IF YOU WOULD LIKE TO GET AN ACCOUNT, please write an
email to Administrator. User accounts are meant only to access repo
and report issues and/or generate pull requests.
This is a purpose-specific Git hosting for
BaseALT
projects. Thank you for your understanding!
Только зарегистрированные пользователи имеют доступ к сервису!
Для получения аккаунта, обратитесь к администратору.
commit fdea03e12aa2a44a7bb34144208be97fc25dfd90 upstream.
Similarly to kmsan_vmap_pages_range_noflush(), kmsan_ioremap_page_range()
must also properly handle allocation/mapping failures. In the case of
such, it must clean up the already created metadata mappings and return an
error code, so that the error can be propagated to ioremap_page_range().
Without doing so, KMSAN may silently fail to bring the metadata for the
page range into a consistent state, which will result in user-visible
crashes when trying to access them.
Link: https://lkml.kernel.org/r/20230413131223.4135168-2-glider@google.com
Fixes: b073d7f8aee4 ("mm: kmsan: maintain KMSAN metadata for page operations")
Signed-off-by: Alexander Potapenko <glider@google.com>
Reported-by: Dipanjan Das <mail.dipanjan.das@gmail.com>
Link: https://lore.kernel.org/linux-mm/CANX2M5ZRrRA64k0hOif02TjmY9kbbO2aCBPyq79es34RXZ=cAw@mail.gmail.com/
Reviewed-by: Marco Elver <elver@google.com>
Cc: Christoph Hellwig <hch@infradead.org>
Cc: Dmitry Vyukov <dvyukov@google.com>
Cc: Uladzislau Rezki (Sony) <urezki@gmail.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 4737edbbdd4958ae29ca6a310a6a2fa4e0684b01 upstream.
split_huge_page_to_list() WARNs when called for huge zero pages, which
sounds to me too harsh because it does not imply a kernel bug, but just
notifies the event to admins. On the other hand, this is considered as
critical by syzkaller and makes its testing less efficient, which seems to
me harmful.
So replace the VM_WARN_ON_ONCE_FOLIO with pr_warn_ratelimited.
Link: https://lkml.kernel.org/r/20230406082004.2185420-1-naoya.horiguchi@linux.dev
Fixes: 478d134e9506 ("mm/huge_memory: do not overkill when splitting huge_zero_page")
Signed-off-by: Naoya Horiguchi <naoya.horiguchi@nec.com>
Reported-by: syzbot+07a218429c8d19b1fb25@syzkaller.appspotmail.com
Link: https://lore.kernel.org/lkml/000000000000a6f34a05e6efcd01@google.com/
Reviewed-by: Yang Shi <shy828301@gmail.com>
Cc: Miaohe Lin <linmiaohe@huawei.com>
Cc: Tetsuo Handa <penguin-kernel@i-love.sakura.ne.jp>
Cc: Xu Yu <xuyu@linux.alibaba.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit dd47ac428c3f5f3bcabe845f36be870fe6c20784 upstream.
Khugepaged collapse an anonymous thp in two rounds of scans. The 2nd
round done in __collapse_huge_page_isolate() after
hpage_collapse_scan_pmd(), during which all the locks will be released
temporarily. It means the pgtable can change during this phase before 2nd
round starts.
It's logically possible some ptes got wr-protected during this phase, and
we can errornously collapse a thp without noticing some ptes are
wr-protected by userfault. e1e267c7928f wanted to avoid it but it only
did that for the 1st phase, not the 2nd phase.
Since __collapse_huge_page_isolate() happens after a round of small page
swapins, we don't need to worry on any !present ptes - if it existed
khugepaged will already bail out. So we only need to check present ptes
with uffd-wp bit set there.
This is something I found only but never had a reproducer, I thought it
was one caused a bug in Muhammad's recent pagemap new ioctl work, but it
turns out it's not the cause of that but an userspace bug. However this
seems to still be a real bug even with a very small race window, still
worth to have it fixed and copy stable.
Link: https://lkml.kernel.org/r/20230405155120.3608140-1-peterx@redhat.com
Fixes: e1e267c7928f ("khugepaged: skip collapse if uffd-wp detected")
Signed-off-by: Peter Xu <peterx@redhat.com>
Reviewed-by: David Hildenbrand <david@redhat.com>
Reviewed-by: Yang Shi <shy828301@gmail.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Axel Rasmussen <axelrasmussen@google.com>
Cc: Mike Rapoport <rppt@linux.vnet.ibm.com>
Cc: Nadav Amit <nadav.amit@gmail.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 24bf08c4376be417f16ceb609188b16f461b0443 upstream.
Looks like what we fixed for hugetlb in commit 44f86392bdd1 ("mm/hugetlb:
fix uffd-wp handling for migration entries in
hugetlb_change_protection()") similarly applies to THP.
Setting/clearing uffd-wp on THP migration entries is not implemented
properly. Further, while removing migration PMDs considers the uffd-wp
bit, inserting migration PMDs does not consider the uffd-wp bit.
We have to set/clear independently of the migration entry type in
change_huge_pmd() and properly copy the uffd-wp bit in
set_pmd_migration_entry().
Verified using a simple reproducer that triggers migration of a THP, that
the set_pmd_migration_entry() no longer loses the uffd-wp bit.
Link: https://lkml.kernel.org/r/20230405160236.587705-2-david@redhat.com
Fixes: f45ec5ff16a7 ("userfaultfd: wp: support swap and page migration")
Signed-off-by: David Hildenbrand <david@redhat.com>
Reviewed-by: Peter Xu <peterx@redhat.com>
Cc: <stable@vger.kernel.org>
Cc: Muhammad Usama Anjum <usama.anjum@collabora.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 1ba1199ec5747f475538c0d25a32804e5ba1dfde upstream.
