IF YOU WOULD LIKE TO GET AN ACCOUNT, please write an
email to Administrator. User accounts are meant only to access repo
and report issues and/or generate pull requests.
This is a purpose-specific Git hosting for
BaseALT
projects. Thank you for your understanding!
Только зарегистрированные пользователи имеют доступ к сервису!
Для получения аккаунта, обратитесь к администратору.
[ Upstream commit 6764e767f4af1e35f87f3497e1182d945de37f93 ]
__bpf_prog_enter_recur() assigns bpf_tramp_run_ctx::saved_run_ctx before
performing the recursion check which means in case of a recursion
__bpf_prog_exit_recur() uses the previously set bpf_tramp_run_ctx::saved_run_ctx
value.
__bpf_prog_enter_sleepable_recur() assigns bpf_tramp_run_ctx::saved_run_ctx
after the recursion check which means in case of a recursion
__bpf_prog_exit_sleepable_recur() uses an uninitialized value. This does not
look right. If I read the entry trampoline code right, then bpf_tramp_run_ctx
isn't initialized upfront.
Align __bpf_prog_enter_sleepable_recur() with __bpf_prog_enter_recur() and
set bpf_tramp_run_ctx::saved_run_ctx before the recursion check is made.
Remove the assignment of saved_run_ctx in kern_sys_bpf() since it happens
a few cycles later.
Fixes: e384c7b7b46d0 ("bpf, x86: Create bpf_tramp_run_ctx on the caller thread's stack")
Signed-off-by: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Jiri Olsa <jolsa@kernel.org>
Link: https://lore.kernel.org/bpf/20230830080405.251926-3-bigeasy@linutronix.de
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit 7645629f7dc88cd777f98970134bf1a54c8d77e3 ]
If __bpf_prog_enter_sleepable_recur() detects recursion then it returns
0 without undoing rcu_read_lock_trace(), migrate_disable() or
decrementing the recursion counter. This is fine in the JIT case because
the JIT code will jump in the 0 case to the end and invoke the matching
exit trampoline (__bpf_prog_exit_sleepable_recur()).
This is not the case in kern_sys_bpf() which returns directly to the
caller with an error code.
Add __bpf_prog_exit_sleepable_recur() as clean up in the recursion case.
Fixes: b1d18a7574d0d ("bpf: Extend sys_bpf commands for bpf_syscall programs.")
Signed-off-by: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Jiri Olsa <jolsa@kernel.org>
Link: https://lore.kernel.org/bpf/20230830080405.251926-2-bigeasy@linutronix.de
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit 271de525e1d7f564e88a9d212c50998b49a54476 ]
The commit 64696c40d03c ("bpf: Add __bpf_prog_{enter,exit}_struct_ops for struct_ops trampoline")
removed prog->active check for struct_ops prog. The bpf_lsm
and bpf_iter is also using trampoline. Like struct_ops, the bpf_lsm
and bpf_iter have fixed hooks for the prog to attach. The
kernel does not call the same hook in a recursive way.
This patch also removes the prog->active check for
bpf_lsm and bpf_iter.
A later patch has a test to reproduce the recursion issue
for a sleepable bpf_lsm program.
This patch appends the '_recur' naming to the existing
enter and exit functions that track the prog->active counter.
New __bpf_prog_{enter,exit}[_sleepable] function are
added to skip the prog->active tracking. The '_struct_ops'
version is also removed.
It also moves the decision on picking the enter and exit function to
the new bpf_trampoline_{enter,exit}(). It returns the '_recur' ones
for all tracing progs to use. For bpf_lsm, bpf_iter,
struct_ops (no prog->active tracking after 64696c40d03c), and
bpf_lsm_cgroup (no prog->active tracking after 69fd337a975c7),
it will return the functions that don't track the prog->active.
Signed-off-by: Martin KaFai Lau <martin.lau@kernel.org>
Link: https://lore.kernel.org/r/20221025184524.3526117-2-martin.lau@linux.dev
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Stable-dep-of: 7645629f7dc8 ("bpf: Invoke __bpf_prog_exit_sleepable_recur() on recursion in kern_sys_bpf().")
Signed-off-by: Sasha Levin <sashal@kernel.org>
commit d75e30dddf73449bc2d10bb8e2f1a2c446bc67a2 upstream.
After we converted the capabilities of our networking-bpf program from
cap_sys_admin to cap_net_admin+cap_bpf, our networking-bpf program
failed to start. Because it failed the bpf verifier, and the error log
is "R3 pointer comparison prohibited".
A simple reproducer as follows,
SEC("cls-ingress")
int ingress(struct __sk_buff *skb)
{
struct iphdr *iph = (void *)(long)skb->data + sizeof(struct ethhdr);
if ((long)(iph + 1) > (long)skb->data_end)
return TC_ACT_STOLEN;
return TC_ACT_OK;
}
Per discussion with Yonghong and Alexei [1], comparison of two packet
pointers is not a pointer leak. This patch fixes it.
Our local kernel is 6.1.y and we expect this fix to be backported to
6.1.y, so stable is CCed.
[1]. https://lore.kernel.org/bpf/CAADnVQ+Nmspr7Si+pxWn8zkE7hX-7s93ugwC+94aXSy4uQ9vBg@mail.gmail.com/
Suggested-by: Yonghong Song <yonghong.song@linux.dev>
Suggested-by: Alexei Starovoitov <alexei.starovoitov@gmail.com>
Signed-off-by: Yafang Shao <laoar.shao@gmail.com>
Acked-by: Eduard Zingerman <eddyz87@gmail.com>
Cc: stable@vger.kernel.org
Link: https://lore.kernel.org/r/20230823020703.3790-2-laoar.shao@gmail.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
[ Upstream commit 33937607efa050d9e237e0c4ac4ada02d961c466 ]
We are utilizing BPF LSM to monitor BPF operations within our container
environment. When we add support for raw_tracepoint, it hits below
error.
; (const void *)attr->raw_tracepoint.name);
27: (79) r3 = *(u64 *)(r2 +0)
access beyond the end of member map_type (mend:4) in struct (anon) with off 0 size 8
It can be reproduced with below BPF prog.
SEC("lsm/bpf")
int BPF_PROG(bpf_audit, int cmd, union bpf_attr *attr, unsigned int size)
{
switch (cmd) {
case BPF_RAW_TRACEPOINT_OPEN:
bpf_printk("raw_tracepoint is %s", attr->raw_tracepoint.name);
break;
default:
break;
}
return 0;
}
The reason is that when accessing a field in a union, such as bpf_attr,
if the field is located within a nested struct that is not the first
member of the union, it can result in incorrect field verification.
union bpf_attr {
struct {
__u32 map_type; <<<< Actually it will find that field.
__u32 key_size;
__u32 value_size;
...
};
...
struct {
__u64 name; <<<< We want to verify this field.
__u32 prog_fd;
} raw_tracepoint;
};
Considering the potential deep nesting levels, finding a perfect
solution to address this issue has proven challenging. Therefore, I
propose a solution where we simply skip the verification process if the
field in question is located within a union.
Fixes: 7e3617a72df3 ("bpf: Add array support to btf_struct_access")
Signed-off-by: Yafang Shao <laoar.shao@gmail.com>
Link: https://lore.kernel.org/r/20230713025642.27477-4-laoar.shao@gmail.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
commit 640a604585aa30f93e39b17d4d6ba69fcb1e66c9 upstream.
The following warning was reported when running stress-mode enabled
xdp_redirect_cpu with some RT threads:
------------[ cut here ]------------
WARNING: CPU: 4 PID: 65 at kernel/bpf/cpumap.c:135
CPU: 4 PID: 65 Comm: kworker/4:1 Not tainted 6.5.0-rc2+ #1
Hardware name: QEMU Standard PC (i440FX + PIIX, 1996)
Workqueue: events cpu_map_kthread_stop
RIP: 0010:put_cpu_map_entry+0xda/0x220
......
Call Trace:
<TASK>
? show_regs+0x65/0x70
? __warn+0xa5/0x240
......
? put_cpu_map_entry+0xda/0x220
cpu_map_kthread_stop+0x41/0x60
process_one_work+0x6b0/0xb80
worker_thread+0x96/0x720
kthread+0x1a5/0x1f0
ret_from_fork+0x3a/0x70
ret_from_fork_asm+0x1b/0x30
</TASK>
The root cause is the same as commit 436901649731 ("bpf: cpumap: Fix memory
leak in cpu_map_update_elem"). The kthread is stopped prematurely by
kthread_stop() in cpu_map_kthread_stop(), and kthread() doesn't call
cpu_map_kthread_run() at all but XDP program has already queued some
frames or skbs into ptr_ring. So when __cpu_map_ring_cleanup() checks
the ptr_ring, it will find it was not emptied and report a warning.
An alternative fix is to use __cpu_map_ring_cleanup() to drop these
pending frames or skbs when kthread_stop() returns -EINTR, but it may
confuse the user, because these frames or skbs have been handled
correctly by XDP program. So instead of dropping these frames or skbs,
just make sure the per-cpu kthread is running before
__cpu_map_entry_alloc() returns.
After apply the fix, the error handle for kthread_stop() will be
unnecessary because it will always return 0, so just remove it.
Fixes: 6710e1126934 ("bpf: introduce new bpf cpu map type BPF_MAP_TYPE_CPUMAP")
Signed-off-by: Hou Tao <houtao1@huawei.com>
Reviewed-by: Pu Lehui <pulehui@huawei.com>
Acked-by: Jesper Dangaard Brouer <hawk@kernel.org>
Link: https://lore.kernel.org/r/20230729095107.1722450-2-houtao@huaweicloud.com
Signed-off-by: Martin KaFai Lau <martin.lau@kernel.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
[ Upstream commit 7c62b75cd1a792e14b037fa4f61f9b18914e7de1 ]
The following warning was reported when running xdp_redirect_cpu with
both skb-mode and stress-mode enabled:
------------[ cut here ]------------
Incorrect XDP memory type (-2128176192) usage
WARNING: CPU: 7 PID: 1442 at net/core/xdp.c:405
Modules linked in:
CPU: 7 PID: 1442 Comm: kworker/7:0 Tainted: G 6.5.0-rc2+ #1
Hardware name: QEMU Standard PC (i440FX + PIIX, 1996)
Workqueue: events __cpu_map_entry_free
RIP: 0010:__xdp_return+0x1e4/0x4a0
......
Call Trace:
<TASK>
? show_regs+0x65/0x70
? __warn+0xa5/0x240
? __xdp_return+0x1e4/0x4a0
......
xdp_return_frame+0x4d/0x150
__cpu_map_entry_free+0xf9/0x230
process_one_work+0x6b0/0xb80
worker_thread+0x96/0x720
kthread+0x1a5/0x1f0
ret_from_fork+0x3a/0x70
ret_from_fork_asm+0x1b/0x30
</TASK>
The reason for the warning is twofold. One is due to the kthread
cpu_map_kthread_run() is stopped prematurely. Another one is
__cpu_map_ring_cleanup() doesn't handle skb mode and treats skbs in
ptr_ring as XDP frames.
Prematurely-stopped kthread will be fixed by the preceding patch and
ptr_ring will be empty when __cpu_map_ring_cleanup() is called. But
as the comments in __cpu_map_ring_cleanup() said, handling and freeing
skbs in ptr_ring as well to "catch any broken behaviour gracefully".
Fixes: 11941f8a8536 ("bpf: cpumap: Implement generic cpumap")
Signed-off-by: Hou Tao <houtao1@huawei.com>
Acked-by: Jesper Dangaard Brouer <hawk@kernel.org>
Link: https://lore.kernel.org/r/20230729095107.1722450-3-houtao@huaweicloud.com
Signed-off-by: Martin KaFai Lau <martin.lau@kernel.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit f63181b6ae79fd3b034cde641db774268c2c3acf ]
Setting reg->precise to true in current state is not necessary from
correctness standpoint, but it does pessimise the whole precision (or
rather "imprecision", because that's what we want to keep as much as
possible) tracking. Why is somewhat subtle and my best attempt to
explain this is recorded in an extensive comment for __mark_chain_precise()
function. Some more careful thinking and code reading is probably required
still to grok this completely, unfortunately. Whiteboarding and a bunch
of extra handwaiving in person would be even more helpful, but is deemed
impractical in Git commit.
Next patch pushes this imprecision property even further, building on top of
the insights described in this patch.
End results are pretty nice, we get reduction in number of total instructions
and states verified due to a better states reuse, as some of the states are now
more generic and permissive due to less unnecessary precise=true requirements.
SELFTESTS RESULTS
=================
$ ./veristat -C -e file,prog,insns,states ~/subprog-precise-results.csv ~/imprecise-early-results.csv | grep -v '+0'
File Program Total insns (A) Total insns (B) Total insns (DIFF) Total states (A) Total states (B) Total states (DIFF)
--------------------------------------- ---------------------- --------------- --------------- ------------------ ---------------- ---------------- -------------------
bpf_iter_ksym.bpf.linked1.o dump_ksym 347 285 -62 (-17.87%) 20 19 -1 (-5.00%)
pyperf600_bpf_loop.bpf.linked1.o on_event 3678 3736 +58 (+1.58%) 276 285 +9 (+3.26%)
setget_sockopt.bpf.linked1.o skops_sockopt 4038 3947 -91 (-2.25%) 347 343 -4 (-1.15%)
test_l4lb.bpf.linked1.o balancer_ingress 4559 2611 -1948 (-42.73%) 118 105 -13 (-11.02%)
test_l4lb_noinline.bpf.linked1.o balancer_ingress 6279 6268 -11 (-0.18%) 237 236 -1 (-0.42%)
test_misc_tcp_hdr_options.bpf.linked1.o misc_estab 1307 1303 -4 (-0.31%) 100 99 -1 (-1.00%)
test_sk_lookup.bpf.linked1.o ctx_narrow_access 456 447 -9 (-1.97%) 39 38 -1 (-2.56%)
test_sysctl_loop1.bpf.linked1.o sysctl_tcp_mem 1389 1384 -5 (-0.36%) 26 25 -1 (-3.85%)
test_tc_dtime.bpf.linked1.o egress_fwdns_prio101 518 485 -33 (-6.37%) 51 46 -5 (-9.80%)
test_tc_dtime.bpf.linked1.o egress_host 519 468 -51 (-9.83%) 50 44 -6 (-12.00%)
test_tc_dtime.bpf.linked1.o ingress_fwdns_prio101 842 1000 +158 (+18.76%) 73 88 +15 (+20.55%)
xdp_synproxy_kern.bpf.linked1.o syncookie_tc 405757 373173 -32584 (-8.03%) 25735 22882 -2853 (-11.09%)
xdp_synproxy_kern.bpf.linked1.o syncookie_xdp 479055 371590 -107465 (-22.43%) 29145 22207 -6938 (-23.81%)
--------------------------------------- ---------------------- --------------- --------------- ------------------ ---------------- ---------------- -------------------
Slight regression in test_tc_dtime.bpf.linked1.o/ingress_fwdns_prio101
is left for a follow up, there might be some more precision-related bugs
in existing BPF verifier logic.
