IF YOU WOULD LIKE TO GET AN ACCOUNT, please write an
email to Administrator. User accounts are meant only to access repo
and report issues and/or generate pull requests.
This is a purpose-specific Git hosting for
BaseALT
projects. Thank you for your understanding!
Только зарегистрированные пользователи имеют доступ к сервису!
Для получения аккаунта, обратитесь к администратору.
commit 2c66ca3949dc701da7f4c9407f2140ae425683a5 upstream.
0-Day found a 34.6% regression in stress-ng's 'af-alg' test case, and
bisected it to commit b81fac906a8f ("x86/fpu: Move FPU initialization into
arch_cpu_finalize_init()"), which optimizes the FPU init order, and moves
the CR4_OSXSAVE enabling into a later place:
arch_cpu_finalize_init
identify_boot_cpu
identify_cpu
generic_identify
get_cpu_cap --> setup cpu capability
...
fpu__init_cpu
fpu__init_cpu_xstate
cr4_set_bits(X86_CR4_OSXSAVE);
As the FPU is not yet initialized the CPU capability setup fails to set
X86_FEATURE_OSXSAVE. Many security module like 'camellia_aesni_avx_x86_64'
depend on this feature and therefore fail to load, causing the regression.
Cure this by setting X86_FEATURE_OSXSAVE feature right after OSXSAVE
enabling.
[ tglx: Moved it into the actual BSP FPU initialization code and added a comment ]
Fixes: b81fac906a8f ("x86/fpu: Move FPU initialization into arch_cpu_finalize_init()")
Reported-by: kernel test robot <oliver.sang@intel.com>
Signed-off-by: Feng Tang <feng.tang@intel.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: stable@vger.kernel.org
Link: https://lore.kernel.org/lkml/202307192135.203ac24e-oliver.sang@intel.com
Link: https://lore.kernel.org/lkml/20230823065747.92257-1-feng.tang@intel.com
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 1f69383b203e28cf8a4ca9570e572da1699f76cd upstream.
The thread flag TIF_NEED_FPU_LOAD indicates that the FPU saved state is
valid and should be reloaded when returning to userspace. However, the
kernel will skip doing this if the FPU registers are already valid as
determined by fpregs_state_valid(). The logic embedded there considers
the state valid if two cases are both true:
1: fpu_fpregs_owner_ctx points to the current tasks FPU state
2: the last CPU the registers were live in was the current CPU.
This is usually correct logic. A CPU’s fpu_fpregs_owner_ctx is set to
the current FPU during the fpregs_restore_userregs() operation, so it
indicates that the registers have been restored on this CPU. But this
alone doesn’t preclude that the task hasn’t been rescheduled to a
different CPU, where the registers were modified, and then back to the
current CPU. To verify that this was not the case the logic relies on the
second condition. So the assumption is that if the registers have been
restored, AND they haven’t had the chance to be modified (by being
loaded on another CPU), then they MUST be valid on the current CPU.
Besides the lazy FPU optimizations, the other cases where the FPU
registers might not be valid are when the kernel modifies the FPU register
state or the FPU saved buffer. In this case the operation modifying the
FPU state needs to let the kernel know the correspondence has been
broken. The comment in “arch/x86/kernel/fpu/context.h” has:
/*
...
* If the FPU register state is valid, the kernel can skip restoring the
* FPU state from memory.
*
* Any code that clobbers the FPU registers or updates the in-memory
* FPU state for a task MUST let the rest of the kernel know that the
* FPU registers are no longer valid for this task.
*
* Either one of these invalidation functions is enough. Invalidate
* a resource you control: CPU if using the CPU for something else
* (with preemption disabled), FPU for the current task, or a task that
* is prevented from running by the current task.
*/
However, this is not completely true. When the kernel modifies the
registers or saved FPU state, it can only rely on
__fpu_invalidate_fpregs_state(), which wipes the FPU’s last_cpu
tracking. The exec path instead relies on fpregs_deactivate(), which sets
the CPU’s FPU context to NULL. This was observed to fail to restore the
reset FPU state to the registers when returning to userspace in the
following scenario:
1. A task is executing in userspace on CPU0
- CPU0’s FPU context points to tasks
- fpu->last_cpu=CPU0
2. The task exec()’s
3. While in the kernel the task is preempted
- CPU0 gets a thread executing in the kernel (such that no other
FPU context is activated)
- Scheduler sets task’s fpu->last_cpu=CPU0 when scheduling out
4. Task is migrated to CPU1
5. Continuing the exec(), the task gets to
fpu_flush_thread()->fpu_reset_fpregs()
- Sets CPU1’s fpu context to NULL
- Copies the init state to the task’s FPU buffer
- Sets TIF_NEED_FPU_LOAD on the task
6. The task reschedules back to CPU0 before completing the exec() and
returning to userspace
- During the reschedule, scheduler finds TIF_NEED_FPU_LOAD is set
- Skips saving the registers and updating task’s fpu→last_cpu,
because TIF_NEED_FPU_LOAD is the canonical source.
7. Now CPU0’s FPU context is still pointing to the task’s, and
fpu->last_cpu is still CPU0. So fpregs_state_valid() returns true even
though the reset FPU state has not been restored.
So the root cause is that exec() is doing the wrong kind of invalidate. It
should reset fpu->last_cpu via __fpu_invalidate_fpregs_state(). Further,
fpu__drop() doesn't really seem appropriate as the task (and FPU) are not
going away, they are just getting reset as part of an exec. So switch to
__fpu_invalidate_fpregs_state().
Also, delete the misleading comment that says that either kind of
invalidate will be enough, because it’s not always the case.