KASAN report null-ptr-deref:
==================================================================
BUG: KASAN: null-ptr-deref in bdi_split_work_to_wbs+0x5c5/0x7b0
Write of size 8 at addr 0000000000000000 by task sync/943
CPU: 5 PID: 943 Comm: sync Tainted: 6.3.0-rc5-next-20230406-dirty #461
Call Trace:
<TASK>
dump_stack_lvl+0x7f/0xc0
print_report+0x2ba/0x340
kasan_report+0xc4/0x120
kasan_check_range+0x1b7/0x2e0
__kasan_check_write+0x24/0x40
bdi_split_work_to_wbs+0x5c5/0x7b0
sync_inodes_sb+0x195/0x630
sync_inodes_one_sb+0x3a/0x50
iterate_supers+0x106/0x1b0
ksys_sync+0x98/0x160
[...]
==================================================================
The race that causes the above issue is as follows:
cpu1 cpu2
-------------------------|-------------------------
inode_switch_wbs
INIT_WORK(&isw->work, inode_switch_wbs_work_fn)
queue_rcu_work(isw_wq, &isw->work)
// queue_work async
inode_switch_wbs_work_fn
wb_put_many(old_wb, nr_switched)
percpu_ref_put_many
ref->data->release(ref)
cgwb_release
queue_work(cgwb_release_wq, &wb->release_work)
// queue_work async
&wb->release_work
cgwb_release_workfn
ksys_sync
iterate_supers
sync_inodes_one_sb
sync_inodes_sb
bdi_split_work_to_wbs
kmalloc(sizeof(*work), GFP_ATOMIC)
// alloc memory failed
percpu_ref_exit
ref->data = NULL
kfree(data)
wb_get(wb)
percpu_ref_get(&wb->refcnt)
percpu_ref_get_many(ref, 1)
atomic_long_add(nr, &ref->data->count)
atomic64_add(i, v)
// trigger null-ptr-deref
bdi_split_work_to_wbs() traverses &bdi->wb_list to split work into all
wbs. If the allocation of new work fails, the on-stack fallback will be
used and the reference count of the current wb is increased afterwards.
If cgroup writeback membership switches occur before getting the reference
count and the current wb is released as old_wd, then calling wb_get() or
wb_put() will trigger the null pointer dereference above.
This issue was introduced in v4.3-rc7 (see fix tag1). Both
sync_inodes_sb() and __writeback_inodes_sb_nr() calls to
bdi_split_work_to_wbs() can trigger this issue. For scenarios called via
sync_inodes_sb(), originally commit 7fc5854f8c6e ("writeback: synchronize
sync(2) against cgroup writeback membership switches") reduced the
possibility of the issue by adding wb_switch_rwsem, but in v5.14-rc1 (see
fix tag2) removed the "inode_io_list_del_locked(inode, old_wb)" from
inode_switch_wbs_work_fn() so that wb->state contains WB_has_dirty_io,
thus old_wb is not skipped when traversing wbs in bdi_split_work_to_wbs(),
and the issue becomes easily reproducible again.
To solve this problem, percpu_ref_exit() is called under RCU protection to
avoid race between cgwb_release_workfn() and bdi_split_work_to_wbs().
Moreover, replace wb_get() with wb_tryget() in bdi_split_work_to_wbs(),
and skip the current wb if wb_tryget() fails because the wb has already
been shutdown.
Link: https://lkml.kernel.org/r/20230410130826.1492525-1-libaokun1@huawei.com
Fixes: b817525a4a80 ("writeback: bdi_writeback iteration must not skip dying ones")
Signed-off-by: Baokun Li <libaokun1@huawei.com>
Reviewed-by: Jan Kara <jack@suse.cz>
Acked-by: Tejun Heo <tj@kernel.org>
Cc: Alexander Viro <viro@zeniv.linux.org.uk>
Cc: Andreas Dilger <adilger.kernel@dilger.ca>
Cc: Christian Brauner <brauner@kernel.org>
Cc: Dennis Zhou <dennis@kernel.org>
Cc: Hou Tao <houtao1@huawei.com>
Cc: yangerkun <yangerkun@huawei.com>
Cc: Zhang Yi <yi.zhang@huawei.com>
Cc: Jens Axboe <axboe@kernel.dk>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 3dd4432549415f3c65dd52d5c687629efbf4ece1 upstream.
Use the maple tree in RCU mode for VMA tracking.
The maple tree tracks the stack and is able to update the pivot
(lower/upper boundary) in-place to allow the page fault handler to write
to the tree while holding just the mmap read lock. This is safe as the
writes to the stack have a guard VMA which ensures there will always be
a NULL in the direction of the growth and thus will only update a pivot.
It is possible, but not recommended, to have VMAs that grow up/down
without guard VMAs. syzbot has constructed a testcase which sets up a
VMA to grow and consume the empty space. Overwriting the entire NULL
entry causes the tree to be altered in a way that is not safe for
concurrent readers; the readers may see a node being rewritten or one
that does not match the maple state they are using.
Enabling RCU mode allows the concurrent readers to see a stable node and
will return the expected result.
Link: https://lkml.kernel.org/r/20230227173632.3292573-9-surenb@google.com
Cc: stable@vger.kernel.org
Fixes: d4af56c5c7c6 ("mm: start tracking VMAs with maple tree")
Signed-off-by: Liam R. Howlett <Liam.Howlett@oracle.com>
Reported-by: syzbot+8d95422d3537159ca390@syzkaller.appspotmail.com
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 7c7b962938ddda6a9cd095de557ee5250706ea88 upstream.
Device exclusive page table entries are used to prevent CPU access to a
page whilst it is being accessed from a device. Typically this is used to
implement atomic operations when the underlying bus does not support
atomic access. When a CPU thread encounters a device exclusive entry it
locks the page and restores the original entry after calling mmu notifiers
to signal drivers that exclusive access is no longer available.
The device exclusive entry holds a reference to the page making it safe to
access the struct page whilst the entry is present. However the fault
handling code does not hold the PTL when taking the page lock. This means
if there are multiple threads faulting concurrently on the device
exclusive entry one will remove the entry whilst others will wait on the
page lock without holding a reference.
This can lead to threads locking or waiting on a folio with a zero
refcount. Whilst mmap_lock prevents the pages getting freed via munmap()
they may still be freed by a migration. This leads to warnings such as
PAGE_FLAGS_CHECK_AT_FREE due to the page being locked when the refcount
drops to zero.
Fix this by trying to take a reference on the folio before locking it.