CILIUM RESULTS
==============
$ ./veristat -C -e file,prog,insns,states ~/subprog-precise-results-cilium.csv ~/imprecise-early-results-cilium.csv | grep -v '+0'
File Program Total insns (A) Total insns (B) Total insns (DIFF) Total states (A) Total states (B) Total states (DIFF)
------------- ------------------------------ --------------- --------------- ------------------ ---------------- ---------------- -------------------
bpf_host.o cil_from_host 762 556 -206 (-27.03%) 43 37 -6 (-13.95%)
bpf_host.o tail_handle_nat_fwd_ipv4 23541 23426 -115 (-0.49%) 1538 1537 -1 (-0.07%)
bpf_host.o tail_nodeport_nat_egress_ipv4 33592 33566 -26 (-0.08%) 2163 2161 -2 (-0.09%)
bpf_lxc.o tail_handle_nat_fwd_ipv4 23541 23426 -115 (-0.49%) 1538 1537 -1 (-0.07%)
bpf_overlay.o tail_nodeport_nat_egress_ipv4 33581 33543 -38 (-0.11%) 2160 2157 -3 (-0.14%)
bpf_xdp.o tail_handle_nat_fwd_ipv4 21659 20920 -739 (-3.41%) 1440 1376 -64 (-4.44%)
bpf_xdp.o tail_handle_nat_fwd_ipv6 17084 17039 -45 (-0.26%) 907 905 -2 (-0.22%)
bpf_xdp.o tail_lb_ipv4 73442 73430 -12 (-0.02%) 4370 4369 -1 (-0.02%)
bpf_xdp.o tail_lb_ipv6 152114 151895 -219 (-0.14%) 6493 6479 -14 (-0.22%)
bpf_xdp.o tail_nodeport_nat_egress_ipv4 17377 17200 -177 (-1.02%) 1125 1111 -14 (-1.24%)
bpf_xdp.o tail_nodeport_nat_ingress_ipv6 6405 6397 -8 (-0.12%) 309 308 -1 (-0.32%)
bpf_xdp.o tail_rev_nodeport_lb4 7126 6934 -192 (-2.69%) 414 402 -12 (-2.90%)
bpf_xdp.o tail_rev_nodeport_lb6 18059 17905 -154 (-0.85%) 1105 1096 -9 (-0.81%)
------------- ------------------------------ --------------- --------------- ------------------ ---------------- ---------------- -------------------
Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Link: https://lore.kernel.org/r/20221104163649.121784-5-andrii@kernel.org
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Eduard Zingerman <eddyz87@gmail.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
[ Upstream commit be2ef8161572ec1973124ebc50f56dafc2925e07 ]
Stop forcing precise=true for SCALAR registers when BPF program has any
subprograms. Current restriction means that any BPF program, as soon as
it uses subprograms, will end up not getting any of the precision
tracking benefits in reduction of number of verified states.
This patch keeps the fallback mark_all_scalars_precise() behavior if
precise marking has to cross function frames. E.g., if subprogram
requires R1 (first input arg) to be marked precise, ideally we'd need to
backtrack to the parent function and keep marking R1 and its
dependencies as precise. But right now we give up and force all the
SCALARs in any of the current and parent states to be forced to
precise=true. We can lift that restriction in the future.
But this patch fixes two issues identified when trying to enable
precision tracking for subprogs.
First, prevent "escaping" from top-most state in a global subprog. While
with entry-level BPF program we never end up requesting precision for
R1-R5 registers, because R2-R5 are not initialized (and so not readable
in correct BPF program), and R1 is PTR_TO_CTX, not SCALAR, and so is
implicitly precise. With global subprogs, though, it's different, as
global subprog a) can have up to 5 SCALAR input arguments, which might
get marked as precise=true and b) it is validated in isolation from its
main entry BPF program. b) means that we can end up exhausting parent
state chain and still not mark all registers in reg_mask as precise,
which would lead to verifier bug warning.
To handle that, we need to consider two cases. First, if the very first
state is not immediately "checkpointed" (i.e., stored in state lookup
hashtable), it will get correct first_insn_idx and last_insn_idx
instruction set during state checkpointing. As such, this case is
already handled and __mark_chain_precision() already handles that by
just doing nothing when we reach to the very first parent state.
st->parent will be NULL and we'll just stop. Perhaps some extra check
for reg_mask and stack_mask is due here, but this patch doesn't address
that issue.
More problematic second case is when global function's initial state is
immediately checkpointed before we manage to process the very first
instruction. This is happening because when there is a call to global
subprog from the main program the very first subprog's instruction is
marked as pruning point, so before we manage to process first
instruction we have to check and checkpoint state. This patch adds
a special handling for such "empty" state, which is identified by having
st->last_insn_idx set to -1. In such case, we check that we are indeed
validating global subprog, and with some sanity checking we mark input
args as precise if requested.
Note that we also initialize state->first_insn_idx with correct start
insn_idx offset. For main program zero is correct value, but for any
subprog it's quite confusing to not have first_insn_idx set. This
doesn't have any functional impact, but helps with debugging and state
printing. We also explicitly initialize state->last_insns_idx instead of
relying on is_state_visited() to do this with env->prev_insns_idx, which
will be -1 on the very first instruction. This concludes necessary
changes to handle specifically global subprog's precision tracking.
Second identified problem was missed handling of BPF helper functions
that call into subprogs (e.g., bpf_loop and few others). From precision
tracking and backtracking logic's standpoint those are effectively calls
into subprogs and should be called as BPF_PSEUDO_CALL calls.
This patch takes the least intrusive way and just checks against a short
list of current BPF helpers that do call subprogs, encapsulated in
is_callback_calling_function() function. But to prevent accidentally
forgetting to add new BPF helpers to this "list", we also do a sanity
check in __check_func_call, which has to be called for each such special
BPF helper, to validate that BPF helper is indeed recognized as
callback-calling one. This should catch any missed checks in the future.
Adding some special flags to be added in function proto definitions
seemed like an overkill in this case.
With the above changes, it's possible to remove forceful setting of
reg->precise to true in __mark_reg_unknown, which turns on precision
tracking both inside subprogs and entry progs that have subprogs. No
warnings or errors were detected across all the selftests, but also when
validating with veristat against internal Meta BPF objects and Cilium
objects. Further, in some BPF programs there are noticeable reduction in
number of states and instructions validated due to more effective
precision tracking, especially benefiting syncookie test.
$ ./veristat -C -e file,prog,insns,states ~/baseline-results.csv ~/subprog-precise-results.csv | grep -v '+0'
File Program Total insns (A) Total insns (B) Total insns (DIFF) Total states (A) Total states (B) Total states (DIFF)
---------------------------------------- -------------------------- --------------- --------------- ------------------ ---------------- ---------------- -------------------
pyperf600_bpf_loop.bpf.linked1.o on_event 3966 3678 -288 (-7.26%) 306 276 -30 (-9.80%)
pyperf_global.bpf.linked1.o on_event 7563 7530 -33 (-0.44%) 520 517 -3 (-0.58%)
pyperf_subprogs.bpf.linked1.o on_event 36358 36934 +576 (+1.58%) 2499 2531 +32 (+1.28%)
setget_sockopt.bpf.linked1.o skops_sockopt 3965 4038 +73 (+1.84%) 343 347 +4 (+1.17%)
test_cls_redirect_subprogs.bpf.linked1.o cls_redirect 64965 64901 -64 (-0.10%) 4619 4612 -7 (-0.15%)
test_misc_tcp_hdr_options.bpf.linked1.o misc_estab 1491 1307 -184 (-12.34%) 110 100 -10 (-9.09%)
test_pkt_access.bpf.linked1.o test_pkt_access 354 349 -5 (-1.41%) 25 24 -1 (-4.00%)
test_sock_fields.bpf.linked1.o egress_read_sock_fields 435 375 -60 (-13.79%) 22 20 -2 (-9.09%)
test_sysctl_loop2.bpf.linked1.o sysctl_tcp_mem 1508 1501 -7 (-0.46%) 29 28 -1 (-3.45%)
test_tc_dtime.bpf.linked1.o egress_fwdns_prio100 468 435 -33 (-7.05%) 45 41 -4 (-8.89%)
test_tc_dtime.bpf.linked1.o ingress_fwdns_prio100 398 408 +10 (+2.51%) 42 39 -3 (-7.14%)
test_tc_dtime.bpf.linked1.o ingress_fwdns_prio101 1096 842 -254 (-23.18%) 97 73 -24 (-24.74%)
test_tcp_hdr_options.bpf.linked1.o estab 2758 2408 -350 (-12.69%) 208 181 -27 (-12.98%)
test_urandom_usdt.bpf.linked1.o urand_read_with_sema 466 448 -18 (-3.86%) 31 28 -3 (-9.68%)
test_urandom_usdt.bpf.linked1.o urand_read_without_sema 466 448 -18 (-3.86%) 31 28 -3 (-9.68%)
test_urandom_usdt.bpf.linked1.o urandlib_read_with_sema 466 448 -18 (-3.86%) 31 28 -3 (-9.68%)
test_urandom_usdt.bpf.linked1.o urandlib_read_without_sema 466 448 -18 (-3.86%) 31 28 -3 (-9.68%)
test_xdp_noinline.bpf.linked1.o balancer_ingress_v6 4302 4294 -8 (-0.19%) 257 256 -1 (-0.39%)
xdp_synproxy_kern.bpf.linked1.o syncookie_tc 583722 405757 -177965 (-30.49%) 35846 25735 -10111 (-28.21%)
xdp_synproxy_kern.bpf.linked1.o syncookie_xdp 609123 479055 -130068 (-21.35%) 35452 29145 -6307 (-17.79%)
---------------------------------------- -------------------------- --------------- --------------- ------------------ ---------------- ---------------- -------------------
Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Link: https://lore.kernel.org/r/20221104163649.121784-4-andrii@kernel.org
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Eduard Zingerman <eddyz87@gmail.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
[ Upstream commit b5e9ad522c4ccd32d322877515cff8d47ed731b9 ]
While the check_max_stack_depth function explores call chains emanating
from the main prog, which is typically enough to cover all possible call
chains, it doesn't explore those rooted at async callbacks unless the
async callback will have been directly called, since unlike non-async
callbacks it skips their instruction exploration as they don't
contribute to stack depth.
It could be the case that the async callback leads to a callchain which
exceeds the stack depth, but this is never reachable while only
exploring the entry point from main subprog. Hence, repeat the check for
the main subprog *and* all async callbacks marked by the symbolic
execution pass of the verifier, as execution of the program may begin at
any of them.
Consider functions with following stack depths:
main: 256
async: 256
foo: 256
main:
rX = async
bpf_timer_set_callback(...)
async:
foo()
Here, async is not descended as it does not contribute to stack depth of
main (since it is referenced using bpf_pseudo_func and not
bpf_pseudo_call). However, when async is invoked asynchronously, it will
end up breaching the MAX_BPF_STACK limit by calling foo.
Hence, in addition to main, we also need to explore call chains
beginning at all async callback subprogs in a program.
Fixes: 7ddc80a476c2 ("bpf: Teach stack depth check about async callbacks.")
Signed-off-by: Kumar Kartikeya Dwivedi <memxor@gmail.com>
Link: https://lore.kernel.org/r/20230717161530.1238-3-memxor@gmail.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit ba7b3e7d5f9014be65879ede8fd599cb222901c9 ]
The assignment to idx in check_max_stack_depth happens once we see a
bpf_pseudo_call or bpf_pseudo_func. This is not an issue as the rest of
the code performs a few checks and then pushes the frame to the frame
stack, except the case of async callbacks. If the async callback case
causes the loop iteration to be skipped, the idx assignment will be
incorrect on the next iteration of the loop. The value stored in the
frame stack (as the subprogno of the current subprog) will be incorrect.
This leads to incorrect checks and incorrect tail_call_reachable
marking. Save the target subprog in a new variable and only assign to
idx once we are done with the is_async_cb check which may skip pushing
of frame to the frame stack and subsequent stack depth checks and tail
call markings.
Fixes: 7ddc80a476c2 ("bpf: Teach stack depth check about async callbacks.")
Signed-off-by: Kumar Kartikeya Dwivedi <memxor@gmail.com>
Link: https://lore.kernel.org/r/20230717161530.1238-2-memxor@gmail.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit ee9fd0ac3017c4313be91a220a9ac4c99dde7ad4 ]
KCSAN reported a data-race when accessing node->ref.
Although node->ref does not have to be accurate,
take this chance to use a more common READ_ONCE() and WRITE_ONCE()
pattern instead of data_race().
There is an existing bpf_lru_node_is_ref() and bpf_lru_node_set_ref().
This patch also adds bpf_lru_node_clear_ref() to do the
WRITE_ONCE(node->ref, 0) also.
==================================================================
BUG: KCSAN: data-race in __bpf_lru_list_rotate / __htab_lru_percpu_map_update_elem
write to 0xffff888137038deb of 1 bytes by task 11240 on cpu 1:
__bpf_lru_node_move kernel/bpf/bpf_lru_list.c:113 [inline]
__bpf_lru_list_rotate_active kernel/bpf/bpf_lru_list.c:149 [inline]
__bpf_lru_list_rotate+0x1bf/0x750 kernel/bpf/bpf_lru_list.c:240
bpf_lru_list_pop_free_to_local kernel/bpf/bpf_lru_list.c:329 [inline]
bpf_common_lru_pop_free kernel/bpf/bpf_lru_list.c:447 [inline]
bpf_lru_pop_free+0x638/0xe20 kernel/bpf/bpf_lru_list.c:499
prealloc_lru_pop kernel/bpf/hashtab.c:290 [inline]
__htab_lru_percpu_map_update_elem+0xe7/0x820 kernel/bpf/hashtab.c:1316
bpf_percpu_hash_update+0x5e/0x90 kernel/bpf/hashtab.c:2313
bpf_map_update_value+0x2a9/0x370 kernel/bpf/syscall.c:200
generic_map_update_batch+0x3ae/0x4f0 kernel/bpf/syscall.c:1687
bpf_map_do_batch+0x2d9/0x3d0 kernel/bpf/syscall.c:4534
__sys_bpf+0x338/0x810
__do_sys_bpf kernel/bpf/syscall.c:5096 [inline]
__se_sys_bpf kernel/bpf/syscall.c:5094 [inline]
__x64_sys_bpf+0x43/0x50 kernel/bpf/syscall.c:5094
do_syscall_x64 arch/x86/entry/common.c:50 [inline]
do_syscall_64+0x41/0xc0 arch/x86/entry/common.c:80
entry_SYSCALL_64_after_hwframe+0x63/0xcd
read to 0xffff888137038deb of 1 bytes by task 11241 on cpu 0:
bpf_lru_node_set_ref kernel/bpf/bpf_lru_list.h:70 [inline]
__htab_lru_percpu_map_update_elem+0x2f1/0x820 kernel/bpf/hashtab.c:1332
bpf_percpu_hash_update+0x5e/0x90 kernel/bpf/hashtab.c:2313
bpf_map_update_value+0x2a9/0x370 kernel/bpf/syscall.c:200
generic_map_update_batch+0x3ae/0x4f0 kernel/bpf/syscall.c:1687
bpf_map_do_batch+0x2d9/0x3d0 kernel/bpf/syscall.c:4534
__sys_bpf+0x338/0x810
__do_sys_bpf kernel/bpf/syscall.c:5096 [inline]
__se_sys_bpf kernel/bpf/syscall.c:5094 [inline]
__x64_sys_bpf+0x43/0x50 kernel/bpf/syscall.c:5094
do_syscall_x64 arch/x86/entry/common.c:50 [inline]
do_syscall_64+0x41/0xc0 arch/x86/entry/common.c:80
entry_SYSCALL_64_after_hwframe+0x63/0xcd
value changed: 0x01 -> 0x00
Reported by Kernel Concurrency Sanitizer on:
CPU: 0 PID: 11241 Comm: syz-executor.3 Not tainted 6.3.0-rc7-syzkaller-00136-g6a66fdd29ea1 #0
Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 03/30/2023
==================================================================
Reported-by: syzbot+ebe648a84e8784763f82@syzkaller.appspotmail.com
Signed-off-by: Martin KaFai Lau <martin.lau@kernel.org>
Acked-by: Yonghong Song <yhs@fb.com>
Link: https://lore.kernel.org/r/20230511043748.1384166-1-martin.lau@linux.dev
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit fedf99200ab086c42a572fca1d7266b06cdc3e3f ]
Only print the warning message if you are writing to
"/proc/sys/kernel/unprivileged_bpf_disabled".