Fixes: 33344368cb08 ("x86/fpu: Clean up the fpu__clear() variants")
Reported-by: Lei Wang <lei4.wang@intel.com>
Signed-off-by: Rick Edgecombe <rick.p.edgecombe@intel.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Tested-by: Lijun Pan <lijun.pan@intel.com>
Reviewed-by: Sohil Mehta <sohil.mehta@intel.com>
Acked-by: Lijun Pan <lijun.pan@intel.com>
Cc: stable@vger.kernel.org
Link: https://lore.kernel.org/r/20230818170305.502891-1-rick.p.edgecombe@intel.com
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 79cd2a11224eab86d6673fe8a11d2046ae9d2757 upstream.
The linker script arch/x86/kernel/vmlinux.lds.S matches the thunk
sections ".text.__x86.*" from arch/x86/lib/retpoline.S as follows:
.text {
[...]
TEXT_TEXT
[...]
__indirect_thunk_start = .;
*(.text.__x86.*)
__indirect_thunk_end = .;
[...]
}
Macro TEXT_TEXT references TEXT_MAIN which normally expands to only
".text". However, with CONFIG_LTO_CLANG, TEXT_MAIN becomes
".text .text.[0-9a-zA-Z_]*" which wrongly matches also the thunk
sections. The output layout is then different than expected. For
instance, the currently defined range [__indirect_thunk_start,
__indirect_thunk_end] becomes empty.
Prevent the problem by using ".." as the first separator, for example,
".text..__x86.indirect_thunk". This pattern is utilized by other
explicit section names which start with one of the standard prefixes,
such as ".text" or ".data", and that need to be individually selected in
the linker script.
[ nathan: Fix conflicts with SRSO and fold in fix issue brought up by
Andrew Cooper in post-review:
https://lore.kernel.org/20230803230323.1478869-1-andrew.cooper3@citrix.com ]
Fixes: dc5723b02e52 ("kbuild: add support for Clang LTO")
Signed-off-by: Petr Pavlu <petr.pavlu@suse.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Nathan Chancellor <nathan@kernel.org>
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Link: https://lore.kernel.org/r/20230711091952.27944-2-petr.pavlu@suse.com
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit e9fbc47b818b964ddff5df5b2d5c0f5f32f4a147 upstream.
Skip the srso cmd line parsing which is not needed on Zen1/2 with SMT
disabled and with the proper microcode applied (latter should be the
case anyway) as those are not affected.
Fixes: 5a15d8348881 ("x86/srso: Tie SBPB bit setting to microcode patch detection")
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Link: https://lore.kernel.org/r/20230813104517.3346-1-bp@alien8.de
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit f58d6fbcb7c848b7f2469be339bc571f2e9d245b upstream.
Initially, it was thought that doing an innocuous division in the #DE
handler would take care to prevent any leaking of old data from the
divider but by the time the fault is raised, the speculation has already
advanced too far and such data could already have been used by younger
operations.
Therefore, do the innocuous division on every exit to userspace so that
userspace doesn't see any potentially old data from integer divisions in
kernel space.
Do the same before VMRUN too, to protect host data from leaking into the
guest too.
Fixes: 77245f1c3c64 ("x86/CPU/AMD: Do not leak quotient data after a division by 0")
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Cc: <stable@kernel.org>
Link: https://lore.kernel.org/r/20230811213824.10025-1-bp@alien8.de
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 54097309620ef0dc2d7083783dc521c6a5fef957 upstream.
Christian reported spurious module load crashes after some of Song's
module memory layout patches.
Turns out that if the very last instruction on the very last page of the
module is a 'JMP __x86_return_thunk' then __static_call_fixup() will
trip a fault and die.
And while the module rework made this slightly more likely to happen,
it's always been possible.
Fixes: ee88d363d156 ("x86,static_call: Use alternative RET encoding")
Reported-by: Christian Bricart <christian@bricart.de>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Acked-by: Josh Poimboeuf <jpoimboe@kernel.org>
Link: https://lkml.kernel.org/r/20230816104419.GA982867@hirez.programming.kicks-ass.net
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit e7c25c441e9e0fa75b4c83e0b26306b702cfe90d upstream.
Since there can only be one active return_thunk, there only needs be
one (matching) untrain_ret. It fundamentally doesn't make sense to
allow multiple untrain_ret at the same time.
Fold all the 3 different untrain methods into a single (temporary)
helper stub.
Fixes: fb3bd914b3ec ("x86/srso: Add a Speculative RAS Overflow mitigation")
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Link: https://lore.kernel.org/r/20230814121149.042774962@infradead.org
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit d43490d0ab824023e11d0b57d0aeec17a6e0ca13 upstream.
Use the existing configurable return thunk. There is absolute no
justification for having created this __x86_return_thunk alternative.
To clarify, the whole thing looks like:
Zen3/4 does:
srso_alias_untrain_ret:
nop2
lfence
jmp srso_alias_return_thunk
int3
srso_alias_safe_ret: // aliasses srso_alias_untrain_ret just so
add $8, %rsp
ret
int3
srso_alias_return_thunk:
call srso_alias_safe_ret
ud2
While Zen1/2 does:
srso_untrain_ret:
movabs $foo, %rax
lfence
call srso_safe_ret (jmp srso_return_thunk ?)
int3
srso_safe_ret: // embedded in movabs instruction
add $8,%rsp
ret
int3
srso_return_thunk:
call srso_safe_ret
ud2
While retbleed does:
zen_untrain_ret:
test $0xcc, %bl
lfence
jmp zen_return_thunk
int3
zen_return_thunk: // embedded in the test instruction
ret
int3
Where Zen1/2 flush the BTB entry using the instruction decoder trick
(test,movabs) Zen3/4 use BTB aliasing. SRSO adds a return sequence
(srso_safe_ret()) which forces the function return instruction to
speculate into a trap (UD2). This RET will then mispredict and
execution will continue at the return site read from the top of the
stack.
