocker and SGX.
It needs to be enabled and *STAY* enabled for these features to be
mitigated against GDS.
The mitigation is enabled in the microcode by default. Disable it by
setting gather_data_sampling=off or by disabling all mitigations with
mitigations=off. The mitigation status can be checked by reading:
/sys/devices/system/cpu/vulnerabilities/gather_data_sampling
Signed-off-by: Daniel Sneddon <daniel.sneddon@linux.intel.com>
Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com>
Acked-by: Josh Poimboeuf <jpoimboe@kernel.org>
Signed-off-by: Daniel Sneddon <daniel.sneddon@linux.intel.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit b81fac906a8f9e682e513ddd95697ec7a20878d4 upstream
Initializing the FPU during the early boot process is a pointless
exercise. Early boot is convoluted and fragile enough.
Nothing requires that the FPU is set up early. It has to be initialized
before fork_init() because the task_struct size depends on the FPU register
buffer size.
Move the initialization to arch_cpu_finalize_init() which is the perfect
place to do so.
No functional change.
This allows to remove quite some of the custom early command line parsing,
but that's subject to the next installment.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Link: https://lore.kernel.org/r/20230613224545.902376621@linutronix.de
Signed-off-by: Daniel Sneddon <daniel.sneddon@linux.intel.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 1703db2b90c91b2eb2d699519fc505fe431dde0e upstream
No point in keeping them around.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Link: https://lore.kernel.org/r/20230613224545.841685728@linutronix.de
Signed-off-by: Daniel Sneddon <daniel.sneddon@linux.intel.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 1f34bb2a24643e0087652d81078e4f616562738d upstream
Nothing in the call chain requires it
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Link: https://lore.kernel.org/r/20230613224545.783704297@linutronix.de
Signed-off-by: Daniel Sneddon <daniel.sneddon@linux.intel.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 54d9a91a3d6713d1332e93be13b4eaf0fa54349d upstream
No point in doing this during really early boot. Move it to an early
initcall so that it is set up before possible user mode helpers are started
during device initialization.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Link: https://lore.kernel.org/r/20230613224545.727330699@linutronix.de
Signed-off-by: Daniel Sneddon <daniel.sneddon@linux.intel.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 439e17576eb47f26b78c5bbc72e344d4206d2327 upstream
Invoke the X86ism mem_encrypt_init() from X86 arch_cpu_finalize_init() and
remove the weak fallback from the core code.
No functional change.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Link: https://lore.kernel.org/r/20230613224545.670360645@linutronix.de
Signed-off-by: Daniel Sneddon <daniel.sneddon@linux.intel.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 7c7077a72674402654f3291354720cd73cdf649e upstream
check_bugs() is a dumping ground for finalizing the CPU bringup. Only parts of
it has to do with actual CPU bugs.
Split it apart into arch_cpu_finalize_init() and cpu_select_mitigations().
Fixup the bogus 32bit comments while at it.
No functional change.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Borislav Petkov (AMD) <bp@alien8.de>
Link: https://lore.kernel.org/r/20230613224545.019583869@linutronix.de
Signed-off-by: Daniel Sneddon <daniel.sneddon@linux.intel.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 3ba2e83334bed2b1980b59734e6e84dfaf96026c upstream.
AMD systems from Family 10h to 16h share MCA bank 4 across multiple CPUs.
Therefore, the threshold_bank structure for bank 4, and its threshold_block
structures, will be initialized once at boot time. And the kobject for the
shared bank will be added to each of the CPUs that share it. Furthermore,
the threshold_blocks for the shared bank will be added again to the bank's
kobject. These additions will increase the refcount for the bank's kobject.
For example, a shared bank with two blocks and shared across two CPUs will
be set up like this:
CPU0 init
bank create and add; bank refcount = 1; threshold_create_bank()
block 0 init and add; bank refcount = 2; allocate_threshold_blocks()
block 1 init and add; bank refcount = 3; allocate_threshold_blocks()
CPU1 init
bank add; bank refcount = 3; threshold_create_bank()
block 0 add; bank refcount = 4; __threshold_add_blocks()
block 1 add; bank refcount = 5; __threshold_add_blocks()
Currently in threshold_remove_bank(), if the bank is shared then
__threshold_remove_blocks() is called. Here the shared bank's kobject and
the bank's blocks' kobjects are deleted. This is done on the first call
even while the structures are still shared. Subsequent calls from other
CPUs that share the structures will attempt to delete the kobjects.
During kobject_del(), kobject->sd is removed. If the kobject is not part of
a kset with default_groups, then subsequent kobject_del() calls seem safe
even with kobject->sd == NULL.
Originally, the AMD MCA thresholding structures did not use default_groups.
And so the above behavior was not apparent.
However, a recent change implemented default_groups for the thresholding
structures. Therefore, kobject_del() will go down the sysfs_remove_groups()
code path. In this case, the first kobject_del() may succeed and remove
kobject->sd. But subsequent kobject_del() calls will give a WARNing in
kernfs_remove_by_name_ns() since kobject->sd == NULL.
Use kobject_put() on the shared bank's kobject when "removing" blocks. This
decrements the bank's refcount while keeping kobjects enabled until the
bank is no longer shared. At that point, kobject_put() will be called on
the blocks which drives their refcount to 0 and deletes them and also
decrementing the bank's refcount. And finally kobject_put() will be called
on the bank driving its refcount to 0 and deleting it.
The same example above:
CPU1 shutdown
bank is shared; bank refcount = 5; threshold_remove_bank()
block 0 put parent bank; bank refcount = 4; __threshold_remove_blocks()
block 1 put parent bank; bank refcount = 3; __threshold_remove_blocks()
CPU0 shutdown
bank is no longer shared; bank refcount = 3; threshold_remove_bank()
block 0 put block; bank refcount = 2; deallocate_threshold_blocks()
block 1 put block; bank refcount = 1; deallocate_threshold_blocks()
put bank; bank refcount = 0; threshold_remove_bank()
Fixes: 7f99cb5e6039 ("x86/CPU/AMD: Use default_groups in kobj_type")
Reported-by: Mikulas Patocka <mpatocka@redhat.com>
Signed-off-by: Yazen Ghannam <yazen.ghannam@amd.com>
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Tested-by: Mikulas Patocka <mpatocka@redhat.com>
Cc: <stable@kernel.org>
Link: https://lore.kernel.org/r/alpine.LRH.2.02.2205301145540.25840@file01.intranet.prod.int.rdu2.redhat.com
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 26a0652cb453c72f6aab0974bc4939e9b14f886b upstream.
Reject KVM_SET_SREGS{2} with -EINVAL if the incoming CR0 is invalid,
e.g. due to setting bits 63:32, illegal combinations, or to a value that
isn't allowed in VMX (non-)root mode. The VMX checks in particular are
"fun" as failure to disallow Real Mode for an L2 that is configured with
unrestricted guest disabled, when KVM itself has unrestricted guest
enabled, will result in KVM forcing VM86 mode to virtual Real Mode for
L2, but then fail to unwind the related metadata when synthesizing a
nested VM-Exit back to L1 (which has unrestricted guest enabled).
Opportunistically fix a benign typo in the prototype for is_valid_cr4().
Cc: stable@vger.kernel.org
Reported-by: syzbot+5feef0b9ee9c8e9e5689@syzkaller.appspotmail.com
Closes: https://lore.kernel.org/all/000000000000f316b705fdf6e2b4@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20230613203037.1968489-2-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>