The kernel may print an annoying warning when you read
"/proc/sys/kernel/unprivileged_bpf_disabled" saying
WARNING: Unprivileged eBPF is enabled with eIBRS on, data leaks possible
via Spectre v2 BHB attacks!
However, this message is only meaningful when the feature is
disabled or enabled.
Signed-off-by: Kui-Feng Lee <kuifeng@meta.com>
Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Acked-by: Yonghong Song <yhs@fb.com>
Link: https://lore.kernel.org/bpf/20230502181418.308479-1-kuifeng@meta.com
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit 5415ccd50a8620c8cbaa32d6f18c946c453566f5 ]
The check_max_stack_depth pass happens after the verifier's symbolic
execution, and attempts to walk the call graph of the BPF program,
ensuring that the stack usage stays within bounds for all possible call
chains. There are two cases to consider: bpf_pseudo_func and
bpf_pseudo_call. In the former case, the callback pointer is loaded into
a register, and is assumed that it is passed to some helper later which
calls it (however there is no way to be sure), but the check remains
conservative and accounts the stack usage anyway. For this particular
case, asynchronous callbacks are skipped as they execute asynchronously
when their corresponding event fires.
The case of bpf_pseudo_call is simpler and we know that the call is
definitely made, hence the stack depth of the subprog is accounted for.
However, the current check still skips an asynchronous callback even if
a bpf_pseudo_call was made for it. This is erroneous, as it will miss
accounting for the stack usage of the asynchronous callback, which can
be used to breach the maximum stack depth limit.
Fix this by only skipping asynchronous callbacks when the instruction is
not a pseudo call to the subprog.
Fixes: 7ddc80a476c2 ("bpf: Teach stack depth check about async callbacks.")
Signed-off-by: Kumar Kartikeya Dwivedi <memxor@gmail.com>
Link: https://lore.kernel.org/r/20230705144730.235802-2-memxor@gmail.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit 3de4d22cc9ac7c9f38e10edcf54f9a8891a9c2aa ]
__register_btf_kfunc_id_set() assumes .BTF to be part of the module's .ko
file if CONFIG_DEBUG_INFO_BTF is enabled. If that's not the case, the
function prints an error message and return an error. As a result, such
modules cannot be loaded.
However, the section could be stripped out during a build process. It would
be better to let the modules loaded, because their basic functionalities
have no problem [0], though the BTF functionalities will not be supported.
Make the function to lower the level of the message from error to warn, and
return no error.
[0] https://lore.kernel.org/bpf/20220219082037.ow2kbq5brktf4f2u@apollo.legion
Fixes: c446fdacb10d ("bpf: fix register_btf_kfunc_id_set for !CONFIG_DEBUG_INFO_BTF")
Reported-by: Alexander Egorenkov <Alexander.Egorenkov@ibm.com>
Suggested-by: Kumar Kartikeya Dwivedi <memxor@gmail.com>
Signed-off-by: SeongJae Park <sj@kernel.org>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Jiri Olsa <jolsa@kernel.org>
Link: https://lore.kernel.org/bpf/87y228q66f.fsf@oc8242746057.ibm.com
Link: https://lore.kernel.org/bpf/20220219082037.ow2kbq5brktf4f2u@apollo.legion
Link: https://lore.kernel.org/bpf/20230701171447.56464-1-sj@kernel.org
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit 108598c39eefbedc9882273ac0df96127a629220 ]
If it fails to attach fentry, the allocated bpf trampoline image will be
left in the system. That can be verified by checking /proc/kallsyms.
This meamleak can be verified by a simple bpf program as follows:
SEC("fentry/trap_init")
int fentry_run()
{
return 0;
}
It will fail to attach trap_init because this function is freed after
kernel init, and then we can find the trampoline image is left in the
system by checking /proc/kallsyms.
$ tail /proc/kallsyms
ffffffffc0613000 t bpf_trampoline_6442453466_1 [bpf]
ffffffffc06c3000 t bpf_trampoline_6442453466_1 [bpf]
$ bpftool btf dump file /sys/kernel/btf/vmlinux | grep "FUNC 'trap_init'"
[2522] FUNC 'trap_init' type_id=119 linkage=static
$ echo $((6442453466 & 0x7fffffff))
2522
Note that there are two left bpf trampoline images, that is because the
libbpf will fallback to raw tracepoint if -EINVAL is returned.
Fixes: e21aa341785c ("bpf: Fix fexit trampoline.")
Signed-off-by: Yafang Shao <laoar.shao@gmail.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Song Liu <song@kernel.org>
Cc: Jiri Olsa <olsajiri@gmail.com>
Link: https://lore.kernel.org/bpf/20230515130849.57502-2-laoar.shao@gmail.com
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit 47e79cbeea4b3891ad476047f4c68543eb51c8e0 ]
After commit e21aa341785c ("bpf: Fix fexit trampoline."), the selector is only
used to indicate how many times the bpf trampoline image are updated and been
displayed in the trampoline ksym name. After the trampoline is freed, the
selector will start from 0 again. So the selector is a useless value to the
user. We can remove it.
If the user want to check whether the bpf trampoline image has been updated
or not, the user can compare the address. Each time the trampoline image is
updated, the address will change consequently. Jiri also pointed out another
issue that perf is still using the old name "bpf_trampoline_%lu", so this
change can fix the issue in perf.
Fixes: e21aa341785c ("bpf: Fix fexit trampoline.")
Signed-off-by: Yafang Shao <laoar.shao@gmail.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Song Liu <song@kernel.org>
Cc: Jiri Olsa <olsajiri@gmail.com>
Link: https://lore.kernel.org/bpf/ZFvOOlrmHiY9AgXE@krava
Link: https://lore.kernel.org/bpf/20230515130849.57502-3-laoar.shao@gmail.com
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit 29ebbba7d46136cba324264e513a1e964ca16c0a ]
With the way the hooks implemented right now, we have a special
condition: optval larger than PAGE_SIZE will expose only first 4k into
BPF; any modifications to the optval are ignored. If the BPF program
doesn't handle this condition by resetting optlen to 0,
the userspace will get EFAULT.
The intention of the EFAULT was to make it apparent to the
developers that the program is doing something wrong.
However, this inadvertently might affect production workloads
with the BPF programs that are not too careful (i.e., returning EFAULT
for perfectly valid setsockopt/getsockopt calls).
Let's try to minimize the chance of BPF program screwing up userspace
by ignoring the output of those BPF programs (instead of returning
EFAULT to the userspace). pr_info_once those cases to
the dmesg to help with figuring out what's going wrong.
Fixes: 0d01da6afc54 ("bpf: implement getsockopt and setsockopt hooks")
Suggested-by: Martin KaFai Lau <martin.lau@kernel.org>
Signed-off-by: Stanislav Fomichev <sdf@google.com>
Link: https://lore.kernel.org/r/20230511170456.1759459-2-sdf@google.com
Signed-off-by: Martin KaFai Lau <martin.lau@kernel.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit db8eae6bc5c702d8e3ab2d0c6bb5976c131576eb ]
We currently allow to create perf link for program with
expected_attach_type == BPF_TRACE_KPROBE_MULTI.
This will cause crash when we call helpers like get_attach_cookie or
get_func_ip in such program, because it will call the kprobe_multi's
version (current->bpf_ctx context setup) of those helpers while it
expects perf_link's current->bpf_ctx context setup.
Making sure that we use BPF_TRACE_KPROBE_MULTI expected_attach_type
only for programs attaching through kprobe_multi link.
Fixes: ca74823c6e16 ("bpf: Add cookie support to programs attached with kprobe multi link")
Signed-off-by: Jiri Olsa <jolsa@kernel.org>
Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Link: https://lore.kernel.org/bpf/20230618131414.75649-1-jolsa@kernel.org
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit 9724160b3942b0a967b91a59f81da5593f28b8ba ]
When building a kernel with LLVM=1, LLVM_IAS=0 and CONFIG_KASAN=y, LLVM
leaves DWARF tags for the "asan.module_ctor" & co symbols. In turn,
pahole creates BTF_KIND_FUNC entries for these and this makes the BTF
metadata validation fail because they contain a dot.
In a dramatic turn of event, this BTF verification failure can cause
the netfilter_bpf initialization to fail, causing netfilter_core to
free the netfilter_helper hashmap and netfilter_ftp to trigger a
use-after-free. The risk of u-a-f in netfilter will be addressed
separately but the existence of "asan.module_ctor" debug info under some
build conditions sounds like a good enough reason to accept functions
that contain dots in BTF.
Although using only LLVM=1 is the recommended way to compile clang-based
kernels, users can certainly do LLVM=1, LLVM_IAS=0 as well and we still
try to support that combination according to Nick. To clarify:
- > v5.10 kernel, LLVM=1 (LLVM_IAS=0 is not the default) is recommended,
but user can still have LLVM=1, LLVM_IAS=0 to trigger the issue
- <= 5.10 kernel, LLVM=1 (LLVM_IAS=0 is the default) is recommended in
which case GNU as will be used
Fixes: 1dc92851849c ("bpf: kernel side support for BTF Var and DataSec")
Signed-off-by: Florent Revest <revest@chromium.org>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Andrii Nakryiko <andrii@kernel.org>
Cc: Yonghong Song <yhs@meta.com>
Cc: Nick Desaulniers <ndesaulniers@google.com>
Link: https://lore.kernel.org/bpf/20230615145607.3469985-1-revest@chromium.org
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit 713274f1f2c896d37017efee333fd44149710119 ]
The following scenario describes a bug in the verifier where it
incorrectly concludes about equivalent scalar IDs which could lead to
verifier bypass in privileged mode:
1. Prepare a 32-bit rogue number.
2. Put the rogue number into the upper half of a 64-bit register, and
roll a random (unknown to the verifier) bit in the lower half. The
rest of the bits should be zero (although variations are possible).
3. Assign an ID to the register by MOVing it to another arbitrary
register.
4. Perform a 32-bit spill of the register, then perform a 32-bit fill to
another register. Due to a bug in the verifier, the ID will be
preserved, although the new register will contain only the lower 32
bits, i.e. all zeros except one random bit.
At this point there are two registers with different values but the same
ID, which means the integrity of the verifier state has been corrupted.
5. Compare the new 32-bit register with 0. In the branch where it's
equal to 0, the verifier will believe that the original 64-bit
register is also 0, because it has the same ID, but its actual value
still contains the rogue number in the upper half.
Some optimizations of the verifier prevent the actual bypass, so
extra care is needed: the comparison must be between two registers,
and both branches must be reachable (this is why one random bit is
needed). Both branches are still suitable for the bypass.
6. Right shift the original register by 32 bits to pop the rogue number.
7. Use the rogue number as an offset with any pointer. The verifier will
believe that the offset is 0, while in reality it's the given number.
The fix is similar to the 32-bit BPF_MOV handling in check_alu_op for
SCALAR_VALUE. If the spill is narrowing the actual register value, don't
keep the ID, make sure it's reset to 0.
Fixes: 354e8f1970f8 ("bpf: Support <8-byte scalar spill and refill")
Signed-off-by: Maxim Mikityanskiy <maxim@isovalent.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Tested-by: Andrii Nakryiko <andrii@kernel.org> # Checked veristat delta
Acked-by: Yonghong Song <yhs@fb.com>
Link: https://lore.kernel.org/bpf/20230607123951.558971-2-maxtram95@gmail.com
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit ecdf985d7615356b78241fdb159c091830ed0380 ]
For aligned stack writes using BPF_ST instruction track stored values
in a same way BPF_STX is handled, e.g. make sure that the following
commands produce similar verifier knowledge:
fp[-8] = 42; r1 = 42;
fp[-8] = r1;
This covers two cases:
- non-null values written to stack are stored as spill of fake
registers;
- null values written to stack are stored as STACK_ZERO marks.
Previously both cases above used STACK_MISC marks instead.
Some verifier test cases relied on the old logic to obtain STACK_MISC
marks for some stack values. These test cases are updated in the same
commit to avoid failures during bisect.
Signed-off-by: Eduard Zingerman <eddyz87@gmail.com>
Link: https://lore.kernel.org/r/20230214232030.1502829-2-eddyz87@gmail.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Stable-dep-of: 713274f1f2c8 ("bpf: Fix verifier id tracking of scalars on spill")
Signed-off-by: Sasha Levin <sashal@kernel.org>
commit 0108a4e9f3584a7a2c026d1601b0682ff7335d95 upstream.
When subprograms are in use, the main program is not jit'd after the
subprograms because jit_subprogs sets a value for prog->bpf_func upon
success. Subsequent calls to the JIT are bypassed when this value is
non-NULL. This leads to a situation where the main program and its
func[0] counterpart are both in the bpf kallsyms tree, but only func[0]
has an extable. Extables are only created during JIT. Now there are
two nearly identical program ksym entries in the tree, but only one has
an extable. Depending upon how the entries are placed, there's a chance
that a fault will call search_extable on the aux with the NULL entry.
Since jit_subprogs already copies state from func[0] to the main
program, include the extable pointer in this state duplication.
Additionally, ensure that the copy of the main program in func[0] is not
added to the bpf_prog_kallsyms table. Instead, let the main program get
added later in bpf_prog_load(). This ensures there is only a single
copy of the main program in the kallsyms table, and that its tag matches
the tag observed by tooling like bpftool.