Pick one of three options at boot (evey function can only ever return
once).
[ bp: Fixup commit message uarch details and add them in a comment in
the code too. Add a comment about the srso_select_mitigation()
dependency on retbleed_select_mitigation(). Add moar ifdeffery for
32-bit builds. Add a dummy srso_untrain_ret_alias() definition for
32-bit alternatives needing the symbol. ]
Fixes: fb3bd914b3ec ("x86/srso: Add a Speculative RAS Overflow mitigation")
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Link: https://lore.kernel.org/r/20230814121148.842775684@infradead.org
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 095b8303f3835c68ac4a8b6d754ca1c3b6230711 upstream.
There is infrastructure to rewrite return thunks to point to any
random thunk one desires, unwrap that from CALL_THUNKS, which up to
now was the sole user of that.
[ bp: Make the thunks visible on 32-bit and add ifdeffery for the
32-bit builds. ]
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Link: https://lore.kernel.org/r/20230814121148.775293785@infradead.org
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 6dbef74aeb090d6bee7d64ef3fa82ae6fa53f271 upstream.
Commit
522b1d69219d ("x86/cpu/amd: Add a Zenbleed fix")
provided a fix for the Zen2 VZEROUPPER data corruption bug affecting
a range of CPU models, but the AMD Custom APU 0405 found on SteamDeck
was not listed, although it is clearly affected by the vulnerability.
Add this CPU variant to the Zenbleed erratum list, in order to
unconditionally enable the fallback fix until a proper microcode update
is available.
Fixes: 522b1d69219d ("x86/cpu/amd: Add a Zenbleed fix")
Signed-off-by: Cristian Ciocaltea <cristian.ciocaltea@collabora.com>
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Cc: stable@vger.kernel.org
Link: https://lore.kernel.org/r/20230811203705.1699914-1-cristian.ciocaltea@collabora.com
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit cbe8ded48b939b9d55d2c5589ab56caa7b530709 upstream.
The assertion added to verify the difference in bits set of the
addresses of srso_untrain_ret_alias() and srso_safe_ret_alias() would fail
to link in LLVM's ld.lld linker with the following error:
ld.lld: error: ./arch/x86/kernel/vmlinux.lds:210: at least one side of
the expression must be absolute
ld.lld: error: ./arch/x86/kernel/vmlinux.lds:211: at least one side of
the expression must be absolute
Use ABSOLUTE to evaluate the expression referring to at least one of the
symbols so that LLD can evaluate the linker script.
Also, add linker version info to the comment about XOR being unsupported
in either ld.bfd or ld.lld until somewhat recently.
Fixes: fb3bd914b3ec ("x86/srso: Add a Speculative RAS Overflow mitigation")
Closes: https://lore.kernel.org/llvm/CA+G9fYsdUeNu-gwbs0+T6XHi4hYYk=Y9725-wFhZ7gJMspLDRA@mail.gmail.com/
Reported-by: Nathan Chancellor <nathan@kernel.org>
Reported-by: Daniel Kolesa <daniel@octaforge.org>
Reported-by: Naresh Kamboju <naresh.kamboju@linaro.org>
Suggested-by: Sven Volkinsfeld <thyrc@gmx.net>
Signed-off-by: Nick Desaulniers <ndesaulniers@google.com>
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Link: https://github.com/ClangBuiltLinux/linux/issues/1907
Link: https://lore.kernel.org/r/20230809-gds-v1-1-eaac90b0cbcc@google.com
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 77245f1c3c6495521f6a3af082696ee2f8ce3921 upstream.
Under certain circumstances, an integer division by 0 which faults, can
leave stale quotient data from a previous division operation on Zen1
microarchitectures.
Do a dummy division 0/1 before returning from the #DE exception handler
in order to avoid any leaks of potentially sensitive data.
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Cc: <stable@kernel.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Stable-tree-only change.
Due to the way the GDS and SRSO patches flowed into the stable tree, it
was a 50% chance that the merge of the which value GDS and SRSO should
be. Of course, I lost that bet, and chose the opposite of what Linus
chose in commit 64094e7e3118 ("Merge tag 'gds-for-linus-2023-08-01' of
git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip")
Fix this up by switching the values to match what is now in Linus's tree
as that is the correct value to mirror.
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 5a15d8348881e9371afdf9f5357a135489496955 upstream.
The SBPB bit in MSR_IA32_PRED_CMD is supported only after a microcode
patch has been applied so set X86_FEATURE_SBPB only then. Otherwise,
guests would attempt to set that bit and #GP on the MSR write.
While at it, make SMT detection more robust as some guests - depending
on how and what CPUID leafs their report - lead to cpu_smt_control
getting set to CPU_SMT_NOT_SUPPORTED but SRSO_NO should be set for any
guest incarnation where one simply cannot do SMT, for whatever reason.
Fixes: fb3bd914b3ec ("x86/srso: Add a Speculative RAS Overflow mitigation")
Reported-by: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
Reported-by: Salvatore Bonaccorso <carnil@debian.org>
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Upstream commit: d893832d0e1ef41c72cdae444268c1d64a2be8ad
Add the option to flush IBPB only on VMEXIT in order to protect from
malicious guests but one otherwise trusts the software that runs on the
hypervisor.