The code already checks the PTE under the PTL and aborts if the entry is
no longer there. It is also possible the folio has been unmapped, freed
and re-allocated allowing a reference to be taken on an unrelated folio.
This case is also detected by the PTE check and the folio is unlocked
without further changes.
Link: https://lkml.kernel.org/r/20230330012519.804116-1-apopple@nvidia.com
Fixes: b756a3b5e7ea ("mm: device exclusive memory access")
Signed-off-by: Alistair Popple <apopple@nvidia.com>
Reviewed-by: Ralph Campbell <rcampbell@nvidia.com>
Reviewed-by: John Hubbard <jhubbard@nvidia.com>
Acked-by: David Hildenbrand <david@redhat.com>
Cc: Matthew Wilcox (Oracle) <willy@infradead.org>
Cc: Christoph Hellwig <hch@infradead.org>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 60d5b473d61be61ac315e544fcd6a8234a79500e upstream.
This patch fixes an issue that a hugetlb uffd-wr-protected mapping can be
writable even with uffd-wp bit set. It only happens with hugetlb private
mappings, when someone firstly wr-protects a missing pte (which will
install a pte marker), then a write to the same page without any prior
access to the page.
Userfaultfd-wp trap for hugetlb was implemented in hugetlb_fault() before
reaching hugetlb_wp() to avoid taking more locks that userfault won't
need. However there's one CoW optimization path that can trigger
hugetlb_wp() inside hugetlb_no_page(), which will bypass the trap.
This patch skips hugetlb_wp() for CoW and retries the fault if uffd-wp bit
is detected. The new path will only trigger in the CoW optimization path
because generic hugetlb_fault() (e.g. when a present pte was
wr-protected) will resolve the uffd-wp bit already. Also make sure
anonymous UNSHARE won't be affected and can still be resolved, IOW only
skip CoW not CoR.
This patch will be needed for v5.19+ hence copy stable.
[peterx@redhat.com: v2]
Link: https://lkml.kernel.org/r/ZBzOqwF2wrHgBVZb@x1n
[peterx@redhat.com: v3]
Link: https://lkml.kernel.org/r/20230324142620.2344140-1-peterx@redhat.com
Link: https://lkml.kernel.org/r/20230321191840.1897940-1-peterx@redhat.com
Fixes: 166f3ecc0daf ("mm/hugetlb: hook page faults for uffd write protection")
Signed-off-by: Peter Xu <peterx@redhat.com>
Reported-by: Muhammad Usama Anjum <usama.anjum@collabora.com>
Tested-by: Muhammad Usama Anjum <usama.anjum@collabora.com>
Acked-by: David Hildenbrand <david@redhat.com>
Reviewed-by: Mike Kravetz <mike.kravetz@oracle.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Axel Rasmussen <axelrasmussen@google.com>
Cc: Mike Rapoport <rppt@linux.vnet.ibm.com>
Cc: Nadav Amit <nadav.amit@gmail.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 6fe7d6b992113719e96744d974212df3fcddc76c upstream.
The si->lock must be held when deleting the si from the available list.
Otherwise, another thread can re-add the si to the available list, which
can lead to memory corruption. The only place we have found where this
happens is in the swapoff path. This case can be described as below:
core 0 core 1
swapoff
del_from_avail_list(si) waiting
try lock si->lock acquire swap_avail_lock
and re-add si into
swap_avail_head
acquire si->lock but missing si already being added again, and continuing
to clear SWP_WRITEOK, etc.
It can be easily found that a massive warning messages can be triggered
inside get_swap_pages() by some special cases, for example, we call
madvise(MADV_PAGEOUT) on blocks of touched memory concurrently, meanwhile,
run much swapon-swapoff operations (e.g. stress-ng-swap).
However, in the worst case, panic can be caused by the above scene. In
swapoff(), the memory used by si could be kept in swap_info[] after
turning off a swap. This means memory corruption will not be caused
immediately until allocated and reset for a new swap in the swapon path.
A panic message caused: (with CONFIG_PLIST_DEBUG enabled)
------------[ cut here ]------------
top: 00000000e58a3003, n: 0000000013e75cda, p: 000000008cd4451a
prev: 0000000035b1e58a, n: 000000008cd4451a, p: 000000002150ee8d
next: 000000008cd4451a, n: 000000008cd4451a, p: 000000008cd4451a
WARNING: CPU: 21 PID: 1843 at lib/plist.c:60 plist_check_prev_next_node+0x50/0x70
Modules linked in: rfkill(E) crct10dif_ce(E)...
CPU: 21 PID: 1843 Comm: stress-ng Kdump: ... 5.10.134+
Hardware name: Alibaba Cloud ECS, BIOS 0.0.0 02/06/2015
pstate: 60400005 (nZCv daif +PAN -UAO -TCO BTYPE=--)
pc : plist_check_prev_next_node+0x50/0x70
lr : plist_check_prev_next_node+0x50/0x70
sp : ffff0018009d3c30
x29: ffff0018009d3c40 x28: ffff800011b32a98
x27: 0000000000000000 x26: ffff001803908000
x25: ffff8000128ea088 x24: ffff800011b32a48
x23: 0000000000000028 x22: ffff001800875c00
x21: ffff800010f9e520 x20: ffff001800875c00
x19: ffff001800fdc6e0 x18: 0000000000000030
x17: 0000000000000000 x16: 0000000000000000
x15: 0736076307640766 x14: 0730073007380731
x13: 0736076307640766 x12: 0730073007380731
x11: 000000000004058d x10: 0000000085a85b76
x9 : ffff8000101436e4 x8 : ffff800011c8ce08
x7 : 0000000000000000 x6 : 0000000000000001
x5 : ffff0017df9ed338 x4 : 0000000000000001
x3 : ffff8017ce62a000 x2 : ffff0017df9ed340
x1 : 0000000000000000 x0 : 0000000000000000
Call trace:
plist_check_prev_next_node+0x50/0x70
plist_check_head+0x80/0xf0
plist_add+0x28/0x140
add_to_avail_list+0x9c/0xf0
_enable_swap_info+0x78/0xb4
__do_sys_swapon+0x918/0xa10
__arm64_sys_swapon+0x20/0x30
el0_svc_common+0x8c/0x220
do_el0_svc+0x2c/0x90
el0_svc+0x1c/0x30
el0_sync_handler+0xa8/0xb0
el0_sync+0x148/0x180
irq event stamp: 2082270
Now, si->lock locked before calling 'del_from_avail_list()' to make sure
other thread see the si had been deleted and SWP_WRITEOK cleared together,
will not reinsert again.