Cc: stable@vger.kernel.org
Fixes: 1c2a088a6626 ("bpf: x64: add JIT support for multi-function programs")
Signed-off-by: Krister Johansen <kjlx@templeofstupid.com>
Acked-by: Yonghong Song <yhs@fb.com>
Acked-by: Ilya Leoshkevich <iii@linux.ibm.com>
Tested-by: Ilya Leoshkevich <iii@linux.ibm.com>
Link: https://lore.kernel.org/r/6de9b2f4b4724ef56efbb0339daaa66c8b68b1e7.1686616663.git.kjlx@templeofstupid.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
[ Upstream commit 4cdb91b0dea7d7f59fa84a13c7753cd434fdedcf ]
Replace mutex_[un]lock() with cgroup_[un]lock() wrappers to stay
consistent across cgroup core and other subsystem code, while
operating on the cgroup_mutex.
Signed-off-by: Kamalesh Babulal <kamalesh.babulal@oracle.com>
Acked-by: Alexei Starovoitov <ast@kernel.org>
Reviewed-by: Christian Brauner <brauner@kernel.org>
Signed-off-by: Tejun Heo <tj@kernel.org>
Stable-dep-of: 2bd110339288 ("cgroup: always put cset in cgroup_css_set_put_fork")
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit cba41bb78d70aad98d8e61e019fd48c561f7f396 ]
Commit d937bc3449fa ("bpf: make uniform use of array->elem_size
everywhere in arraymap.c") changed array_map_gen_lookup to use
array->elem_size instead of round_up(map->value_size, 8) as the element
size when generating code to access a value in an array map.
array->elem_size, however, is not set by bpf_map_meta_alloc when
initializing an BPF_MAP_TYPE_ARRAY_OF_MAPS or BPF_MAP_TYPE_HASH_OF_MAPS.
This results in array_map_gen_lookup incorrectly outputting code that
always accesses index 0 in the array (as the index will be calculated
via a multiplication with the element size, which is incorrectly set to
0).
Set elem_size on the bpf_array object when allocating an array or hash
of maps to fix this.
Fixes: d937bc3449fa ("bpf: make uniform use of array->elem_size everywhere in arraymap.c")
Signed-off-by: Rhys Rustad-Elliott <me@rhysre.net>
Link: https://lore.kernel.org/r/20230602190110.47068-2-me@rhysre.net
Signed-off-by: Martin KaFai Lau <martin.lau@kernel.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
commit b34ffb0c6d23583830f9327864b9c1f486003305 upstream.
The LRU and LRU_PERCPU maps allocate a new element on update before locking the
target hash table bucket. Right after that the maps try to lock the bucket.
If this fails, then maps return -EBUSY to the caller without releasing the
allocated element. This makes the element untracked: it doesn't belong to
either of free lists, and it doesn't belong to the hash table, so can't be
re-used; this eventually leads to the permanent -ENOMEM on LRU map updates,
which is unexpected. Fix this by returning the element to the local free list
if bucket locking fails.
Fixes: 20b6cc34ea74 ("bpf: Avoid hashtab deadlock with map_locked")
Signed-off-by: Anton Protopopov <aspsk@isovalent.com>
Link: https://lore.kernel.org/r/20230522154558.2166815-1-aspsk@isovalent.com
Signed-off-by: Martin KaFai Lau <martin.lau@kernel.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 0613d8ca9ab382caabe9ed2dceb429e9781e443f upstream.
A narrow load from a 64-bit context field results in a 64-bit load
followed potentially by a 64-bit right-shift and then a bitwise AND
operation to extract the relevant data.
In the case of a 32-bit access, an immediate mask of 0xffffffff is used
to construct a 64-bit BPP_AND operation which then sign-extends the mask
value and effectively acts as a glorified no-op. For example:
0: 61 10 00 00 00 00 00 00 r0 = *(u32 *)(r1 + 0)
results in the following code generation for a 64-bit field:
ldr x7, [x7] // 64-bit load
mov x10, #0xffffffffffffffff
and x7, x7, x10
Fix the mask generation so that narrow loads always perform a 32-bit AND
operation:
ldr x7, [x7] // 64-bit load
mov w10, #0xffffffff
and w7, w7, w10
Cc: Alexei Starovoitov <ast@kernel.org>
Cc: Daniel Borkmann <daniel@iogearbox.net>
Cc: John Fastabend <john.fastabend@gmail.com>
Cc: Krzesimir Nowak <krzesimir@kinvolk.io>
Cc: Andrey Ignatov <rdna@fb.com>
Acked-by: Yonghong Song <yhs@fb.com>
Fixes: 31fd85816dbe ("bpf: permits narrower load from bpf program context fields")
Signed-off-by: Will Deacon <will@kernel.org>
Link: https://lore.kernel.org/r/20230518102528.1341-1-will@kernel.org
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
[ Upstream commit c11bd046485d7bf1ca200db0e7d0bdc4bafdd395 ]
The recursion check in __bpf_prog_enter* and __bpf_prog_exit*
leave preempt_count_{sub,add} unprotected. When attaching trampoline to
them we get panic as follows,
[ 867.843050] BUG: TASK stack guard page was hit at 0000000009d325cf (stack is 0000000046a46a15..00000000537e7b28)
[ 867.843064] stack guard page: 0000 [#1] PREEMPT SMP NOPTI
[ 867.843067] CPU: 8 PID: 11009 Comm: trace Kdump: loaded Not tainted 6.2.0+ #4
[ 867.843100] Call Trace:
[ 867.843101] <TASK>
[ 867.843104] asm_exc_int3+0x3a/0x40
[ 867.843108] RIP: 0010:preempt_count_sub+0x1/0xa0
[ 867.843135] __bpf_prog_enter_recur+0x17/0x90
[ 867.843148] bpf_trampoline_6442468108_0+0x2e/0x1000
[ 867.843154] ? preempt_count_sub+0x1/0xa0
[ 867.843157] preempt_count_sub+0x5/0xa0
[ 867.843159] ? migrate_enable+0xac/0xf0
[ 867.843164] __bpf_prog_exit_recur+0x2d/0x40
[ 867.843168] bpf_trampoline_6442468108_0+0x55/0x1000
...
[ 867.843788] preempt_count_sub+0x5/0xa0
[ 867.843793] ? migrate_enable+0xac/0xf0
[ 867.843829] __bpf_prog_exit_recur+0x2d/0x40
[ 867.843837] BUG: IRQ stack guard page was hit at 0000000099bd8228 (stack is 00000000b23e2bc4..000000006d95af35)
[ 867.843841] BUG: IRQ stack guard page was hit at 000000005ae07924 (stack is 00000000ffd69623..0000000014eb594c)
[ 867.843843] BUG: IRQ stack guard page was hit at 00000000028320f0 (stack is 00000000034b6438..0000000078d1bcec)
[ 867.843842] bpf_trampoline_6442468108_0+0x55/0x1000
...
That is because in __bpf_prog_exit_recur, the preempt_count_{sub,add} are
called after prog->active is decreased.
Fixing this by adding these two functions into btf ids deny list.
Suggested-by: Steven Rostedt <rostedt@goodmis.org>
Signed-off-by: Yafang <laoar.shao@gmail.com>
Cc: Masami Hiramatsu <mhiramat@kernel.org>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Jiri Olsa <olsajiri@gmail.com>
Acked-by: Hao Luo <haoluo@google.com>
Link: https://lore.kernel.org/r/20230413025248.79764-1-laoar.shao@gmail.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit 0a09a2f933c73dc76ab0b72da6855f44342a8903 ]
There are a few cases where hlist_node is checked to be unhashed without
holding the lock protecting its modification. In this case, one must use
hlist_unhashed_lockless to avoid load tearing and KCSAN reports. Fix
this by using lockless variant in places not protected by the lock.
Since this is not prompted by any actual KCSAN reports but only from
code review, I have not included a fixes tag.
Cc: Martin KaFai Lau <martin.lau@kernel.org>
Cc: KP Singh <kpsingh@kernel.org>
Signed-off-by: Kumar Kartikeya Dwivedi <memxor@gmail.com>
Link: https://lore.kernel.org/r/20230221200646.2500777-4-memxor@gmail.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit 00e74ae0863827d944e36e56a4ce1e77e50edb91 ]
Some socket options do getsockopt with optval=NULL to estimate the size
of the final buffer (which is returned via optlen). This breaks BPF
getsockopt assumptions about permitted optval buffer size. Let's enforce
these assumptions only when non-NULL optval is provided.
Fixes: 0d01da6afc54 ("bpf: implement getsockopt and setsockopt hooks")
Reported-by: Martin KaFai Lau <martin.lau@kernel.org>
Signed-off-by: Stanislav Fomichev <sdf@google.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Link: https://lore.kernel.org/bpf/ZD7Js4fj5YyI2oLd@google.com/T/#mb68daf700f87a9244a15d01d00c3f0e5b08f49f7
Link: https://lore.kernel.org/bpf/20230418225343.553806-2-sdf@google.com
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit acf1c3d68e9a31f10d92bc67ad4673cdae5e8d92 ]
Florian and Eduard reported hard dead lock:
[ 58.433327] _raw_spin_lock_irqsave+0x40/0x50
[ 58.433334] btf_put+0x43/0x90
[ 58.433338] bpf_find_btf_id+0x157/0x240
[ 58.433353] btf_parse_fields+0x921/0x11c0
This happens since btf->refcount can be 1 at the time of btf_put() and
btf_put() will call btf_free_id() which will try to grab btf_idr_lock
and will dead lock.
Avoid the issue by doing btf_put() without locking.
Fixes: 3d78417b60fb ("bpf: Add bpf_btf_find_by_name_kind() helper.")
Fixes: 1e89106da253 ("bpf: Add bpf_core_add_cands() and wire it into bpf_core_apply_relo_insn().")
Reported-by: Florian Westphal <fw@strlen.de>
Reported-by: Eduard Zingerman <eddyz87@gmail.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Tested-by: Eduard Zingerman <eddyz87@gmail.com>
Link: https://lore.kernel.org/bpf/20230421014901.70908-1-alexei.starovoitov@gmail.com
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit 91f2dc6838c19342f7f2993627c622835cc24890 ]
When tracing a kernel function with arg type is u32*, btf_ctx_access()
would report error: arg2 type INT is not a struct.
The commit bb6728d75611 ("bpf: Allow access to int pointer arguments
in tracing programs") added support for int pointer, but did not skip
modifiers before checking it's type. This patch fixes it.
Fixes: bb6728d75611 ("bpf: Allow access to int pointer arguments in tracing programs")
Co-developed-by: Chengming Zhou <zhouchengming@bytedance.com>
Signed-off-by: Chengming Zhou <zhouchengming@bytedance.com>
Signed-off-by: Feng Zhou <zhoufeng.zf@bytedance.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Jiri Olsa <jolsa@kernel.org>
Link: https://lore.kernel.org/bpf/20230410085908.98493-2-zhoufeng.zf@bytedance.com
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit 7be14c1c9030f73cc18b4ff23b78a0a081f16188 ]
Xu reports that after commit 3f50f132d840 ("bpf: Verifier, do explicit ALU32
bounds tracking"), the following BPF program is rejected by the verifier:
0: (61) r2 = *(u32 *)(r1 +0) ; R2_w=pkt(off=0,r=0,imm=0)
1: (61) r3 = *(u32 *)(r1 +4) ; R3_w=pkt_end(off=0,imm=0)
2: (bf) r1 = r2
3: (07) r1 += 1
4: (2d) if r1 > r3 goto pc+8
5: (71) r1 = *(u8 *)(r2 +0) ; R1_w=scalar(umax=255,var_off=(0x0; 0xff))
6: (18) r0 = 0x7fffffffffffff10
8: (0f) r1 += r0 ; R1_w=scalar(umin=0x7fffffffffffff10,umax=0x800000000000000f)
9: (18) r0 = 0x8000000000000000
11: (07) r0 += 1
12: (ad) if r0 < r1 goto pc-2
13: (b7) r0 = 0
14: (95) exit
And the verifier log says:
func#0 @0
0: R1=ctx(off=0,imm=0) R10=fp0
0: (61) r2 = *(u32 *)(r1 +0) ; R1=ctx(off=0,imm=0) R2_w=pkt(off=0,r=0,imm=0)
1: (61) r3 = *(u32 *)(r1 +4) ; R1=ctx(off=0,imm=0) R3_w=pkt_end(off=0,imm=0)
2: (bf) r1 = r2 ; R1_w=pkt(off=0,r=0,imm=0) R2_w=pkt(off=0,r=0,imm=0)
3: (07) r1 += 1 ; R1_w=pkt(off=1,r=0,imm=0)
4: (2d) if r1 > r3 goto pc+8 ; R1_w=pkt(off=1,r=1,imm=0) R3_w=pkt_end(off=0,imm=0)
5: (71) r1 = *(u8 *)(r2 +0) ; R1_w=scalar(umax=255,var_off=(0x0; 0xff)) R2_w=pkt(off=0,r=1,imm=0)
6: (18) r0 = 0x7fffffffffffff10 ; R0_w=9223372036854775568
8: (0f) r1 += r0 ; R0_w=9223372036854775568 R1_w=scalar(umin=9223372036854775568,umax=9223372036854775823,s32_min=-240,s32_max=15)
9: (18) r0 = 0x8000000000000000 ; R0_w=-9223372036854775808
11: (07) r0 += 1 ; R0_w=-9223372036854775807
12: (ad) if r0 < r1 goto pc-2 ; R0_w=-9223372036854775807 R1_w=scalar(umin=9223372036854775568,umax=9223372036854775809)
13: (b7) r0 = 0 ; R0_w=0
14: (95) exit
from 12 to 11: R0_w=-9223372036854775807 R1_w=scalar(umin=9223372036854775810,umax=9223372036854775823,var_off=(0x8000000000000000; 0xffffffff)) R2_w=pkt(off=0,r=1,imm=0) R3_w=pkt_end(off=0,imm=0) R10=fp0
11: (07) r0 += 1 ; R0_w=-9223372036854775806
12: (ad) if r0 < r1 goto pc-2 ; R0_w=-9223372036854775806 R1_w=scalar(umin=9223372036854775810,umax=9223372036854775810,var_off=(0x8000000000000000; 0xffffffff))
13: safe
[...]
from 12 to 11: R0_w=-9223372036854775795 R1=scalar(umin=9223372036854775822,umax=9223372036854775823,var_off=(0x8000000000000000; 0xffffffff)) R2=pkt(off=0,r=1,imm=0) R3=pkt_end(off=0,imm=0) R10=fp0
11: (07) r0 += 1 ; R0_w=-9223372036854775794
12: (ad) if r0 < r1 goto pc-2 ; R0_w=-9223372036854775794 R1=scalar(umin=9223372036854775822,umax=9223372036854775822,var_off=(0x8000000000000000; 0xffffffff))
13: safe
from 12 to 11: R0_w=-9223372036854775794 R1=scalar(umin=9223372036854775823,umax=9223372036854775823,var_off=(0x8000000000000000; 0xffffffff)) R2=pkt(off=0,r=1,imm=0) R3=pkt_end(off=0,imm=0) R10=fp0
11: (07) r0 += 1 ; R0_w=-9223372036854775793
12: (ad) if r0 < r1 goto pc-2 ; R0_w=-9223372036854775793 R1=scalar(umin=9223372036854775823,umax=9223372036854775823,var_off=(0x8000000000000000; 0xffffffff))
13: safe
from 12 to 11: R0_w=-9223372036854775793 R1=scalar(umin=9223372036854775824,umax=9223372036854775823,var_off=(0x8000000000000000; 0xffffffff)) R2=pkt(off=0,r=1,imm=0) R3=pkt_end(off=0,imm=0) R10=fp0
11: (07) r0 += 1 ; R0_w=-9223372036854775792
12: (ad) if r0 < r1 goto pc-2 ; R0_w=-9223372036854775792 R1=scalar(umin=9223372036854775824,umax=9223372036854775823,var_off=(0x8000000000000000; 0xffffffff))
13: safe
[...]