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Upstream commit: 233d6f68b98d480a7c42ebe78c38f79d44741ca9
Add the option to mitigate using IBPB on a kernel entry. Pull in the
Retbleed alternative so that the IBPB call from there can be used. Also,
if Retbleed mitigation is done using IBPB, the same mitigation can and
must be used here.
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Upstream commit: 1b5277c0ea0b247393a9c426769fde18cff5e2f6
Add support for the CPUID flag which denotes that the CPU is not
affected by SRSO.
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Upstream commit: 79113e4060aba744787a81edb9014f2865193854
Add support for the synthetic CPUID flag which "if this bit is 1,
it indicates that MSR 49h (PRED_CMD) bit 0 (IBPB) flushes all branch
type predictions from the CPU branch predictor."
This flag is there so that this capability in guests can be detected
easily (otherwise one would have to track microcode revisions which is
impossible for guests).
It is also needed only for Zen3 and -4. The other two (Zen1 and -2)
always flush branch type predictions by default.
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Upstream commit: fb3bd914b3ec28f5fb697ac55c4846ac2d542855
Add a mitigation for the speculative return address stack overflow
vulnerability found on AMD processors.
The mitigation works by ensuring all RET instructions speculate to
a controlled location, similar to how speculation is controlled in the
retpoline sequence. To accomplish this, the __x86_return_thunk forces
the CPU to mispredict every function return using a 'safe return'
sequence.
To ensure the safety of this mitigation, the kernel must ensure that the
safe return sequence is itself free from attacker interference. In Zen3
and Zen4, this is accomplished by creating a BTB alias between the
untraining function srso_untrain_ret_alias() and the safe return
function srso_safe_ret_alias() which results in evicting a potentially
poisoned BTB entry and using that safe one for all function returns.
In older Zen1 and Zen2, this is accomplished using a reinterpretation
technique similar to Retbleed one: srso_untrain_ret() and
srso_safe_ret().
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 8415a74852d7c24795007ee9862d25feb519007c upstream.
Add support for CPUID leaf 80000021, EAX. The majority of the features will be
used in the kernel and thus a separate leaf is appropriate.
Include KVM's reverse_cpuid entry because features are used by VM guests, too.
[ bp: Massage commit message. ]
Signed-off-by: Kim Phillips <kim.phillips@amd.com>
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Acked-by: Sean Christopherson <seanjc@google.com>
Link: https://lore.kernel.org/r/20230124163319.2277355-2-kim.phillips@amd.com
[bwh: Backported to 6.1: adjust context]
Signed-off-by: Ben Hutchings <benh@debian.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 81ac7e5d741742d650b4ed6186c4826c1a0631a7 upstream
Gather Data Sampling (GDS) is a transient execution attack using
gather instructions from the AVX2 and AVX512 extensions. This attack
allows malicious code to infer data that was previously stored in
vector registers. Systems that are not vulnerable to GDS will set the
GDS_NO bit of the IA32_ARCH_CAPABILITIES MSR. This is useful for VM
guests that may think they are on vulnerable systems that are, in
fact, not affected. Guests that are running on affected hosts where
the mitigation is enabled are protected as if they were running
on an unaffected system.
On all hosts that are not affected or that are mitigated, set the
GDS_NO bit.
Signed-off-by: Daniel Sneddon <daniel.sneddon@linux.intel.com>
Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com>
Acked-by: Josh Poimboeuf <jpoimboe@kernel.org>
Signed-off-by: Daniel Sneddon <daniel.sneddon@linux.intel.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 53cf5797f114ba2bd86d23a862302119848eff19 upstream
Gather Data Sampling (GDS) is mitigated in microcode. However, on
systems that haven't received the updated microcode, disabling AVX
can act as a mitigation. Add a Kconfig option that uses the microcode
mitigation if available and disables AVX otherwise. Setting this
option has no effect on systems not affected by GDS. This is the
equivalent of setting gather_data_sampling=force.
Signed-off-by: Daniel Sneddon <daniel.sneddon@linux.intel.com>
Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com>
Acked-by: Josh Poimboeuf <jpoimboe@kernel.org>
Signed-off-by: Daniel Sneddon <daniel.sneddon@linux.intel.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 553a5c03e90a6087e88f8ff878335ef0621536fb upstream
The Gather Data Sampling (GDS) vulnerability allows malicious software
to infer stale data previously stored in vector registers. This may
include sensitive data such as cryptographic keys. GDS is mitigated in
microcode, and systems with up-to-date microcode are protected by
default. However, any affected system that is running with older
microcode will still be vulnerable to GDS attacks.
Since the gather instructions used by the attacker are part of the
AVX2 and AVX512 extensions, disabling these extensions prevents gather
instructions from being executed, thereby mitigating the system from
GDS. Disabling AVX2 is sufficient, but we don't have the granularity
to do this. The XCR0[2] disables AVX, with no option to just disable
AVX2.
Add a kernel parameter gather_data_sampling=force that will enable the
microcode mitigation if available, otherwise it will disable AVX on
affected systems.
This option will be ignored if cmdline mitigations=off.
This is a *big* hammer. It is known to break buggy userspace that
uses incomplete, buggy AVX enumeration. Unfortunately, such userspace
does exist in the wild:
https://www.mail-archive.com/bug-coreutils@gnu.org/msg33046.html
[ dhansen: add some more ominous warnings about disabling AVX ]
Signed-off-by: Daniel Sneddon <daniel.sneddon@linux.intel.com>
Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com>
Acked-by: Josh Poimboeuf <jpoimboe@kernel.org>
Signed-off-by: Daniel Sneddon <daniel.sneddon@linux.intel.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 8974eb588283b7d44a7c91fa09fcbaf380339f3a upstream
Gather Data Sampling (GDS) is a hardware vulnerability which allows
unprivileged speculative access to data which was previously stored in
vector registers.