This problem exists in versions after stable 5.10.y.
Link: https://lkml.kernel.org/r/20230404154716.23058-1-rongwei.wang@linux.alibaba.com
Fixes: a2468cc9bfdff ("swap: choose swap device according to numa node")
Tested-by: Yongchen Yin <wb-yyc939293@alibaba-inc.com>
Signed-off-by: Rongwei Wang <rongwei.wang@linux.alibaba.com>
Cc: Bagas Sanjaya <bagasdotme@gmail.com>
Cc: Matthew Wilcox (Oracle) <willy@infradead.org>
Cc: Aaron Lu <aaron.lu@intel.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 1f2803b2660f4b04d48d065072c0ae0c9ca255fd upstream.
The struct pages could be discontiguous when the kfence pool is allocated
via alloc_contig_pages() with CONFIG_SPARSEMEM and
!CONFIG_SPARSEMEM_VMEMMAP.
This may result in setting PG_slab and memcg_data to a arbitrary
address (may be not used as a struct page), which in the worst case
might corrupt the kernel.
So the iteration should use nth_page().
Link: https://lkml.kernel.org/r/20230323025003.94447-1-songmuchun@bytedance.com
Fixes: 0ce20dd84089 ("mm: add Kernel Electric-Fence infrastructure")
Signed-off-by: Muchun Song <songmuchun@bytedance.com>
Reviewed-by: Marco Elver <elver@google.com>
Reviewed-by: Kefeng Wang <wangkefeng.wang@huawei.com>
Cc: Alexander Potapenko <glider@google.com>
Cc: Dmitry Vyukov <dvyukov@google.com>
Cc: Jann Horn <jannh@google.com>
Cc: SeongJae Park <sjpark@amazon.de>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 3ee2d7471fa4963a2ced0a84f0653ce88b43c5b2 upstream.
It does not reset PG_slab and memcg_data when KFENCE fails to initialize
kfence pool at runtime. It is reporting a "Bad page state" message when
kfence pool is freed to buddy. The checking of whether it is a compound
head page seems unnecessary since we already guarantee this when
allocating kfence pool. Remove the check to simplify the code.
Link: https://lkml.kernel.org/r/20230320030059.20189-1-songmuchun@bytedance.com
Fixes: 0ce20dd84089 ("mm: add Kernel Electric-Fence infrastructure")
Signed-off-by: Muchun Song <songmuchun@bytedance.com>
Cc: Alexander Potapenko <glider@google.com>
Cc: Dmitry Vyukov <dvyukov@google.com>
Cc: Jann Horn <jannh@google.com>
Cc: Marco Elver <elver@google.com>
Cc: Roman Gushchin <roman.gushchin@linux.dev>
Cc: SeongJae Park <sjpark@amazon.de>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 6db504ce55bdbc575723938fc480713c9183f6a2 upstream.
exit_mmap() will tear down the VMAs and maple tree with the mmap_lock held
in write mode. Ensure that the maple tree is still valid by checking
ksm_test_exit() after taking the mmap_lock in read mode, but before the
for_each_vma() iterator dereferences a destroyed maple tree.
Since the maple tree is destroyed, the flags telling lockdep to check an
external lock has been cleared. Skip the for_each_vma() iterator to avoid
dereferencing a maple tree without the external lock flag, which would
create a lockdep warning.
Link: https://lkml.kernel.org/r/20230308220310.3119196-1-Liam.Howlett@oracle.com
Fixes: a5f18ba07276 ("mm/ksm: use vma iterators instead of vma linked list")
Signed-off-by: Liam R. Howlett <Liam.Howlett@oracle.com>
Reported-by: Pengfei Xu <pengfei.xu@intel.com>
Link: https://lore.kernel.org/lkml/ZAdUUhSbaa6fHS36@xpf.sh.intel.com/
Reported-by: syzbot+2ee18845e89ae76342c5@syzkaller.appspotmail.com
Link: https://syzkaller.appspot.com/bug?id=64a3e95957cd3deab99df7cd7b5a9475af92c93e
Acked-by: David Hildenbrand <david@redhat.com>
Cc: Matthew Wilcox (Oracle) <willy@infradead.org>
Cc: <heng.su@intel.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit f446883d12b8bfa486f7c98d403054d61d38c989 upstream.
This reverts commit 487a32ec24be819e747af8c2ab0d5c515508086a.
should_skip_kasan_poison() reads the PG_skip_kasan_poison flag from
page->flags. However, this line of code in free_pages_prepare():
page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
clears most of page->flags, including PG_skip_kasan_poison, before calling
should_skip_kasan_poison(), which meant that it would never return true as
a result of the page flag being set. Therefore, fix the code to call
should_skip_kasan_poison() before clearing the flags, as we were doing
before the reverted patch.
This fixes a measurable performance regression introduced in the reverted
commit, where munmap() takes longer than intended if HW tags KASAN is
supported and enabled at runtime. Without this patch, we see a
single-digit percentage performance regression in a particular
mmap()-heavy benchmark when enabling HW tags KASAN, and with the patch,
there is no statistically significant performance impact when enabling HW
tags KASAN.
Link: https://lkml.kernel.org/r/20230310042914.3805818-2-pcc@google.com
Fixes: 487a32ec24be ("kasan: drop skip_kasan_poison variable in free_pages_prepare")
Link: https://linux-review.googlesource.com/id/Ic4f13affeebd20548758438bb9ed9ca40e312b79
Signed-off-by: Peter Collingbourne <pcc@google.com>
Reviewed-by: Andrey Konovalov <andreyknvl@gmail.com>
Cc: Andrey Ryabinin <ryabinin.a.a@gmail.com>
Cc: Catalin Marinas <catalin.marinas@arm.com> [arm64]
Cc: Evgenii Stepanov <eugenis@google.com>
Cc: Vincenzo Frascino <vincenzo.frascino@arm.com>
Cc: Will Deacon <will@kernel.org>
Cc: <stable@vger.kernel.org> [6.1]
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 2e08ca1802441224f5b7cc6bffbb687f7406de95 upstream.