The 64bit umin=9223372036854775810 bound continuously bumps by +1 while
umax=9223372036854775823 stays as-is until the verifier complexity limit
is reached and the program gets finally rejected. During this simulation,
the umin also eventually surpasses umax. Looking at the first 'from 12
to 11' output line from the loop, R1 has the following state:
R1_w=scalar(umin=0x8000000000000002 (9223372036854775810),
umax=0x800000000000000f (9223372036854775823),
var_off=(0x8000000000000000;
0xffffffff))
The var_off has technically not an inconsistent state but it's very
imprecise and far off surpassing 64bit umax bounds whereas the expected
output with refined known bits in var_off should have been like:
R1_w=scalar(umin=0x8000000000000002 (9223372036854775810),
umax=0x800000000000000f (9223372036854775823),
var_off=(0x8000000000000000;
0xf))
In the above log, var_off stays as var_off=(0x8000000000000000; 0xffffffff)
and does not converge into a narrower mask where more bits become known,
eventually transforming R1 into a constant upon umin=9223372036854775823,
umax=9223372036854775823 case where the verifier would have terminated and
let the program pass.
The __reg_combine_64_into_32() marks the subregister unknown and propagates
64bit {s,u}min/{s,u}max bounds to their 32bit equivalents iff they are within
the 32bit universe. The question came up whether __reg_combine_64_into_32()
should special case the situation that when 64bit {s,u}min bounds have
the same value as 64bit {s,u}max bounds to then assign the latter as
well to the 32bit reg->{s,u}32_{min,max}_value. As can be seen from the
above example however, that is just /one/ special case and not a /generic/
solution given above example would still not be addressed this way and
remain at an imprecise var_off=(0x8000000000000000; 0xffffffff).
The improvement is needed in __reg_bound_offset() to refine var32_off with
the updated var64_off instead of the prior reg->var_off. The reg_bounds_sync()
code first refines information about the register's min/max bounds via
__update_reg_bounds() from the current var_off, then in __reg_deduce_bounds()
from sign bit and with the potentially learned bits from bounds it'll
update the var_off tnum in __reg_bound_offset(). For example, intersecting
with the old var_off might have improved bounds slightly, e.g. if umax
was 0x7f...f and var_off was (0; 0xf...fc), then new var_off will then
result in (0; 0x7f...fc). The intersected var64_off holds then the
universe which is a superset of var32_off. The point for the latter is
not to broaden, but to further refine known bits based on the intersection
of var_off with 32 bit bounds, so that we later construct the final var_off
from upper and lower 32 bits. The final __update_reg_bounds() can then
potentially still slightly refine bounds if more bits became known from the
new var_off.
After the improvement, we can see R1 converging successively:
func#0 @0
0: R1=ctx(off=0,imm=0) R10=fp0
0: (61) r2 = *(u32 *)(r1 +0) ; R1=ctx(off=0,imm=0) R2_w=pkt(off=0,r=0,imm=0)
1: (61) r3 = *(u32 *)(r1 +4) ; R1=ctx(off=0,imm=0) R3_w=pkt_end(off=0,imm=0)
2: (bf) r1 = r2 ; R1_w=pkt(off=0,r=0,imm=0) R2_w=pkt(off=0,r=0,imm=0)
3: (07) r1 += 1 ; R1_w=pkt(off=1,r=0,imm=0)
4: (2d) if r1 > r3 goto pc+8 ; R1_w=pkt(off=1,r=1,imm=0) R3_w=pkt_end(off=0,imm=0)
5: (71) r1 = *(u8 *)(r2 +0) ; R1_w=scalar(umax=255,var_off=(0x0; 0xff)) R2_w=pkt(off=0,r=1,imm=0)
6: (18) r0 = 0x7fffffffffffff10 ; R0_w=9223372036854775568
8: (0f) r1 += r0 ; R0_w=9223372036854775568 R1_w=scalar(umin=9223372036854775568,umax=9223372036854775823,s32_min=-240,s32_max=15)
9: (18) r0 = 0x8000000000000000 ; R0_w=-9223372036854775808
11: (07) r0 += 1 ; R0_w=-9223372036854775807
12: (ad) if r0 < r1 goto pc-2 ; R0_w=-9223372036854775807 R1_w=scalar(umin=9223372036854775568,umax=9223372036854775809)
13: (b7) r0 = 0 ; R0_w=0
14: (95) exit
from 12 to 11: R0_w=-9223372036854775807 R1_w=scalar(umin=9223372036854775810,umax=9223372036854775823,var_off=(0x8000000000000000; 0xf),s32_min=0,s32_max=15,u32_max=15) R2_w=pkt(off=0,r=1,imm=0) R3_w=pkt_end(off=0,imm=0) R10=fp0
11: (07) r0 += 1 ; R0_w=-9223372036854775806
12: (ad) if r0 < r1 goto pc-2 ; R0_w=-9223372036854775806 R1_w=-9223372036854775806
13: safe
from 12 to 11: R0_w=-9223372036854775806 R1_w=scalar(umin=9223372036854775811,umax=9223372036854775823,var_off=(0x8000000000000000; 0xf),s32_min=0,s32_max=15,u32_max=15) R2_w=pkt(off=0,r=1,imm=0) R3_w=pkt_end(off=0,imm=0) R10=fp0
11: (07) r0 += 1 ; R0_w=-9223372036854775805
12: (ad) if r0 < r1 goto pc-2 ; R0_w=-9223372036854775805 R1_w=-9223372036854775805
13: safe
[...]
from 12 to 11: R0_w=-9223372036854775798 R1=scalar(umin=9223372036854775819,umax=9223372036854775823,var_off=(0x8000000000000008; 0x7),s32_min=8,s32_max=15,u32_min=8,u32_max=15) R2=pkt(off=0,r=1,imm=0) R3=pkt_end(off=0,imm=0) R10=fp0
11: (07) r0 += 1 ; R0_w=-9223372036854775797
12: (ad) if r0 < r1 goto pc-2 ; R0_w=-9223372036854775797 R1=-9223372036854775797
13: safe
from 12 to 11: R0_w=-9223372036854775797 R1=scalar(umin=9223372036854775820,umax=9223372036854775823,var_off=(0x800000000000000c; 0x3),s32_min=12,s32_max=15,u32_min=12,u32_max=15) R2=pkt(off=0,r=1,imm=0) R3=pkt_end(off=0,imm=0) R10=fp0
11: (07) r0 += 1 ; R0_w=-9223372036854775796
12: (ad) if r0 < r1 goto pc-2 ; R0_w=-9223372036854775796 R1=-9223372036854775796
13: safe
from 12 to 11: R0_w=-9223372036854775796 R1=scalar(umin=9223372036854775821,umax=9223372036854775823,var_off=(0x800000000000000c; 0x3),s32_min=12,s32_max=15,u32_min=12,u32_max=15) R2=pkt(off=0,r=1,imm=0) R3=pkt_end(off=0,imm=0) R10=fp0
11: (07) r0 += 1 ; R0_w=-9223372036854775795
12: (ad) if r0 < r1 goto pc-2 ; R0_w=-9223372036854775795 R1=-9223372036854775795
13: safe
from 12 to 11: R0_w=-9223372036854775795 R1=scalar(umin=9223372036854775822,umax=9223372036854775823,var_off=(0x800000000000000e; 0x1),s32_min=14,s32_max=15,u32_min=14,u32_max=15) R2=pkt(off=0,r=1,imm=0) R3=pkt_end(off=0,imm=0) R10=fp0
11: (07) r0 += 1 ; R0_w=-9223372036854775794
12: (ad) if r0 < r1 goto pc-2 ; R0_w=-9223372036854775794 R1=-9223372036854775794
13: safe
from 12 to 11: R0_w=-9223372036854775794 R1=-9223372036854775793 R2=pkt(off=0,r=1,imm=0) R3=pkt_end(off=0,imm=0) R10=fp0
11: (07) r0 += 1 ; R0_w=-9223372036854775793
12: (ad) if r0 < r1 goto pc-2
last_idx 12 first_idx 12
parent didn't have regs=1 stack=0 marks: R0_rw=P-9223372036854775801 R1_r=scalar(umin=9223372036854775815,umax=9223372036854775823,var_off=(0x8000000000000000; 0xf),s32_min=0,s32_max=15,u32_max=15) R2=pkt(off=0,r=1,imm=0) R3=pkt_end(off=0,imm=0) R10=fp0
last_idx 11 first_idx 11
regs=1 stack=0 before 11: (07) r0 += 1
parent didn't have regs=1 stack=0 marks: R0_rw=P-9223372036854775805 R1_rw=scalar(umin=9223372036854775812,umax=9223372036854775823,var_off=(0x8000000000000000; 0xf),s32_min=0,s32_max=15,u32_max=15) R2_w=pkt(off=0,r=1,imm=0) R3_w=pkt_end(off=0,imm=0) R10=fp0
last_idx 12 first_idx 0
regs=1 stack=0 before 12: (ad) if r0 < r1 goto pc-2
regs=1 stack=0 before 11: (07) r0 += 1
regs=1 stack=0 before 12: (ad) if r0 < r1 goto pc-2
regs=1 stack=0 before 11: (07) r0 += 1
regs=1 stack=0 before 12: (ad) if r0 < r1 goto pc-2
regs=1 stack=0 before 11: (07) r0 += 1
regs=1 stack=0 before 9: (18) r0 = 0x8000000000000000
last_idx 12 first_idx 12
parent didn't have regs=2 stack=0 marks: R0_rw=P-9223372036854775801 R1_r=Pscalar(umin=9223372036854775815,umax=9223372036854775823,var_off=(0x8000000000000000; 0xf),s32_min=0,s32_max=15,u32_max=15) R2=pkt(off=0,r=1,imm=0) R3=pkt_end(off=0,imm=0) R10=fp0
last_idx 11 first_idx 11
regs=2 stack=0 before 11: (07) r0 += 1
parent didn't have regs=2 stack=0 marks: R0_rw=P-9223372036854775805 R1_rw=Pscalar(umin=9223372036854775812,umax=9223372036854775823,var_off=(0x8000000000000000; 0xf),s32_min=0,s32_max=15,u32_max=15) R2_w=pkt(off=0,r=1,imm=0) R3_w=pkt_end(off=0,imm=0) R10=fp0
last_idx 12 first_idx 0
regs=2 stack=0 before 12: (ad) if r0 < r1 goto pc-2
regs=2 stack=0 before 11: (07) r0 += 1
regs=2 stack=0 before 12: (ad) if r0 < r1 goto pc-2
regs=2 stack=0 before 11: (07) r0 += 1
regs=2 stack=0 before 12: (ad) if r0 < r1 goto pc-2
regs=2 stack=0 before 11: (07) r0 += 1
regs=2 stack=0 before 9: (18) r0 = 0x8000000000000000
regs=2 stack=0 before 8: (0f) r1 += r0
regs=3 stack=0 before 6: (18) r0 = 0x7fffffffffffff10
regs=2 stack=0 before 5: (71) r1 = *(u8 *)(r2 +0)
13: safe
from 4 to 13: safe
verification time 322 usec
stack depth 0
processed 56 insns (limit 1000000) max_states_per_insn 1 total_states 3 peak_states 3 mark_read 1
This also fixes up a test case along with this improvement where we match
on the verifier log. The updated log now has a refined var_off, too.
Fixes: 3f50f132d840 ("bpf: Verifier, do explicit ALU32 bounds tracking")
Reported-by: Xu Kuohai <xukuohai@huaweicloud.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Reviewed-by: John Fastabend <john.fastabend@gmail.com>
Link: https://lore.kernel.org/bpf/20230314203424.4015351-2-xukuohai@huaweicloud.com
Link: https://lore.kernel.org/bpf/20230322213056.2470-1-daniel@iogearbox.net
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit 082cdc69a4651dd2a77539d69416a359ed1214f5 ]
For every BPF_ADD/SUB involving a pointer, adjust_ptr_min_max_vals()
ensures that the resulting pointer has a constant offset if
bypass_spec_v1 is false. This is ensured by calling sanitize_check_bounds()
which in turn calls check_stack_access_for_ptr_arithmetic(). There,
-EACCESS is returned if the register's offset is not constant, thereby
rejecting the program.
In summary, an unprivileged user must never be able to create stack
pointers with a variable offset. That is also the case, because a
respective check in check_stack_write() is missing. If they were able
to create a variable-offset pointer, users could still use it in a
stack-write operation to trigger unsafe speculative behavior [1].
Because unprivileged users must already be prevented from creating
variable-offset stack pointers, viable options are to either remove
this check (replacing it with a clarifying comment), or to turn it
into a "verifier BUG"-message, also adding a similar check in
check_stack_write() (for consistency, as a second-level defense).
This patch implements the first option to reduce verifier bloat.
This check was introduced by commit 01f810ace9ed ("bpf: Allow
variable-offset stack access") which correctly notes that
"variable-offset reads and writes are disallowed (they were already
disallowed for the indirect access case) because the speculative
execution checking code doesn't support them". However, it does not
further discuss why the check in check_stack_read() is necessary.
The code which made this check obsolete was also introduced in this
commit.
I have compiled ~650 programs from the Linux selftests, Linux samples,
Cilium, and libbpf/examples projects and confirmed that none of these
trigger the check in check_stack_read() [2]. Instead, all of these
programs are, as expected, already rejected when constructing the
variable-offset pointers. Note that the check in
check_stack_access_for_ptr_arithmetic() also prints "off=%d" while the
code removed by this patch does not (the error removed does not appear
in the "verification_error" values). For reproducibility, the
repository linked includes the raw data and scripts used to create
the plot.
[1] https://arxiv.org/pdf/1807.03757.pdf
[2] 53dc19fcf4/data/plots/23-02-26_23-56_bpftool/bpftool/0004-errors.pdf
Fixes: 01f810ace9ed ("bpf: Allow variable-offset stack access")
Signed-off-by: Luis Gerhorst <gerhorst@cs.fau.de>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Daniel Borkmann <daniel@iogearbox.net>
Link: https://lore.kernel.org/bpf/20230315165358.23701-1-gerhorst@cs.fau.de
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit 34f0677e7afd3a292bc1aadda7ce8e35faedb204 ]
Fix wrong order of frame index vs register/slot index in precision
propagation verbose (level 2) output. It's wrong and very confusing as is.