Intel processors that support AVX2 and AVX512 have gather instructions
that fetch non-contiguous data elements from memory. On vulnerable
hardware, when a gather instruction is transiently executed and
encounters a fault, stale data from architectural or internal vector
registers may get transiently stored to the destination vector
register allowing an attacker to infer the stale data using typical
side channel techniques like cache timing attacks.
This mitigation is different from many earlier ones for two reasons.
First, it is enabled by default and a bit must be set to *DISABLE* it.
This is the opposite of normal mitigation polarity. This means GDS can
be mitigated simply by updating microcode and leaving the new control
bit alone.
Second, GDS has a "lock" bit. This lock bit is there because the
mitigation affects the hardware security features KeyLocker and SGX.
It needs to be enabled and *STAY* enabled for these features to be
mitigated against GDS.
The mitigation is enabled in the microcode by default. Disable it by
setting gather_data_sampling=off or by disabling all mitigations with
mitigations=off. The mitigation status can be checked by reading:
/sys/devices/system/cpu/vulnerabilities/gather_data_sampling
Signed-off-by: Daniel Sneddon <daniel.sneddon@linux.intel.com>
Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com>
Acked-by: Josh Poimboeuf <jpoimboe@kernel.org>
Signed-off-by: Daniel Sneddon <daniel.sneddon@linux.intel.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit b81fac906a8f9e682e513ddd95697ec7a20878d4 upstream
Initializing the FPU during the early boot process is a pointless
exercise. Early boot is convoluted and fragile enough.
Nothing requires that the FPU is set up early. It has to be initialized
before fork_init() because the task_struct size depends on the FPU register
buffer size.
Move the initialization to arch_cpu_finalize_init() which is the perfect
place to do so.
No functional change.
This allows to remove quite some of the custom early command line parsing,
but that's subject to the next installment.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Link: https://lore.kernel.org/r/20230613224545.902376621@linutronix.de
Signed-off-by: Daniel Sneddon <daniel.sneddon@linux.intel.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 1703db2b90c91b2eb2d699519fc505fe431dde0e upstream
No point in keeping them around.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Link: https://lore.kernel.org/r/20230613224545.841685728@linutronix.de
Signed-off-by: Daniel Sneddon <daniel.sneddon@linux.intel.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 1f34bb2a24643e0087652d81078e4f616562738d upstream
Nothing in the call chain requires it
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Link: https://lore.kernel.org/r/20230613224545.783704297@linutronix.de
Signed-off-by: Daniel Sneddon <daniel.sneddon@linux.intel.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 54d9a91a3d6713d1332e93be13b4eaf0fa54349d upstream
No point in doing this during really early boot. Move it to an early
initcall so that it is set up before possible user mode helpers are started
during device initialization.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Link: https://lore.kernel.org/r/20230613224545.727330699@linutronix.de
Signed-off-by: Daniel Sneddon <daniel.sneddon@linux.intel.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 439e17576eb47f26b78c5bbc72e344d4206d2327 upstream
Invoke the X86ism mem_encrypt_init() from X86 arch_cpu_finalize_init() and
remove the weak fallback from the core code.
No functional change.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Link: https://lore.kernel.org/r/20230613224545.670360645@linutronix.de
Signed-off-by: Daniel Sneddon <daniel.sneddon@linux.intel.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 7c7077a72674402654f3291354720cd73cdf649e upstream
check_bugs() is a dumping ground for finalizing the CPU bringup. Only parts of
it has to do with actual CPU bugs.
Split it apart into arch_cpu_finalize_init() and cpu_select_mitigations().
Fixup the bogus 32bit comments while at it.
No functional change.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Borislav Petkov (AMD) <bp@alien8.de>
Link: https://lore.kernel.org/r/20230613224545.019583869@linutronix.de
Signed-off-by: Daniel Sneddon <daniel.sneddon@linux.intel.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 3ba2e83334bed2b1980b59734e6e84dfaf96026c upstream.
AMD systems from Family 10h to 16h share MCA bank 4 across multiple CPUs.
Therefore, the threshold_bank structure for bank 4, and its threshold_block
structures, will be initialized once at boot time. And the kobject for the
shared bank will be added to each of the CPUs that share it. Furthermore,
the threshold_blocks for the shared bank will be added again to the bank's
kobject. These additions will increase the refcount for the bank's kobject.
For example, a shared bank with two blocks and shared across two CPUs will
be set up like this:
CPU0 init
bank create and add; bank refcount = 1; threshold_create_bank()
block 0 init and add; bank refcount = 2; allocate_threshold_blocks()
block 1 init and add; bank refcount = 3; allocate_threshold_blocks()
CPU1 init
bank add; bank refcount = 3; threshold_create_bank()
block 0 add; bank refcount = 4; __threshold_add_blocks()
block 1 add; bank refcount = 5; __threshold_add_blocks()
Currently in threshold_remove_bank(), if the bank is shared then
__threshold_remove_blocks() is called. Here the shared bank's kobject and
the bank's blocks' kobjects are deleted. This is done on the first call
even while the structures are still shared. Subsequent calls from other
CPUs that share the structures will attempt to delete the kobjects.
During kobject_del(), kobject->sd is removed. If the kobject is not part of
a kset with default_groups, then subsequent kobject_del() calls seem safe
even with kobject->sd == NULL.
Originally, the AMD MCA thresholding structures did not use default_groups.