Nathan reported that when building with GNU as and a version of clang that
defaults to DWARF5:
$ make -skj"$(nproc)" ARCH=riscv CROSS_COMPILE=riscv64-linux-gnu- \
LLVM=1 LLVM_IAS=0 O=build \
mrproper allmodconfig mm/kfence/kfence_test.o
/tmp/kfence_test-08a0a0.s: Assembler messages:
/tmp/kfence_test-08a0a0.s:14627: Error: non-constant .uleb128 is not supported
/tmp/kfence_test-08a0a0.s:14628: Error: non-constant .uleb128 is not supported
/tmp/kfence_test-08a0a0.s:14632: Error: non-constant .uleb128 is not supported
/tmp/kfence_test-08a0a0.s:14633: Error: non-constant .uleb128 is not supported
/tmp/kfence_test-08a0a0.s:14639: Error: non-constant .uleb128 is not supported
...
This is because `-g` defaults to the compiler debug info default. If the
assembler does not support some of the directives used, the above errors
occur. To fix, remove the explicit passing of `-g`.
All the test wants is that stack traces print valid function names, and
debug info is not required for that. (I currently cannot recall why I
added the explicit `-g`.)
Link: https://lkml.kernel.org/r/20230316224705.709984-1-elver@google.com
Fixes: bc8fbc5f305a ("kfence: add test suite")
Signed-off-by: Marco Elver <elver@google.com>
Reported-by: Nathan Chancellor <nathan@kernel.org>
Cc: Alexander Potapenko <glider@google.com>
Cc: Dmitry Vyukov <dvyukov@google.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 1c86a188e03156223a34d09ce290b49bd4dd0403 upstream.
The variable kfence_metadata is initialized in kfence_init_pool(), then,
it is not initialized if kfence is disabled after booting. In this case,
kfence_metadata will be used (e.g. ->lock and ->state fields) without
initialization when reading /sys/kernel/debug/kfence/objects. There will
be a warning if you enable CONFIG_DEBUG_SPINLOCK. Fix it by creating
debugfs files when necessary.
Link: https://lkml.kernel.org/r/20230315034441.44321-1-songmuchun@bytedance.com
Fixes: 0ce20dd84089 ("mm: add Kernel Electric-Fence infrastructure")
Signed-off-by: Muchun Song <songmuchun@bytedance.com>
Tested-by: Marco Elver <elver@google.com>
Reviewed-by: Marco Elver <elver@google.com>
Cc: Alexander Potapenko <glider@google.com>
Cc: Dmitry Vyukov <dvyukov@google.com>
Cc: Jann Horn <jannh@google.com>
Cc: SeongJae Park <sjpark@amazon.de>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 66a1c22b709178e7b823d44465d0c2e5ed7492fb upstream.
sh/migor_defconfig:
mm/slab.c: In function ‘slab_memory_callback’:
mm/slab.c:1127:23: error: implicit declaration of function ‘init_cache_node_node’; did you mean ‘drain_cache_node_node’? [-Werror=implicit-function-declaration]
1127 | ret = init_cache_node_node(nid);
| ^~~~~~~~~~~~~~~~~~~~
| drain_cache_node_node
The #ifdef condition protecting the definition of init_cache_node_node()
no longer matches the conditions protecting the (multiple) users.
Fix this by syncing the conditions.
Fixes: 76af6a054da40553 ("mm/migrate: add CPU hotplug to demotion #ifdef")
Reported-by: Randy Dunlap <rdunlap@infradead.org>
Link: https://lore.kernel.org/r/b5bdea22-ed2f-3187-6efe-0c72330270a4@infradead.org
Signed-off-by: Geert Uytterhoeven <geert+renesas@glider.be>
Reviewed-by: John Paul Adrian Glaubitz <glaubitz@physik.fu-berlin.de>
Acked-by: Randy Dunlap <rdunlap@infradead.org>
Cc: <stable@vger.kernel.org>
Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 63cf584203f3367c8b073d417c8e5cbbfc450506 upstream.
By checking huge_pte_none(), we incorrectly classify PTE markers as
"present". Instead, check huge_pte_none_mostly(), classifying PTE markers
the same as if the PTE were completely blank.
PTE markers, unlike other kinds of swap entries, don't reference any
physical page and don't indicate that a physical page was mapped
previously. As such, treat them as non-present for the sake of mincore().
Link: https://lkml.kernel.org/r/20230302222404.175303-1-jthoughton@google.com
Fixes: 5c041f5d1f23 ("mm: teach core mm about pte markers")
Signed-off-by: James Houghton <jthoughton@google.com>
Acked-by: Peter Xu <peterx@redhat.com>
Acked-by: David Hildenbrand <david@redhat.com>
Cc: Axel Rasmussen <axelrasmussen@google.com>
Cc: James Houghton <jthoughton@google.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 93419139fa14124c1c507d804f2b28866ebee28d upstream.
In find_create_memory_tier(), if failed to register device, then we should
release new_memtier from the tier list and put device instead of memtier.
Link: https://lkml.kernel.org/r/20230129040651.1329208-1-tongtiangen@huawei.com
Fixes: 9832fb87834e ("mm/demotion: expose memory tier details via sysfs")
Signed-off-by: Tong Tiangen <tongtiangen@huawei.com>
Cc: Aneesh Kumar K.V <aneesh.kumar@linux.ibm.com>
Cc: Hanjun Guo <guohanjun@huawei.com>
Cc: Kefeng Wang <wangkefeng.wang@huawei.com>
Cc: Guohanjun <guohanjun@huawei.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 81e506bec9be1eceaf5a2c654e28ba5176ef48d8 upstream.
Kernel build regression with LLVM was reported here:
https://lore.kernel.org/all/Y1GCYXGtEVZbcv%2F5@dev-arch.thelio-3990X/ with
commit f35b5d7d676e ("mm: align larger anonymous mappings on THP
boundaries"). And the commit f35b5d7d676e was reverted.