Fixes: 529409ea92d5 ("bpf: propagate precision across all frames, not just the last one")
Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Link: https://lore.kernel.org/r/20230313184017.4083374-1-andrii@kernel.org
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit 52c2b005a3c18c565fc70cfd0ca49375f301e952 ]
When doing state comparison, if old state has register that is not
marked as REG_LIVE_READ, then we just skip comparison, regardless what's
the state of corresponing register in current state. This is because not
REG_LIVE_READ register is irrelevant for further program execution and
correctness. All good here.
But when we get to precision propagation, after two states were declared
equivalent, we don't take into account old register's liveness, and thus
attempt to propagate precision for register in current state even if
that register in old state was not REG_LIVE_READ anymore. This is bad,
because register in current state could be anything at all and this
could cause -EFAULT due to internal logic bugs.
Fix by taking into account REG_LIVE_READ liveness mark to keep the logic
in state comparison in sync with precision propagation.
Fixes: a3ce685dd01a ("bpf: fix precision tracking")
Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Link: https://lore.kernel.org/r/20230309224131.57449-1-andrii@kernel.org
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit 71b547f561247897a0a14f3082730156c0533fed ]
Juan Jose et al reported an issue found via fuzzing where the verifier's
pruning logic prematurely marks a program path as safe.
Consider the following program:
0: (b7) r6 = 1024
1: (b7) r7 = 0
2: (b7) r8 = 0
3: (b7) r9 = -2147483648
4: (97) r6 %= 1025
5: (05) goto pc+0
6: (bd) if r6 <= r9 goto pc+2
7: (97) r6 %= 1
8: (b7) r9 = 0
9: (bd) if r6 <= r9 goto pc+1
10: (b7) r6 = 0
11: (b7) r0 = 0
12: (63) *(u32 *)(r10 -4) = r0
13: (18) r4 = 0xffff888103693400 // map_ptr(ks=4,vs=48)
15: (bf) r1 = r4
16: (bf) r2 = r10
17: (07) r2 += -4
18: (85) call bpf_map_lookup_elem#1
19: (55) if r0 != 0x0 goto pc+1
20: (95) exit
21: (77) r6 >>= 10
22: (27) r6 *= 8192
23: (bf) r1 = r0
24: (0f) r0 += r6
25: (79) r3 = *(u64 *)(r0 +0)
26: (7b) *(u64 *)(r1 +0) = r3
27: (95) exit
The verifier treats this as safe, leading to oob read/write access due
to an incorrect verifier conclusion:
func#0 @0
0: R1=ctx(off=0,imm=0) R10=fp0
0: (b7) r6 = 1024 ; R6_w=1024
1: (b7) r7 = 0 ; R7_w=0
2: (b7) r8 = 0 ; R8_w=0
3: (b7) r9 = -2147483648 ; R9_w=-2147483648
4: (97) r6 %= 1025 ; R6_w=scalar()
5: (05) goto pc+0
6: (bd) if r6 <= r9 goto pc+2 ; R6_w=scalar(umin=18446744071562067969,var_off=(0xffffffff00000000; 0xffffffff)) R9_w=-2147483648
7: (97) r6 %= 1 ; R6_w=scalar()
8: (b7) r9 = 0 ; R9=0
9: (bd) if r6 <= r9 goto pc+1 ; R6=scalar(umin=1) R9=0
10: (b7) r6 = 0 ; R6_w=0
11: (b7) r0 = 0 ; R0_w=0
12: (63) *(u32 *)(r10 -4) = r0
last_idx 12 first_idx 9
regs=1 stack=0 before 11: (b7) r0 = 0
13: R0_w=0 R10=fp0 fp-8=0000????
13: (18) r4 = 0xffff8ad3886c2a00 ; R4_w=map_ptr(off=0,ks=4,vs=48,imm=0)
15: (bf) r1 = r4 ; R1_w=map_ptr(off=0,ks=4,vs=48,imm=0) R4_w=map_ptr(off=0,ks=4,vs=48,imm=0)
16: (bf) r2 = r10 ; R2_w=fp0 R10=fp0
17: (07) r2 += -4 ; R2_w=fp-4
18: (85) call bpf_map_lookup_elem#1 ; R0=map_value_or_null(id=1,off=0,ks=4,vs=48,imm=0)
19: (55) if r0 != 0x0 goto pc+1 ; R0=0
20: (95) exit
from 19 to 21: R0=map_value(off=0,ks=4,vs=48,imm=0) R6=0 R7=0 R8=0 R9=0 R10=fp0 fp-8=mmmm????
21: (77) r6 >>= 10 ; R6_w=0
22: (27) r6 *= 8192 ; R6_w=0
23: (bf) r1 = r0 ; R0=map_value(off=0,ks=4,vs=48,imm=0) R1_w=map_value(off=0,ks=4,vs=48,imm=0)
24: (0f) r0 += r6
last_idx 24 first_idx 19
regs=40 stack=0 before 23: (bf) r1 = r0
regs=40 stack=0 before 22: (27) r6 *= 8192
regs=40 stack=0 before 21: (77) r6 >>= 10
regs=40 stack=0 before 19: (55) if r0 != 0x0 goto pc+1
parent didn't have regs=40 stack=0 marks: R0_rw=map_value_or_null(id=1,off=0,ks=4,vs=48,imm=0) R6_rw=P0 R7=0 R8=0 R9=0 R10=fp0 fp-8=mmmm????
last_idx 18 first_idx 9
regs=40 stack=0 before 18: (85) call bpf_map_lookup_elem#1
regs=40 stack=0 before 17: (07) r2 += -4
regs=40 stack=0 before 16: (bf) r2 = r10
regs=40 stack=0 before 15: (bf) r1 = r4
regs=40 stack=0 before 13: (18) r4 = 0xffff8ad3886c2a00
regs=40 stack=0 before 12: (63) *(u32 *)(r10 -4) = r0
regs=40 stack=0 before 11: (b7) r0 = 0
regs=40 stack=0 before 10: (b7) r6 = 0
25: (79) r3 = *(u64 *)(r0 +0) ; R0_w=map_value(off=0,ks=4,vs=48,imm=0) R3_w=scalar()
26: (7b) *(u64 *)(r1 +0) = r3 ; R1_w=map_value(off=0,ks=4,vs=48,imm=0) R3_w=scalar()
27: (95) exit
from 9 to 11: R1=ctx(off=0,imm=0) R6=0 R7=0 R8=0 R9=0 R10=fp0
11: (b7) r0 = 0 ; R0_w=0
12: (63) *(u32 *)(r10 -4) = r0
last_idx 12 first_idx 11
regs=1 stack=0 before 11: (b7) r0 = 0
13: R0_w=0 R10=fp0 fp-8=0000????
13: (18) r4 = 0xffff8ad3886c2a00 ; R4_w=map_ptr(off=0,ks=4,vs=48,imm=0)
15: (bf) r1 = r4 ; R1_w=map_ptr(off=0,ks=4,vs=48,imm=0) R4_w=map_ptr(off=0,ks=4,vs=48,imm=0)
16: (bf) r2 = r10 ; R2_w=fp0 R10=fp0
17: (07) r2 += -4 ; R2_w=fp-4
18: (85) call bpf_map_lookup_elem#1
frame 0: propagating r6
last_idx 19 first_idx 11
regs=40 stack=0 before 18: (85) call bpf_map_lookup_elem#1
regs=40 stack=0 before 17: (07) r2 += -4
regs=40 stack=0 before 16: (bf) r2 = r10
regs=40 stack=0 before 15: (bf) r1 = r4
regs=40 stack=0 before 13: (18) r4 = 0xffff8ad3886c2a00
regs=40 stack=0 before 12: (63) *(u32 *)(r10 -4) = r0
regs=40 stack=0 before 11: (b7) r0 = 0
parent didn't have regs=40 stack=0 marks: R1=ctx(off=0,imm=0) R6_r=P0 R7=0 R8=0 R9=0 R10=fp0
last_idx 9 first_idx 9
regs=40 stack=0 before 9: (bd) if r6 <= r9 goto pc+1
parent didn't have regs=40 stack=0 marks: R1=ctx(off=0,imm=0) R6_rw=Pscalar() R7_w=0 R8_w=0 R9_rw=0 R10=fp0
last_idx 8 first_idx 0
regs=40 stack=0 before 8: (b7) r9 = 0
regs=40 stack=0 before 7: (97) r6 %= 1
regs=40 stack=0 before 6: (bd) if r6 <= r9 goto pc+2
regs=40 stack=0 before 5: (05) goto pc+0
regs=40 stack=0 before 4: (97) r6 %= 1025
regs=40 stack=0 before 3: (b7) r9 = -2147483648
regs=40 stack=0 before 2: (b7) r8 = 0
regs=40 stack=0 before 1: (b7) r7 = 0
regs=40 stack=0 before 0: (b7) r6 = 1024
19: safe
frame 0: propagating r6
last_idx 9 first_idx 0
regs=40 stack=0 before 6: (bd) if r6 <= r9 goto pc+2
regs=40 stack=0 before 5: (05) goto pc+0
regs=40 stack=0 before 4: (97) r6 %= 1025
regs=40 stack=0 before 3: (b7) r9 = -2147483648
regs=40 stack=0 before 2: (b7) r8 = 0
regs=40 stack=0 before 1: (b7) r7 = 0
regs=40 stack=0 before 0: (b7) r6 = 1024
from 6 to 9: safe
verification time 110 usec
stack depth 4
processed 36 insns (limit 1000000) max_states_per_insn 0 total_states 3 peak_states 3 mark_read 2
The verifier considers this program as safe by mistakenly pruning unsafe
code paths. In the above func#0, code lines 0-10 are of interest. In line
0-3 registers r6 to r9 are initialized with known scalar values. In line 4
the register r6 is reset to an unknown scalar given the verifier does not
track modulo operations. Due to this, the verifier can also not determine
precisely which branches in line 6 and 9 are taken, therefore it needs to
explore them both.
As can be seen, the verifier starts with exploring the false/fall-through
paths first. The 'from 19 to 21' path has both r6=0 and r9=0 and the pointer
arithmetic on r0 += r6 is therefore considered safe. Given the arithmetic,
r6 is correctly marked for precision tracking where backtracking kicks in
where it walks back the current path all the way where r6 was set to 0 in
the fall-through branch.
Next, the pruning logics pops the path 'from 9 to 11' from the stack. Also
here, the state of the registers is the same, that is, r6=0 and r9=0, so
that at line 19 the path can be pruned as it is considered safe. It is
interesting to note that the conditional in line 9 turned r6 into a more
precise state, that is, in the fall-through path at the beginning of line
10, it is R6=scalar(umin=1), and in the branch-taken path (which is analyzed
here) at the beginning of line 11, r6 turned into a known const r6=0 as
r9=0 prior to that and therefore (unsigned) r6 <= 0 concludes that r6 must
be 0 (**):
[...] ; R6_w=scalar()
9: (bd) if r6 <= r9 goto pc+1 ; R6=scalar(umin=1) R9=0
[...]
from 9 to 11: R1=ctx(off=0,imm=0) R6=0 R7=0 R8=0 R9=0 R10=fp0
[...]
The next path is 'from 6 to 9'. The verifier considers the old and current
state equivalent, and therefore prunes the search incorrectly. Looking into
the two states which are being compared by the pruning logic at line 9, the
old state consists of R6_rwD=Pscalar() R9_rwD=0 R10=fp0 and the new state
consists of R1=ctx(off=0,imm=0) R6_w=scalar(umax=18446744071562067968)
R7_w=0 R8_w=0 R9_w=-2147483648 R10=fp0. While r6 had the reg->precise flag
correctly set in the old state, r9 did not. Both r6'es are considered as
equivalent given the old one is a superset of the current, more precise one,
however, r9's actual values (0 vs 0x80000000) mismatch. Given the old r9
did not have reg->precise flag set, the verifier does not consider the
register as contributing to the precision state of r6, and therefore it
considered both r9 states as equivalent. However, for this specific pruned
path (which is also the actual path taken at runtime), register r6 will be
0x400 and r9 0x80000000 when reaching line 21, thus oob-accessing the map.
The purpose of precision tracking is to initially mark registers (including
spilled ones) as imprecise to help verifier's pruning logic finding equivalent
states it can then prune if they don't contribute to the program's safety
aspects. For example, if registers are used for pointer arithmetic or to pass
constant length to a helper, then the verifier sets reg->precise flag and
backtracks the BPF program instruction sequence and chain of verifier states
to ensure that the given register or stack slot including their dependencies
are marked as precisely tracked scalar. This also includes any other registers
and slots that contribute to a tracked state of given registers/stack slot.
This backtracking relies on recorded jmp_history and is able to traverse
entire chain of parent states. This process ends only when all the necessary
registers/slots and their transitive dependencies are marked as precise.
The backtrack_insn() is called from the current instruction up to the first
instruction, and its purpose is to compute a bitmask of registers and stack
slots that need precision tracking in the parent's verifier state. For example,
if a current instruction is r6 = r7, then r6 needs precision after this
instruction and r7 needs precision before this instruction, that is, in the
parent state. Hence for the latter r7 is marked and r6 unmarked.
For the class of jmp/jmp32 instructions, backtrack_insn() today only looks
at call and exit instructions and for all other conditionals the masks
remain as-is. However, in the given situation register r6 has a dependency
on r9 (as described above in **), so also that one needs to be marked for
precision tracking. In other words, if an imprecise register influences a
precise one, then the imprecise register should also be marked precise.
Meaning, in the parent state both dest and src register need to be tracked
for precision and therefore the marking must be more conservative by setting
reg->precise flag for both. The precision propagation needs to cover both
for the conditional: if the src reg was marked but not the dst reg and vice
versa.
After the fix the program is correctly rejected:
func#0 @0
0: R1=ctx(off=0,imm=0) R10=fp0
0: (b7) r6 = 1024 ; R6_w=1024
1: (b7) r7 = 0 ; R7_w=0
2: (b7) r8 = 0 ; R8_w=0
3: (b7) r9 = -2147483648 ; R9_w=-2147483648
4: (97) r6 %= 1025 ; R6_w=scalar()
5: (05) goto pc+0
6: (bd) if r6 <= r9 goto pc+2 ; R6_w=scalar(umin=18446744071562067969,var_off=(0xffffffff80000000; 0x7fffffff),u32_min=-2147483648) R9_w=-2147483648
7: (97) r6 %= 1 ; R6_w=scalar()
8: (b7) r9 = 0 ; R9=0
9: (bd) if r6 <= r9 goto pc+1 ; R6=scalar(umin=1) R9=0
10: (b7) r6 = 0 ; R6_w=0
11: (b7) r0 = 0 ; R0_w=0
12: (63) *(u32 *)(r10 -4) = r0
last_idx 12 first_idx 9
regs=1 stack=0 before 11: (b7) r0 = 0
13: R0_w=0 R10=fp0 fp-8=0000????