And so the above behavior was not apparent.
However, a recent change implemented default_groups for the thresholding
structures. Therefore, kobject_del() will go down the sysfs_remove_groups()
code path. In this case, the first kobject_del() may succeed and remove
kobject->sd. But subsequent kobject_del() calls will give a WARNing in
kernfs_remove_by_name_ns() since kobject->sd == NULL.
Use kobject_put() on the shared bank's kobject when "removing" blocks. This
decrements the bank's refcount while keeping kobjects enabled until the
bank is no longer shared. At that point, kobject_put() will be called on
the blocks which drives their refcount to 0 and deletes them and also
decrementing the bank's refcount. And finally kobject_put() will be called
on the bank driving its refcount to 0 and deleting it.
The same example above:
CPU1 shutdown
bank is shared; bank refcount = 5; threshold_remove_bank()
block 0 put parent bank; bank refcount = 4; __threshold_remove_blocks()
block 1 put parent bank; bank refcount = 3; __threshold_remove_blocks()
CPU0 shutdown
bank is no longer shared; bank refcount = 3; threshold_remove_bank()
block 0 put block; bank refcount = 2; deallocate_threshold_blocks()
block 1 put block; bank refcount = 1; deallocate_threshold_blocks()
put bank; bank refcount = 0; threshold_remove_bank()
Fixes: 7f99cb5e6039 ("x86/CPU/AMD: Use default_groups in kobj_type")
Reported-by: Mikulas Patocka <mpatocka@redhat.com>
Signed-off-by: Yazen Ghannam <yazen.ghannam@amd.com>
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Tested-by: Mikulas Patocka <mpatocka@redhat.com>
Cc: <stable@kernel.org>
Link: https://lore.kernel.org/r/alpine.LRH.2.02.2205301145540.25840@file01.intranet.prod.int.rdu2.redhat.com
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
[ Upstream commit 9f9116406120638b4d8db3831ffbc430dd2e1e95 ]
Commit c4e34dd99f2e ("x86: simplify load_unaligned_zeropad()
implementation") changes how exceptions around load_unaligned_zeropad()
handled. The kernel now uses the fault_address in fixup_exception() to
verify the address calculations for the load_unaligned_zeropad().
It works fine for #PF, but breaks on #VE since no fault address is
passed down to fixup_exception().
Propagating ve_info.gla down to fixup_exception() resolves the issue.
See commit 1e7769653b06 ("x86/tdx: Handle load_unaligned_zeropad()
page-cross to a shared page") for more context.
Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Reported-by: Michael Kelley <mikelley@microsoft.com>
Fixes: c4e34dd99f2e ("x86: simplify load_unaligned_zeropad() implementation")
Acked-by: Dave Hansen <dave.hansen@linux.intel.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
Upstream commit: 522b1d69219d8f083173819fde04f994aa051a98
Add a fix for the Zen2 VZEROUPPER data corruption bug where under
certain circumstances executing VZEROUPPER can cause register
corruption or leak data.
The optimal fix is through microcode but in the case the proper
microcode revision has not been applied, enable a fallback fix using
a chicken bit.
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
[ Upstream commit 3f6819dd192ef4f0c568ec3e9d6d408b3fa1ad3d ]
TDX code is going to provide guest.enc_status_change_prepare() that is
able to fail. TDX will use the call to convert the GPA range from shared
to private. This operation can fail.
Add a way to return an error from the callback.
Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com>
Reviewed-by: Kuppuswamy Sathyanarayanan <sathyanarayanan.kuppuswamy@linux.intel.com>
Link: https://lore.kernel.org/all/20230606095622.1939-2-kirill.shutemov%40linux.intel.com
Stable-dep-of: 195edce08b63 ("x86/tdx: Fix race between set_memory_encrypted() and load_unaligned_zeropad()")
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit 5dee19b6b2b194216919b99a1f5af2949a754016 ]
When calculating an end address based on an unsigned int number of pages,
any value greater than or equal to 0x100000 that is shift PAGE_SHIFT bits
results in a 0 value, resulting in an invalid end address. Change the
number of pages variable in various routines from an unsigned int to an
unsigned long to calculate the end address correctly.
Fixes: 5e5ccff60a29 ("x86/sev: Add helper for validating pages in early enc attribute changes")
Fixes: dc3f3d2474b8 ("x86/mm: Validate memory when changing the C-bit")
Signed-off-by: Tom Lendacky <thomas.lendacky@amd.com>
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Link: https://lore.kernel.org/r/6a6e4eea0e1414402bac747744984fa4e9c01bb6.1686063086.git.thomas.lendacky@amd.com
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit 2997d94b5dd0e8b10076f5e0b6f18410c73e28bd ]
When writing a task id to the "tasks" file in an rdtgroup,
rdtgroup_tasks_write() treats the pid as a number in the current pid
namespace. But when reading the "tasks" file, rdtgroup_tasks_show() shows
the list of global pids from the init namespace, which is confusing and
incorrect.
To be more robust, let the "tasks" file only show pids in the current pid
namespace.
Fixes: e02737d5b826 ("x86/intel_rdt: Add tasks files")
Signed-off-by: Shawn Wang <shawnwang@linux.alibaba.com>
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Acked-by: Reinette Chatre <reinette.chatre@intel.com>
Acked-by: Fenghua Yu <fenghua.yu@intel.com>
Tested-by: Reinette Chatre <reinette.chatre@intel.com>
Link: https://lore.kernel.org/all/20230116071246.97717-1-shawnwang@linux.alibaba.com/
Signed-off-by: Sasha Levin <sashal@kernel.org>
commit d7893093a7417527c0d73c9832244e65c9d0114f upstream.