It turned out the regression is related with madvise(MADV_DONTNEED)
was used by ld.lld. But with none PMD_SIZE aligned parameter len.
trace-bpfcc captured:
531607 531732 ld.lld do_madvise.part.0 start: 0x7feca9000000, len: 0x7fb000, behavior: 0x4
531607 531793 ld.lld do_madvise.part.0 start: 0x7fec86a00000, len: 0x7fb000, behavior: 0x4
If the underneath physical page is THP, the madvise(MADV_DONTNEED) can
trigger split_queue_lock contention raised significantly. perf showed
following data:
14.85% 0.00% ld.lld [kernel.kallsyms] [k]
entry_SYSCALL_64_after_hwframe
11.52%
entry_SYSCALL_64_after_hwframe
do_syscall_64
__x64_sys_madvise
do_madvise.part.0
zap_page_range
unmap_single_vma
unmap_page_range
page_remove_rmap
deferred_split_huge_page
__lock_text_start
native_queued_spin_lock_slowpath
If THP can't be removed from rmap as whole THP, partial THP will be
removed from rmap by removing sub-pages from rmap. Even the THP head page
is added to deferred queue already, the split_queue_lock will be acquired
and check whether the THP head page is in the queue already. Thus, the
contention of split_queue_lock is raised.
Before acquire split_queue_lock, check and bail out early if the THP
head page is in the queue already. The checking without holding
split_queue_lock could race with deferred_split_scan, but it doesn't
impact the correctness here.
Test result of building kernel with ld.lld:
commit 7b5a0b664ebe (parent commit of f35b5d7d676e):
time -f "\t%E real,\t%U user,\t%S sys" make LD=ld.lld -skj96 allmodconfig all
6:07.99 real, 26367.77 user, 5063.35 sys
commit f35b5d7d676e:
time -f "\t%E real,\t%U user,\t%S sys" make LD=ld.lld -skj96 allmodconfig all
7:22.15 real, 26235.03 user, 12504.55 sys
commit f35b5d7d676e with the fixing patch:
time -f "\t%E real,\t%U user,\t%S sys" make LD=ld.lld -skj96 allmodconfig all
6:08.49 real, 26520.15 user, 5047.91 sys
Link: https://lkml.kernel.org/r/20221223135207.2275317-1-fengwei.yin@intel.com
Signed-off-by: Yin Fengwei <fengwei.yin@intel.com>
Tested-by: Nathan Chancellor <nathan@kernel.org>
Acked-by: David Rientjes <rientjes@google.com>
Reviewed-by: "Huang, Ying" <ying.huang@intel.com>
Cc: Feng Tang <feng.tang@intel.com>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Rik van Riel <riel@surriel.com>
Cc: Xing Zhengjun <zhengjun.xing@linux.intel.com>
Cc: Yang Shi <shy828301@gmail.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit da34a8484d162585e22ed8c1e4114aa2f60e3567 upstream.
Charge moving mode in cgroup1 allows memory to follow tasks as they
migrate between cgroups. This is, and always has been, a questionable
thing to do - for several reasons.
First, it's expensive. Pages need to be identified, locked and isolated
from various MM operations, and reassigned, one by one.
Second, it's unreliable. Once pages are charged to a cgroup, there isn't
always a clear owner task anymore. Cache isn't moved at all, for example.
Mapped memory is moved - but if trylocking or isolating a page fails,
it's arbitrarily left behind. Frequent moving between domains may leave a
task's memory scattered all over the place.
Third, it isn't really needed. Launcher tasks can kick off workload tasks
directly in their target cgroup. Using dedicated per-workload groups
allows fine-grained policy adjustments - no need to move tasks and their
physical pages between control domains. The feature was never
forward-ported to cgroup2, and it hasn't been missed.
Despite it being a niche usecase, the maintenance overhead of supporting
it is enormous. Because pages are moved while they are live and subject
to various MM operations, the synchronization rules are complicated.
There are lock_page_memcg() in MM and FS code, which non-cgroup people
don't understand. In some cases we've been able to shift code and cgroup
API calls around such that we can rely on native locking as much as
possible. But that's fragile, and sometimes we need to hold MM locks for
longer than we otherwise would (pte lock e.g.).
Mark the feature deprecated. Hopefully we can remove it soon.
And backport into -stable kernels so that people who develop against
earlier kernels are warned about this deprecation as early as possible.
[akpm@linux-foundation.org: fix memory.rst underlining]
Link: https://lkml.kernel.org/r/Y5COd+qXwk/S+n8N@cmpxchg.org
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Shakeel Butt <shakeelb@google.com>
Acked-by: Hugh Dickins <hughd@google.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Muchun Song <songmuchun@bytedance.com>
Cc: Roman Gushchin <roman.gushchin@linux.dev>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 6da6b1d4a7df8c35770186b53ef65d388398e139 upstream.
After a memory error happens on a clean folio, a process unexpectedly
receives SIGBUS when it accesses the error page. This SIGBUS killing is
pointless and simply degrades the level of RAS of the system, because the
clean folio can be dropped without any data lost on memory error handling
as we do for a clean pagecache.
When memory_failure() is called on a clean folio, try_to_unmap() is called
twice (one from split_huge_page() and one from hwpoison_user_mappings()).
The root cause of the issue is that pte conversion to hwpoisoned entry is
now done in the first call of try_to_unmap() because PageHWPoison is
already set at this point, while it's actually expected to be done in the
second call. This behavior disturbs the error handling operation like
removing pagecache, which results in the malfunction described above.
So convert TTU_IGNORE_HWPOISON into TTU_HWPOISON and set TTU_HWPOISON only
when we really intend to convert pte to hwpoison entry. This can prevent
other callers of try_to_unmap() from accidentally converting to hwpoison
entries.
Link: https://lkml.kernel.org/r/20230221085905.1465385-1-naoya.horiguchi@linux.dev
Fixes: a42634a6c07d ("readahead: Use a folio in read_pages()")
Signed-off-by: Naoya Horiguchi <naoya.horiguchi@nec.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Miaohe Lin <linmiaohe@huawei.com>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 3f98c9a62c338bbe06a215c9491e6166ea39bf82 upstream.
damon_get_folio() would always increase folio _refcount and
folio_isolate_lru() would increase folio _refcount if the folio's lru flag
is set.