13: (18) r4 = 0xffff9290dc5bfe00 ; R4_w=map_ptr(off=0,ks=4,vs=48,imm=0)
15: (bf) r1 = r4 ; R1_w=map_ptr(off=0,ks=4,vs=48,imm=0) R4_w=map_ptr(off=0,ks=4,vs=48,imm=0)
16: (bf) r2 = r10 ; R2_w=fp0 R10=fp0
17: (07) r2 += -4 ; R2_w=fp-4
18: (85) call bpf_map_lookup_elem#1 ; R0=map_value_or_null(id=1,off=0,ks=4,vs=48,imm=0)
19: (55) if r0 != 0x0 goto pc+1 ; R0=0
20: (95) exit
from 19 to 21: R0=map_value(off=0,ks=4,vs=48,imm=0) R6=0 R7=0 R8=0 R9=0 R10=fp0 fp-8=mmmm????
21: (77) r6 >>= 10 ; R6_w=0
22: (27) r6 *= 8192 ; R6_w=0
23: (bf) r1 = r0 ; R0=map_value(off=0,ks=4,vs=48,imm=0) R1_w=map_value(off=0,ks=4,vs=48,imm=0)
24: (0f) r0 += r6
last_idx 24 first_idx 19
regs=40 stack=0 before 23: (bf) r1 = r0
regs=40 stack=0 before 22: (27) r6 *= 8192
regs=40 stack=0 before 21: (77) r6 >>= 10
regs=40 stack=0 before 19: (55) if r0 != 0x0 goto pc+1
parent didn't have regs=40 stack=0 marks: R0_rw=map_value_or_null(id=1,off=0,ks=4,vs=48,imm=0) R6_rw=P0 R7=0 R8=0 R9=0 R10=fp0 fp-8=mmmm????
last_idx 18 first_idx 9
regs=40 stack=0 before 18: (85) call bpf_map_lookup_elem#1
regs=40 stack=0 before 17: (07) r2 += -4
regs=40 stack=0 before 16: (bf) r2 = r10
regs=40 stack=0 before 15: (bf) r1 = r4
regs=40 stack=0 before 13: (18) r4 = 0xffff9290dc5bfe00
regs=40 stack=0 before 12: (63) *(u32 *)(r10 -4) = r0
regs=40 stack=0 before 11: (b7) r0 = 0
regs=40 stack=0 before 10: (b7) r6 = 0
25: (79) r3 = *(u64 *)(r0 +0) ; R0_w=map_value(off=0,ks=4,vs=48,imm=0) R3_w=scalar()
26: (7b) *(u64 *)(r1 +0) = r3 ; R1_w=map_value(off=0,ks=4,vs=48,imm=0) R3_w=scalar()
27: (95) exit
from 9 to 11: R1=ctx(off=0,imm=0) R6=0 R7=0 R8=0 R9=0 R10=fp0
11: (b7) r0 = 0 ; R0_w=0
12: (63) *(u32 *)(r10 -4) = r0
last_idx 12 first_idx 11
regs=1 stack=0 before 11: (b7) r0 = 0
13: R0_w=0 R10=fp0 fp-8=0000????
13: (18) r4 = 0xffff9290dc5bfe00 ; R4_w=map_ptr(off=0,ks=4,vs=48,imm=0)
15: (bf) r1 = r4 ; R1_w=map_ptr(off=0,ks=4,vs=48,imm=0) R4_w=map_ptr(off=0,ks=4,vs=48,imm=0)
16: (bf) r2 = r10 ; R2_w=fp0 R10=fp0
17: (07) r2 += -4 ; R2_w=fp-4
18: (85) call bpf_map_lookup_elem#1
frame 0: propagating r6
last_idx 19 first_idx 11
regs=40 stack=0 before 18: (85) call bpf_map_lookup_elem#1
regs=40 stack=0 before 17: (07) r2 += -4
regs=40 stack=0 before 16: (bf) r2 = r10
regs=40 stack=0 before 15: (bf) r1 = r4
regs=40 stack=0 before 13: (18) r4 = 0xffff9290dc5bfe00
regs=40 stack=0 before 12: (63) *(u32 *)(r10 -4) = r0
regs=40 stack=0 before 11: (b7) r0 = 0
parent didn't have regs=40 stack=0 marks: R1=ctx(off=0,imm=0) R6_r=P0 R7=0 R8=0 R9=0 R10=fp0
last_idx 9 first_idx 9
regs=40 stack=0 before 9: (bd) if r6 <= r9 goto pc+1
parent didn't have regs=240 stack=0 marks: R1=ctx(off=0,imm=0) R6_rw=Pscalar() R7_w=0 R8_w=0 R9_rw=P0 R10=fp0
last_idx 8 first_idx 0
regs=240 stack=0 before 8: (b7) r9 = 0
regs=40 stack=0 before 7: (97) r6 %= 1
regs=40 stack=0 before 6: (bd) if r6 <= r9 goto pc+2
regs=240 stack=0 before 5: (05) goto pc+0
regs=240 stack=0 before 4: (97) r6 %= 1025
regs=240 stack=0 before 3: (b7) r9 = -2147483648
regs=40 stack=0 before 2: (b7) r8 = 0
regs=40 stack=0 before 1: (b7) r7 = 0
regs=40 stack=0 before 0: (b7) r6 = 1024
19: safe
from 6 to 9: R1=ctx(off=0,imm=0) R6_w=scalar(umax=18446744071562067968) R7_w=0 R8_w=0 R9_w=-2147483648 R10=fp0
9: (bd) if r6 <= r9 goto pc+1
last_idx 9 first_idx 0
regs=40 stack=0 before 6: (bd) if r6 <= r9 goto pc+2
regs=240 stack=0 before 5: (05) goto pc+0
regs=240 stack=0 before 4: (97) r6 %= 1025
regs=240 stack=0 before 3: (b7) r9 = -2147483648
regs=40 stack=0 before 2: (b7) r8 = 0
regs=40 stack=0 before 1: (b7) r7 = 0
regs=40 stack=0 before 0: (b7) r6 = 1024
last_idx 9 first_idx 0
regs=200 stack=0 before 6: (bd) if r6 <= r9 goto pc+2
regs=240 stack=0 before 5: (05) goto pc+0
regs=240 stack=0 before 4: (97) r6 %= 1025
regs=240 stack=0 before 3: (b7) r9 = -2147483648
regs=40 stack=0 before 2: (b7) r8 = 0
regs=40 stack=0 before 1: (b7) r7 = 0
regs=40 stack=0 before 0: (b7) r6 = 1024
11: R6=scalar(umax=18446744071562067968) R9=-2147483648
11: (b7) r0 = 0 ; R0_w=0
12: (63) *(u32 *)(r10 -4) = r0
last_idx 12 first_idx 11
regs=1 stack=0 before 11: (b7) r0 = 0
13: R0_w=0 R10=fp0 fp-8=0000????
13: (18) r4 = 0xffff9290dc5bfe00 ; R4_w=map_ptr(off=0,ks=4,vs=48,imm=0)
15: (bf) r1 = r4 ; R1_w=map_ptr(off=0,ks=4,vs=48,imm=0) R4_w=map_ptr(off=0,ks=4,vs=48,imm=0)
16: (bf) r2 = r10 ; R2_w=fp0 R10=fp0
17: (07) r2 += -4 ; R2_w=fp-4
18: (85) call bpf_map_lookup_elem#1 ; R0_w=map_value_or_null(id=3,off=0,ks=4,vs=48,imm=0)
19: (55) if r0 != 0x0 goto pc+1 ; R0_w=0
20: (95) exit
from 19 to 21: R0=map_value(off=0,ks=4,vs=48,imm=0) R6=scalar(umax=18446744071562067968) R7=0 R8=0 R9=-2147483648 R10=fp0 fp-8=mmmm????
21: (77) r6 >>= 10 ; R6_w=scalar(umax=18014398507384832,var_off=(0x0; 0x3fffffffffffff))
22: (27) r6 *= 8192 ; R6_w=scalar(smax=9223372036854767616,umax=18446744073709543424,var_off=(0x0; 0xffffffffffffe000),s32_max=2147475456,u32_max=-8192)
23: (bf) r1 = r0 ; R0=map_value(off=0,ks=4,vs=48,imm=0) R1_w=map_value(off=0,ks=4,vs=48,imm=0)
24: (0f) r0 += r6
last_idx 24 first_idx 21
regs=40 stack=0 before 23: (bf) r1 = r0
regs=40 stack=0 before 22: (27) r6 *= 8192
regs=40 stack=0 before 21: (77) r6 >>= 10
parent didn't have regs=40 stack=0 marks: R0_rw=map_value(off=0,ks=4,vs=48,imm=0) R6_r=Pscalar(umax=18446744071562067968) R7=0 R8=0 R9=-2147483648 R10=fp0 fp-8=mmmm????
last_idx 19 first_idx 11
regs=40 stack=0 before 19: (55) if r0 != 0x0 goto pc+1
regs=40 stack=0 before 18: (85) call bpf_map_lookup_elem#1
regs=40 stack=0 before 17: (07) r2 += -4
regs=40 stack=0 before 16: (bf) r2 = r10
regs=40 stack=0 before 15: (bf) r1 = r4
regs=40 stack=0 before 13: (18) r4 = 0xffff9290dc5bfe00
regs=40 stack=0 before 12: (63) *(u32 *)(r10 -4) = r0
regs=40 stack=0 before 11: (b7) r0 = 0
parent didn't have regs=40 stack=0 marks: R1=ctx(off=0,imm=0) R6_rw=Pscalar(umax=18446744071562067968) R7_w=0 R8_w=0 R9_w=-2147483648 R10=fp0
last_idx 9 first_idx 0
regs=40 stack=0 before 9: (bd) if r6 <= r9 goto pc+1
regs=240 stack=0 before 6: (bd) if r6 <= r9 goto pc+2
regs=240 stack=0 before 5: (05) goto pc+0
regs=240 stack=0 before 4: (97) r6 %= 1025
regs=240 stack=0 before 3: (b7) r9 = -2147483648
regs=40 stack=0 before 2: (b7) r8 = 0
regs=40 stack=0 before 1: (b7) r7 = 0
regs=40 stack=0 before 0: (b7) r6 = 1024
math between map_value pointer and register with unbounded min value is not allowed
verification time 886 usec
stack depth 4
processed 49 insns (limit 1000000) max_states_per_insn 1 total_states 5 peak_states 5 mark_read 2
Fixes: b5dc0163d8fd ("bpf: precise scalar_value tracking")
Reported-by: Juan Jose Lopez Jaimez <jjlopezjaimez@google.com>
Reported-by: Meador Inge <meadori@google.com>
Reported-by: Simon Scannell <simonscannell@google.com>
Reported-by: Nenad Stojanovski <thenenadx@google.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Co-developed-by: Andrii Nakryiko <andrii@kernel.org>
Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Reviewed-by: John Fastabend <john.fastabend@gmail.com>
Reviewed-by: Juan Jose Lopez Jaimez <jjlopezjaimez@google.com>
Reviewed-by: Meador Inge <meadori@google.com>
Reviewed-by: Simon Scannell <simonscannell@google.com>
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit 10ec8ca8ec1a2f04c4ed90897225231c58c124a7 ]
We've seen recent AWS EKS (Kubernetes) user reports like the following:
After upgrading EKS nodes from v20230203 to v20230217 on our 1.24 EKS
clusters after a few days a number of the nodes have containers stuck
in ContainerCreating state or liveness/readiness probes reporting the
following error:
Readiness probe errored: rpc error: code = Unknown desc = failed to
exec in container: failed to start exec "4a11039f730203ffc003b7[...]":
OCI runtime exec failed: exec failed: unable to start container process:
unable to init seccomp: error loading seccomp filter into kernel:
error loading seccomp filter: errno 524: unknown
However, we had not been seeing this issue on previous AMIs and it only
started to occur on v20230217 (following the upgrade from kernel 5.4 to
5.10) with no other changes to the underlying cluster or workloads.
We tried the suggestions from that issue (sysctl net.core.bpf_jit_limit=452534528)
which helped to immediately allow containers to be created and probes to
execute but after approximately a day the issue returned and the value
returned by cat /proc/vmallocinfo | grep bpf_jit | awk '{s+=$2} END {print s}'
was steadily increasing.
I tested bpf tree to observe bpf_jit_charge_modmem, bpf_jit_uncharge_modmem
their sizes passed in as well as bpf_jit_current under tcpdump BPF filter,
seccomp BPF and native (e)BPF programs, and the behavior all looks sane
and expected, that is nothing "leaking" from an upstream perspective.
The bpf_jit_limit knob was originally added in order to avoid a situation
where unprivileged applications loading BPF programs (e.g. seccomp BPF
policies) consuming all the module memory space via BPF JIT such that loading
of kernel modules would be prevented. The default limit was defined back in
2018 and while good enough back then, we are generally seeing far more BPF
consumers today.
Adjust the limit for the BPF JIT pool from originally 1/4 to now 1/2 of the
module memory space to better reflect today's needs and avoid more users
running into potentially hard to debug issues.
Fixes: fdadd04931c2 ("bpf: fix bpf_jit_limit knob for PAGE_SIZE >= 64K")
Reported-by: Stephen Haynes <sh@synk.net>
Reported-by: Lefteris Alexakis <lefteris.alexakis@kpn.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Link: https://github.com/awslabs/amazon-eks-ami/issues/1179
Link: https://github.com/awslabs/amazon-eks-ami/issues/1219
Reviewed-by: Kuniyuki Iwashima <kuniyu@amazon.com>
Link: https://lore.kernel.org/r/20230320143725.8394-1-daniel@iogearbox.net
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit 9b459804ff9973e173fabafba2a1319f771e85fa ]
btf_datasec_resolve contains a bug that causes the following BTF
to fail loading:
[1] DATASEC a size=2 vlen=2
type_id=4 offset=0 size=1
type_id=7 offset=1 size=1
[2] INT (anon) size=1 bits_offset=0 nr_bits=8 encoding=(none)
[3] PTR (anon) type_id=2
[4] VAR a type_id=3 linkage=0
[5] INT (anon) size=1 bits_offset=0 nr_bits=8 encoding=(none)
[6] TYPEDEF td type_id=5
[7] VAR b type_id=6 linkage=0
This error message is printed during btf_check_all_types:
[1] DATASEC a size=2 vlen=2
type_id=7 offset=1 size=1 Invalid type
By tracing btf_*_resolve we can pinpoint the problem:
btf_datasec_resolve(depth: 1, type_id: 1, mode: RESOLVE_TBD) = 0
btf_var_resolve(depth: 2, type_id: 4, mode: RESOLVE_TBD) = 0
btf_ptr_resolve(depth: 3, type_id: 3, mode: RESOLVE_PTR) = 0
btf_var_resolve(depth: 2, type_id: 4, mode: RESOLVE_PTR) = 0
btf_datasec_resolve(depth: 1, type_id: 1, mode: RESOLVE_PTR) = -22
The last invocation of btf_datasec_resolve should invoke btf_var_resolve
by means of env_stack_push, instead it returns EINVAL. The reason is that
env_stack_push is never executed for the second VAR.
if (!env_type_is_resolve_sink(env, var_type) &&
!env_type_is_resolved(env, var_type_id)) {
env_stack_set_next_member(env, i + 1);
return env_stack_push(env, var_type, var_type_id);
}
env_type_is_resolve_sink() changes its behaviour based on resolve_mode.