TLDR: It's a mess.
When kexec() is executed on a system with offline CPUs, which are parked in
mwait_play_dead() it can end up in a triple fault during the bootup of the
kexec kernel or cause hard to diagnose data corruption.
The reason is that kexec() eventually overwrites the previous kernel's text,
page tables, data and stack. If it writes to the cache line which is
monitored by a previously offlined CPU, MWAIT resumes execution and ends
up executing the wrong text, dereferencing overwritten page tables or
corrupting the kexec kernels data.
Cure this by bringing the offlined CPUs out of MWAIT into HLT.
Write to the monitored cache line of each offline CPU, which makes MWAIT
resume execution. The written control word tells the offlined CPUs to issue
HLT, which does not have the MWAIT problem.
That does not help, if a stray NMI, MCE or SMI hits the offlined CPUs as
those make it come out of HLT.
A follow up change will put them into INIT, which protects at least against
NMI and SMI.
Fixes: ea53069231f9 ("x86, hotplug: Use mwait to offline a processor, fix the legacy case")
Reported-by: Ashok Raj <ashok.raj@intel.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Tested-by: Ashok Raj <ashok.raj@intel.com>
Reviewed-by: Ashok Raj <ashok.raj@intel.com>
Cc: stable@vger.kernel.org
Link: https://lore.kernel.org/r/20230615193330.492257119@linutronix.de
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit f9c9987bf52f4e42e940ae217333ebb5a4c3b506 upstream.
Monitoring idletask::thread_info::flags in mwait_play_dead() has been an
obvious choice as all what is needed is a cache line which is not written
by other CPUs.
But there is a use case where a "dead" CPU needs to be brought out of
MWAIT: kexec().
This is required as kexec() can overwrite text, pagetables, stacks and the
monitored cacheline of the original kernel. The latter causes MWAIT to
resume execution which obviously causes havoc on the kexec kernel which
results usually in triple faults.
Use a dedicated per CPU storage to prepare for that.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Ashok Raj <ashok.raj@intel.com>
Reviewed-by: Borislav Petkov (AMD) <bp@alien8.de>
Cc: stable@vger.kernel.org
Link: https://lore.kernel.org/r/20230615193330.434553750@linutronix.de
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 2affa6d6db28855e6340b060b809c23477aa546e upstream.
The wmb()s before sending the IPIs are not synchronizing anything.
If at all then the apic IPI functions have to provide or act as appropriate
barriers.
Remove these cargo cult barriers which have no explanation of what they are
synchronizing.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Borislav Petkov (AMD) <bp@alien8.de>
Cc: stable@vger.kernel.org
Link: https://lore.kernel.org/r/20230615193330.378358382@linutronix.de
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 9b040453d4440659f33dc6f0aa26af418ebfe70b upstream.
stop_this_cpu() tests CPUID leaf 0x8000001f::EAX unconditionally. Intel
CPUs return the content of the highest supported leaf when a non-existing
leaf is read, while AMD CPUs return all zeros for unsupported leafs.
So the result of the test on Intel CPUs is lottery.
While harmless it's incorrect and causes the conditional wbinvd() to be
issued where not required.
Check whether the leaf is supported before reading it.
[ tglx: Adjusted changelog ]
Fixes: 08f253ec3767 ("x86/cpu: Clear SME feature flag when not in use")
Signed-off-by: Tony Battersby <tonyb@cybernetics.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Mario Limonciello <mario.limonciello@amd.com>
Reviewed-by: Borislav Petkov (AMD) <bp@alien8.de>
Cc: stable@vger.kernel.org
Link: https://lore.kernel.org/r/3817d810-e0f1-8ef8-0bbd-663b919ca49b@cybernetics.com
Link: https://lore.kernel.org/r/20230615193330.322186388@linutronix.de
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 1f5e7eb7868e42227ac426c96d437117e6e06e8e upstream.
Tony reported intermittent lockups on poweroff. His analysis identified the
wbinvd() in stop_this_cpu() as the culprit. This was added to ensure that
on SME enabled machines a kexec() does not leave any stale data in the
caches when switching from encrypted to non-encrypted mode or vice versa.
That wbinvd() is conditional on the SME feature bit which is read directly
from CPUID. But that readout does not check whether the CPUID leaf is
available or not. If it's not available the CPU will return the value of
the highest supported leaf instead. Depending on the content the "SME" bit
might be set or not.
That's incorrect but harmless. Making the CPUID readout conditional makes
the observed hangs go away, but it does not fix the underlying problem:
CPU0 CPU1
stop_other_cpus()
send_IPIs(REBOOT); stop_this_cpu()
while (num_online_cpus() > 1); set_online(false);
proceed... -> hang
wbinvd()
WBINVD is an expensive operation and if multiple CPUs issue it at the same
time the resulting delays are even larger.
But CPU0 already observed num_online_cpus() going down to 1 and proceeds
which causes the system to hang.
This issue exists independent of WBINVD, but the delays caused by WBINVD
make it more prominent.
Make this more robust by adding a cpumask which is initialized to the
online CPU mask before sending the IPIs and CPUs clear their bit in
stop_this_cpu() after the WBINVD completed. Check for that cpumask to
become empty in stop_other_cpus() instead of watching num_online_cpus().
The cpumask cannot plug all holes either, but it's better than a raw
counter and allows to restrict the NMI fallback IPI to be sent only the
CPUs which have not reported within the timeout window.