If an unevictable folio isolated successfully, there will be two more
_refcount. The one from folio_isolate_lru() will be decreased in
folio_puback_lru(), but the other one from damon_get_folio() will be left
behind. This causes a pin page.
Whatever the case, the _refcount from damon_get_folio() should be
decreased.
Link: https://lkml.kernel.org/r/20230222064223.6735-1-andrew.yang@mediatek.com
Fixes: 57223ac29584 ("mm/damon/paddr: support the pageout scheme")
Signed-off-by: andrew.yang <andrew.yang@mediatek.com>
Reviewed-by: SeongJae Park <sj@kernel.org>
Cc: <stable@vger.kernel.org> [5.16.x]
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: SeongJae Park <sj@kernel.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit aa1e6a932ca652a50a5df458399724a80459f521 upstream.
If we call folio_isolate_lru() successfully, we will get return value 0.
We need to add this folio to the movable_pages_list.
Link: https://lkml.kernel.org/r/20230131063206.28820-1-Kuan-Ying.Lee@mediatek.com
Fixes: 67e139b02d99 ("mm/gup.c: refactor check_and_migrate_movable_pages()")
Signed-off-by: Kuan-Ying Lee <Kuan-Ying.Lee@mediatek.com>
Reviewed-by: Alistair Popple <apopple@nvidia.com>
Acked-by: David Hildenbrand <david@redhat.com>
Reviewed-by: Baolin Wang <baolin.wang@linux.alibaba.com>
Cc: Andrew Yang <andrew.yang@mediatek.com>
Cc: Chinwen Chang <chinwen.chang@mediatek.com>
Cc: John Hubbard <jhubbard@nvidia.com>
Cc: Matthias Brugger <matthias.bgg@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 647037adcad00f2bab8828d3d41cd0553d41f3bd upstream.
This reverts commit 115d9d77bb0f9152c60b6e8646369fa7f6167593.
The pages being freed by memblock_free_late() have already been
initialized, but if they are in the deferred init range,
__free_one_page() might access nearby uninitialized pages when trying to
coalesce buddies. This can, for example, trigger this BUG:
BUG: unable to handle page fault for address: ffffe964c02580c8
RIP: 0010:__list_del_entry_valid+0x3f/0x70
<TASK>
__free_one_page+0x139/0x410
__free_pages_ok+0x21d/0x450
memblock_free_late+0x8c/0xb9
efi_free_boot_services+0x16b/0x25c
efi_enter_virtual_mode+0x403/0x446
start_kernel+0x678/0x714
secondary_startup_64_no_verify+0xd2/0xdb
</TASK>
A proper fix will be more involved so revert this change for the time
being.
Fixes: 115d9d77bb0f ("mm: Always release pages to the buddy allocator in memblock_free_late().")
Signed-off-by: Aaron Thompson <dev@aaront.org>
Link: https://lore.kernel.org/r/20230207082151.1303-1-dev@aaront.org
Signed-off-by: Mike Rapoport (IBM) <rppt@kernel.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 96a9c287e25d690fd9623b5133703b8e310fbed1 upstream.
Nick Bowler reported another sparc64 breakage after the young/dirty
persistent work for page migration (per "Link:" below). That's after a
similar report [2].
It turns out page migration was overlooked, and it wasn't failing before
because page migration was not enabled in the initial report test
environment.
David proposed another way [2] to fix this from sparc64 side, but that
patch didn't land somehow. Neither did I check whether there's any other
arch that has similar issues.
Let's fix it for now as simple as moving the write bit handling to be
after dirty, like what we did before.
Note: this is based on mm-unstable, because the breakage was since 6.1 and
we're at a very late stage of 6.2 (-rc8), so I assume for this specific
case we should target this at 6.3.
[1] https://lore.kernel.org/all/20221021160603.GA23307@u164.east.ru/
[2] https://lore.kernel.org/all/20221212130213.136267-1-david@redhat.com/
Link: https://lkml.kernel.org/r/20230216153059.256739-1-peterx@redhat.com
Fixes: 2e3468778dbe ("mm: remember young/dirty bit for page migrations")
Link: https://lore.kernel.org/all/CADyTPExpEqaJiMGoV+Z6xVgL50ZoMJg49B10LcZ=8eg19u34BA@mail.gmail.com/
Signed-off-by: Peter Xu <peterx@redhat.com>
Reported-by: Nick Bowler <nbowler@draconx.ca>
Acked-by: David Hildenbrand <david@redhat.com>
Tested-by: Nick Bowler <nbowler@draconx.ca>
Cc: <regressions@lists.linux.dev>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 5956592ce337330cdff0399a6f8b6a5aea397a8e upstream.
I was running traces of the read code against an RAID storage system to
understand why read requests were being misaligned against the underlying
RAID strips. I found that the page end offset calculation in
filemap_get_read_batch() was off by one.
When a read is submitted with end offset 1048575, then it calculates the
end page for read of 256 when it should be 255. "last_index" is the index
of the page beyond the end of the read and it should be skipped when get a
batch of pages for read in @filemap_get_read_batch().
The below simple patch fixes the problem. This code was introduced in
kernel 5.12.
Link: https://lkml.kernel.org/r/20230208022400.28962-1-coolqyj@163.com
Fixes: cbd59c48ae2b ("mm/filemap: use head pages in generic_file_buffered_read")
Signed-off-by: Qian Yingjin <qian@ddn.com>
Reviewed-by: Matthew Wilcox (Oracle) <willy@infradead.org>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit ae63c898f4004bbc7d212f4adcb3bb14852c30d6 upstream.
During collapse, in a few places we check to see if a given small page has
any unaccounted references. If the refcount on the page doesn't match our
expectations, it must be there is an unknown user concurrently interested
in the page, and so it's not safe to move the contents elsewhere.
However, the unaccounted pins are likely an ephemeral state.