For RESOLVE_PTR, we can simplify the if condition to the following:
(btf_type_is_modifier() || btf_type_is_ptr) && !env_type_is_resolved()
Since we're dealing with a VAR the clause evaluates to false. This is
not sufficient to trigger the bug however. The log output and EINVAL
are only generated if btf_type_id_size() fails.
if (!btf_type_id_size(btf, &type_id, &type_size)) {
btf_verifier_log_vsi(env, v->t, vsi, "Invalid type");
return -EINVAL;
}
Most types are sized, so for example a VAR referring to an INT is not a
problem. The bug is only triggered if a VAR points at a modifier. Since
we skipped btf_var_resolve that modifier was also never resolved, which
means that btf_resolved_type_id returns 0 aka VOID for the modifier.
This in turn causes btf_type_id_size to return NULL, triggering EINVAL.
To summarise, the following conditions are necessary:
- VAR pointing at PTR, STRUCT, UNION or ARRAY
- Followed by a VAR pointing at TYPEDEF, VOLATILE, CONST, RESTRICT or
TYPE_TAG
The fix is to reset resolve_mode to RESOLVE_TBD before attempting to
resolve a VAR from a DATASEC.
Fixes: 1dc92851849c ("bpf: kernel side support for BTF Var and DataSec")
Signed-off-by: Lorenz Bauer <lmb@isovalent.com>
Link: https://lore.kernel.org/r/20230306112138.155352-2-lmb@isovalent.com
Signed-off-by: Martin KaFai Lau <martin.lau@kernel.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit d384dce281ed1b504fae2e279507827638d56fa3 ]
KPROBE program's user-facing context type is defined as typedef
bpf_user_pt_regs_t. This leads to a problem when trying to passing
kprobe/uprobe/usdt context argument into global subprog, as kernel
always strip away mods and typedefs of user-supplied type, but takes
expected type from bpf_ctx_convert as is, which causes mismatch.
Current way to work around this is to define a fake struct with the same
name as expected typedef:
struct bpf_user_pt_regs_t {};
__noinline my_global_subprog(struct bpf_user_pt_regs_t *ctx) { ... }
This patch fixes the issue by resolving expected type, if it's not
a struct. It still leaves the above work-around working for backwards
compatibility.
Fixes: 91cc1a99740e ("bpf: Annotate context types")
Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Stanislav Fomichev <sdf@google.com>
Link: https://lore.kernel.org/bpf/20230216045954.3002473-2-andrii@kernel.org
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit 997849c4b969034e225153f41026657def66d286 ]
Currently the freed element in bpf memory allocator may be immediately
reused, for htab map the reuse will reinitialize special fields in map
value (e.g., bpf_spin_lock), but lookup procedure may still access
these special fields, and it may lead to hard-lockup as shown below:
NMI backtrace for cpu 16
CPU: 16 PID: 2574 Comm: htab.bin Tainted: G L 6.1.0+ #1
Hardware name: QEMU Standard PC (i440FX + PIIX, 1996),
RIP: 0010:queued_spin_lock_slowpath+0x283/0x2c0
......
Call Trace:
<TASK>
copy_map_value_locked+0xb7/0x170
bpf_map_copy_value+0x113/0x3c0
__sys_bpf+0x1c67/0x2780
__x64_sys_bpf+0x1c/0x20
do_syscall_64+0x30/0x60
entry_SYSCALL_64_after_hwframe+0x46/0xb0
......
</TASK>
For htab map, just like the preallocated case, these is no need to
initialize these special fields in map value again once these fields
have been initialized. For preallocated htab map, these fields are
initialized through __GFP_ZERO in bpf_map_area_alloc(), so do the
similar thing for non-preallocated htab in bpf memory allocator. And
there is no need to use __GFP_ZERO for per-cpu bpf memory allocator,
because __alloc_percpu_gfp() does it implicitly.
Fixes: 0fd7c5d43339 ("bpf: Optimize call_rcu in non-preallocated hash map.")
Signed-off-by: Hou Tao <houtao1@huawei.com>
Link: https://lore.kernel.org/r/20230215082132.3856544-2-houtao@huaweicloud.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
commit f3dd0c53370e70c0f9b7e931bbec12916f3bb8cc upstream.
Commit 74e19ef0ff80 ("uaccess: Add speculation barrier to
copy_from_user()") built fine on x86-64 and arm64, and that's the extent
of my local build testing.
It turns out those got the <linux/nospec.h> include incidentally through
other header files (<linux/kvm_host.h> in particular), but that was not
true of other architectures, resulting in build errors
kernel/bpf/core.c: In function ‘___bpf_prog_run’:
kernel/bpf/core.c:1913:3: error: implicit declaration of function ‘barrier_nospec’
so just make sure to explicitly include the proper <linux/nospec.h>
header file to make everybody see it.
Fixes: 74e19ef0ff80 ("uaccess: Add speculation barrier to copy_from_user()")
Reported-by: kernel test robot <lkp@intel.com>
Reported-by: Viresh Kumar <viresh.kumar@linaro.org>
Reported-by: Huacai Chen <chenhuacai@loongson.cn>
Tested-by: Geert Uytterhoeven <geert@linux-m68k.org>
Tested-by: Dave Hansen <dave.hansen@linux.intel.com>
Acked-by: Alexei Starovoitov <alexei.starovoitov@gmail.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 74e19ef0ff8061ef55957c3abd71614ef0f42f47 upstream.
The results of "access_ok()" can be mis-speculated. The result is that
you can end speculatively:
if (access_ok(from, size))
// Right here
even for bad from/size combinations. On first glance, it would be ideal
to just add a speculation barrier to "access_ok()" so that its results
can never be mis-speculated.
But there are lots of system calls just doing access_ok() via
"copy_to_user()" and friends (example: fstat() and friends). Those are
generally not problematic because they do not _consume_ data from
userspace other than the pointer. They are also very quick and common
system calls that should not be needlessly slowed down.
"copy_from_user()" on the other hand uses a user-controller pointer and
is frequently followed up with code that might affect caches. Take
something like this:
if (!copy_from_user(&kernelvar, uptr, size))
do_something_with(kernelvar);
If userspace passes in an evil 'uptr' that *actually* points to a kernel
addresses, and then do_something_with() has cache (or other)
side-effects, it could allow userspace to infer kernel data values.
Add a barrier to the common copy_from_user() code to prevent
mis-speculated values which happen after the copy.
Also add a stub for architectures that do not define barrier_nospec().
This makes the macro usable in generic code.
Since the barrier is now usable in generic code, the x86 #ifdef in the
BPF code can also go away.
Reported-by: Jordy Zomer <jordyzomer@google.com>
Suggested-by: Linus Torvalds <torvalds@linuxfoundation.org>
Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: Daniel Borkmann <daniel@iogearbox.net> # BPF bits
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit d3178e8a434b58678d99257c0387810a24042fb6 upstream.
The verifier skips invalid kfunc call in check_kfunc_call(), which
would be captured in fixup_kfunc_call() if such insn is not eliminated
by dead code elimination. However, this can lead to the following
warning in backtrack_insn(), also see [1]:
------------[ cut here ]------------
verifier backtracking bug
WARNING: CPU: 6 PID: 8646 at kernel/bpf/verifier.c:2756 backtrack_insn
kernel/bpf/verifier.c:2756
__mark_chain_precision kernel/bpf/verifier.c:3065
mark_chain_precision kernel/bpf/verifier.c:3165
adjust_reg_min_max_vals kernel/bpf/verifier.c:10715
check_alu_op kernel/bpf/verifier.c:10928
do_check kernel/bpf/verifier.c:13821 [inline]
do_check_common kernel/bpf/verifier.c:16289
[...]
So make backtracking conservative with this by returning ENOTSUPP.
[1] https://lore.kernel.org/bpf/CACkBjsaXNceR8ZjkLG=dT3P=4A8SBsg0Z5h5PWLryF5=ghKq=g@mail.gmail.com/
Reported-by: syzbot+4da3ff23081bafe74fc2@syzkaller.appspotmail.com
Signed-off-by: Hao Sun <sunhao.th@gmail.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Yonghong Song <yhs@fb.com>
Link: https://lore.kernel.org/bpf/20230104014709.9375-1-sunhao.th@gmail.com
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
[ Upstream commit 5416c9aea8323583e8696f0500b6142dfae80821 ]
The kernel crash was caused by a BPF program attached to the
"lsm_cgroup/socket_sock_rcv_skb" hook, which performed a call to
`bpf_setsockopt()` in order to set the TCP_NODELAY flag as an
example. Flags like TCP_NODELAY can prompt the kernel to flush a
socket's outgoing queue, and this hook
"lsm_cgroup/socket_sock_rcv_skb" is frequently triggered by
softirqs. The issue was that in certain circumstances, when
`tcp_write_xmit()` was called to flush the queue, it would also allow
BH (bottom-half) to run. This could lead to our program attempting to
flush the same socket recursively, which caused a `skbuff` to be
unlinked twice.
`security_sock_rcv_skb()` is triggered by `tcp_filter()`. This occurs
before the sock ownership is checked in `tcp_v4_rcv()`. Consequently,
if a bpf program runs on `security_sock_rcv_skb()` while under softirq
conditions, it may not possess the lock needed for `bpf_setsockopt()`,
thus presenting an issue.
The patch fixes this issue by ensuring that a BPF program attached to
the "lsm_cgroup/socket_sock_rcv_skb" hook is not allowed to call
`bpf_setsockopt()`.
The differences from v1 are
- changing commit log to explain holding the lock of the sock,
- emphasizing that TCP_NODELAY is not the only flag, and
- adding the fixes tag.
v1: https://lore.kernel.org/bpf/20230125000244.1109228-1-kuifeng@meta.com/
Signed-off-by: Kui-Feng Lee <kuifeng@meta.com>
Fixes: 9113d7e48e91 ("bpf: expose bpf_{g,s}etsockopt to lsm cgroup")
Link: https://lore.kernel.org/r/20230127001732.4162630-1-kuifeng@meta.com
Signed-off-by: Martin KaFai Lau <martin.lau@kernel.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit 74bc3a5acc82f020d2e126f56c535d02d1e74e37 ]
We take the BTF reference before we register dtors and we need
to put it back when it's done.
We probably won't se a problem with kernel BTF, but module BTF
would stay loaded (because of the extra ref) even when its module
is removed.
Cc: Kumar Kartikeya Dwivedi <memxor@gmail.com>
Fixes: 5ce937d613a4 ("bpf: Populate pairs of btf_id and destructor kfunc in btf")
Acked-by: Kumar Kartikeya Dwivedi <memxor@gmail.com>
Signed-off-by: Jiri Olsa <jolsa@kernel.org>
Link: https://lore.kernel.org/r/20230120122148.1522359-1-jolsa@kernel.org
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit 71f656a50176915d6813751188b5758daa8d012b ]
Register range information is copied in several places. The intent is
to transfer range/id information from one register/stack spill to
another. Currently this is done using direct register assignment, e.g.:
static void find_equal_scalars(..., struct bpf_reg_state *known_reg)
{
...
struct bpf_reg_state *reg;
...
*reg = *known_reg;
...
}
However, such assignments also copy the following bpf_reg_state fields:
struct bpf_reg_state {
...
struct bpf_reg_state *parent;
...
enum bpf_reg_liveness live;
...
};
Copying of these fields is accidental and incorrect, as could be
demonstrated by the following example:
0: call ktime_get_ns()
1: r6 = r0
2: call ktime_get_ns()
3: r7 = r0
4: if r0 > r6 goto +1 ; r0 & r6 are unbound thus generated
; branch states are identical
5: *(u64 *)(r10 - 8) = 0xdeadbeef ; 64-bit write to fp[-8]
--- checkpoint ---
6: r1 = 42 ; r1 marked as written
7: *(u8 *)(r10 - 8) = r1 ; 8-bit write, fp[-8] parent & live
; overwritten
8: r2 = *(u64 *)(r10 - 8)
9: r0 = 0
10: exit
This example is unsafe because 64-bit write to fp[-8] at (5) is
conditional, thus not all bytes of fp[-8] are guaranteed to be set
when it is read at (8). However, currently the example passes
verification.
First, the execution path 1-10 is examined by verifier.
Suppose that a new checkpoint is created by is_state_visited() at (6).
After checkpoint creation:
- r1.parent points to checkpoint.r1,
- fp[-8].parent points to checkpoint.fp[-8].
At (6) the r1.live is set to REG_LIVE_WRITTEN.
At (7) the fp[-8].parent is set to r1.parent and fp[-8].live is set to
REG_LIVE_WRITTEN, because of the following code called in
check_stack_write_fixed_off():
static void save_register_state(struct bpf_func_state *state,
int spi, struct bpf_reg_state *reg,
int size)
{
...
state->stack[spi].spilled_ptr = *reg; // <--- parent & live copied
if (size == BPF_REG_SIZE)
state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN;
...
}
Note the intent to mark stack spill as written only if 8 bytes are
spilled to a slot, however this intent is spoiled by a 'live' field copy.
At (8) the checkpoint.fp[-8] should be marked as REG_LIVE_READ but
this does not happen:
- fp[-8] in a current state is already marked as REG_LIVE_WRITTEN;
- fp[-8].parent points to checkpoint.r1, parentage chain is used by
mark_reg_read() to mark checkpoint states.
At (10) the verification is finished for path 1-10 and jump 4-6 is
examined. The checkpoint.fp[-8] never gets REG_LIVE_READ mark and this
spill is pruned from the cached states by clean_live_states(). Hence
verifier state obtained via path 1-4,6 is deemed identical to one
obtained via path 1-6 and program marked as safe.
Note: the example should be executed with BPF_F_TEST_STATE_FREQ flag
set to force creation of intermediate verifier states.
This commit revisits the locations where bpf_reg_state instances are
copied and replaces the direct copies with a call to a function
copy_register_state(dst, src) that preserves 'parent' and 'live'
fields of the 'dst'.
Fixes: 679c782de14b ("bpf/verifier: per-register parent pointers")
Signed-off-by: Eduard Zingerman <eddyz87@gmail.com>
Link: https://lore.kernel.org/r/20230106142214.1040390-2-eddyz87@gmail.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit 36024d023d139a0c8b552dc3b7f4dc7b4c139e8f ]
According to the definition of sizes[NUM_CACHES], when the size passed
to bpf_mem_cache_size() is 256, it should return 6 instead 7.
Fixes: 7c8199e24fa0 ("bpf: Introduce any context BPF specific memory allocator.")
Signed-off-by: Hou Tao <houtao1@huawei.com>
Acked-by: Yonghong Song <yhs@fb.com>
Link: https://lore.kernel.org/r/20230118084630.3750680-1-houtao@huaweicloud.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>