Fixes: 08f253ec3767 ("x86/cpu: Clear SME feature flag when not in use")
Reported-by: Tony Battersby <tonyb@cybernetics.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Borislav Petkov (AMD) <bp@alien8.de>
Reviewed-by: Ashok Raj <ashok.raj@intel.com>
Cc: stable@vger.kernel.org
Link: https://lore.kernel.org/all/3817d810-e0f1-8ef8-0bbd-663b919ca49b@cybernetics.com
Link: https://lore.kernel.org/r/87h6r770bv.ffs@tglx
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit a32b0f0db3f396f1c9be2fe621e77c09ec3d8e7d upstream.
Do the same as early loading - load on both threads.
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Cc: <stable@kernel.org>
Link: https://lore.kernel.org/r/20230605141332.25948-1-bp@alien8.de
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
[ Upstream commit 85d38d5810e285d5aec7fb5283107d1da70c12a9 ]
When booting with "intremap=off" and "x2apic_phys" on the kernel command
line, the physical x2APIC driver ends up being used even when x2APIC
mode is disabled ("intremap=off" disables x2APIC mode). This happens
because the first compound condition check in x2apic_phys_probe() is
false due to x2apic_mode == 0 and so the following one returns true
after default_acpi_madt_oem_check() having already selected the physical
x2APIC driver.
This results in the following panic:
kernel BUG at arch/x86/kernel/apic/io_apic.c:2409!
invalid opcode: 0000 [#1] PREEMPT SMP NOPTI
CPU: 0 PID: 0 Comm: swapper/0 Not tainted 6.4.0-rc2-ver4.1rc2 #2
Hardware name: Dell Inc. PowerEdge R6515/07PXPY, BIOS 2.3.6 07/06/2021
RIP: 0010:setup_IO_APIC+0x9c/0xaf0
Call Trace:
<TASK>
? native_read_msr
apic_intr_mode_init
x86_late_time_init
start_kernel
x86_64_start_reservations
x86_64_start_kernel
secondary_startup_64_no_verify
</TASK>
which is:
setup_IO_APIC:
apic_printk(APIC_VERBOSE, "ENABLING IO-APIC IRQs\n");
for_each_ioapic(ioapic)
BUG_ON(mp_irqdomain_create(ioapic));
Return 0 to denote that x2APIC has not been enabled when probing the
physical x2APIC driver.
[ bp: Massage commit message heavily. ]
Fixes: 9ebd680bd029 ("x86, apic: Use probe routines to simplify apic selection")
Signed-off-by: Dheeraj Kumar Srivastava <dheerajkumar.srivastava@amd.com>
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Reviewed-by: Kishon Vijay Abraham I <kvijayab@amd.com>
Reviewed-by: Vasant Hegde <vasant.hegde@amd.com>
Reviewed-by: Cyrill Gorcunov <gorcunov@gmail.com>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Link: https://lore.kernel.org/r/20230616212236.1389-1-dheerajkumar.srivastava@amd.com
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit a37f2699c36a7f6606ba3300f243227856c5ad6b ]
The call to startup_64_setup_env() will install a new GDT but does not
actually switch to using the KERNEL_CS entry until returning from the
function call.
Commit bcce82908333 ("x86/sev: Detect/setup SEV/SME features earlier in
boot") moved the call to sme_enable() earlier in the boot process and in
between the call to startup_64_setup_env() and the switch to KERNEL_CS.
An SEV-ES or an SEV-SNP guest will trigger #VC exceptions during the call
to sme_enable() and if the CS pushed on the stack as part of the exception
and used by IRETQ is not mapped by the new GDT, then problems occur.
Today, the current CS when entering startup_64 is the kernel CS value
because it was set up by the decompressor code, so no issue is seen.
However, a recent patchset that looked to avoid using the legacy
decompressor during an EFI boot exposed this bug. At entry to startup_64,
the CS value is that of EFI and is not mapped in the new kernel GDT. So
when a #VC exception occurs, the CS value used by IRETQ is not valid and
the guest boot crashes.
Fix this issue by moving the block that switches to the KERNEL_CS value to
be done immediately after returning from startup_64_setup_env().
Fixes: bcce82908333 ("x86/sev: Detect/setup SEV/SME features earlier in boot")
Signed-off-by: Tom Lendacky <thomas.lendacky@amd.com>
Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com>
Reviewed-by: Joerg Roedel <jroedel@suse.de>
Link: https://lore.kernel.org/all/6ff1f28af2829cc9aea357ebee285825f90a431f.1684340801.git.thomas.lendacky%40amd.com
Signed-off-by: Sasha Levin <sashal@kernel.org>
commit 2e4be0d011f21593c6b316806779ba1eba2cd7e0 upstream.
The commit e335bb51cc15 ("x86/unwind: Ensure stack pointer is aligned")
tried to align the stack pointer in show_trace_log_lvl(), otherwise the
"stack < stack_info.end" check can't guarantee that the last read does
not go past the end of the stack.
However, we have the same problem with the initial value of the stack
pointer, it can also be unaligned. So without this patch this trivial
kernel module
#include <linux/module.h>
static int init(void)
{
asm volatile("sub $0x4,%rsp");
dump_stack();
asm volatile("add $0x4,%rsp");
return -EAGAIN;
}
module_init(init);
MODULE_LICENSE("GPL");
crashes the kernel.
Fixes: e335bb51cc15 ("x86/unwind: Ensure stack pointer is aligned")
Signed-off-by: Vernon Lovejoy <vlovejoy@redhat.com>
Signed-off-by: Oleg Nesterov <oleg@redhat.com>
Link: https://lore.kernel.org/r/20230512104232.GA10227@redhat.com
Signed-off-by: Josh Poimboeuf <jpoimboe@kernel.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>