In this situation, MADV_COLLAPSE returns -EINVAL when it should return
-EAGAIN. This could cause userspace to conclude that the syscall
failed, when it in fact could succeed by retrying.
Link: https://lkml.kernel.org/r/20230125015738.912924-1-zokeefe@google.com
Fixes: 7d8faaf15545 ("mm/madvise: introduce MADV_COLLAPSE sync hugepage collapse")
Signed-off-by: Zach O'Keefe <zokeefe@google.com>
Reported-by: Hugh Dickins <hughd@google.com>
Acked-by: Hugh Dickins <hughd@google.com>
Reviewed-by: Yang Shi <shy828301@gmail.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit badc28d4924bfed73efc93f716a0c3aa3afbdf6f upstream.
The debugfs_remove_recursive() is invoked by unregister_shrinker(), which
is holding the write lock of shrinker_rwsem. It will waits for the
handler of debugfs file complete. The handler also needs to hold the read
lock of shrinker_rwsem to do something. So it may cause the following
deadlock:
CPU0 CPU1
debugfs_file_get()
shrinker_debugfs_count_show()/shrinker_debugfs_scan_write()
unregister_shrinker()
--> down_write(&shrinker_rwsem);
debugfs_remove_recursive()
// wait for (A)
--> wait_for_completion();
// wait for (B)
--> down_read_killable(&shrinker_rwsem)
debugfs_file_put() -- (A)
up_write() -- (B)
The down_read_killable() can be killed, so that the above deadlock can be
recovered. But it still requires an extra kill action, otherwise it will
block all subsequent shrinker-related operations, so it's better to fix
it.
[akpm@linux-foundation.org: fix CONFIG_SHRINKER_DEBUG=n stub]
Link: https://lkml.kernel.org/r/20230202105612.64641-1-zhengqi.arch@bytedance.com
Fixes: 5035ebc644ae ("mm: shrinkers: introduce debugfs interface for memory shrinkers")
Signed-off-by: Qi Zheng <zhengqi.arch@bytedance.com>
Reviewed-by: Roman Gushchin <roman.gushchin@linux.dev>
Cc: Kent Overstreet <kent.overstreet@gmail.com>
Cc: Muchun Song <songmuchun@bytedance.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 462a8e08e0e6287e5ce13187257edbf24213ed03 upstream.
When we upgraded our kernel, we started seeing some page corruption like
the following consistently:
BUG: Bad page state in process ganesha.nfsd pfn:1304ca
page:0000000022261c55 refcount:0 mapcount:-128 mapping:0000000000000000 index:0x0 pfn:0x1304ca
flags: 0x17ffffc0000000()
raw: 0017ffffc0000000 ffff8a513ffd4c98 ffffeee24b35ec08 0000000000000000
raw: 0000000000000000 0000000000000001 00000000ffffff7f 0000000000000000
page dumped because: nonzero mapcount
CPU: 0 PID: 15567 Comm: ganesha.nfsd Kdump: loaded Tainted: P B O 5.10.158-1.nutanix.20221209.el7.x86_64 #1
Hardware name: VMware, Inc. VMware Virtual Platform/440BX Desktop Reference Platform, BIOS 6.00 04/05/2016
Call Trace:
dump_stack+0x74/0x96
bad_page.cold+0x63/0x94
check_new_page_bad+0x6d/0x80
rmqueue+0x46e/0x970
get_page_from_freelist+0xcb/0x3f0
? _cond_resched+0x19/0x40
__alloc_pages_nodemask+0x164/0x300
alloc_pages_current+0x87/0xf0
skb_page_frag_refill+0x84/0x110
...
Sometimes, it would also show up as corruption in the free list pointer
and cause crashes.
After bisecting the issue, we found the issue started from commit
e320d3012d25 ("mm/page_alloc.c: fix freeing non-compound pages"):
if (put_page_testzero(page))
free_the_page(page, order);
else if (!PageHead(page))
while (order-- > 0)
free_the_page(page + (1 << order), order);
So the problem is the check PageHead is racy because at this point we
already dropped our reference to the page. So even if we came in with
compound page, the page can already be freed and PageHead can return
false and we will end up freeing all the tail pages causing double free.
Fixes: e320d3012d25 ("mm/page_alloc.c: fix freeing non-compound pages")
Link: https://lore.kernel.org/lkml/BYAPR02MB448855960A9656EEA81141FC94D99@BYAPR02MB4488.namprd02.prod.outlook.com/
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: stable@vger.kernel.org
Signed-off-by: Chunwei Chen <david.chen@nutanix.com>
Reviewed-by: Vlastimil Babka <vbabka@suse.cz>
Reviewed-by: Matthew Wilcox (Oracle) <willy@infradead.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 73bdf65ea74857d7fb2ec3067a3cec0e261b1462 upstream.
migrate_pages/mempolicy semantics state that CAP_SYS_NICE is required to
move pages shared with another process to a different node. page_mapcount
> 1 is being used to determine if a hugetlb page is shared. However, a
hugetlb page will have a mapcount of 1 if mapped by multiple processes via
a shared PMD. As a result, hugetlb pages shared by multiple processes and
mapped with a shared PMD can be moved by a process without CAP_SYS_NICE.
To fix, check for a shared PMD if mapcount is 1. If a shared PMD is found
consider the page shared.
Link: https://lkml.kernel.org/r/20230126222721.222195-3-mike.kravetz@oracle.com
Fixes: e2d8cf405525 ("migrate: add hugepage migration code to migrate_pages()")
Signed-off-by: Mike Kravetz <mike.kravetz@oracle.com>
Acked-by: Peter Xu <peterx@redhat.com>
Acked-by: David Hildenbrand <david@redhat.com>
Cc: James Houghton <jthoughton@google.com>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Muchun Song <songmuchun@bytedance.com>
Cc: Naoya Horiguchi <naoya.horiguchi@linux.dev>
Cc: Vishal Moola (Oracle) <vishal.moola@gmail.com>
Cc: Yang Shi <shy828301@gmail.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit edb5d0cf5525357652aff6eacd9850b8ced07143 upstream.
In commit 34488399fa08 ("mm/madvise: add file and shmem support to
MADV_COLLAPSE") we make the following change to find_pmd_or_thp_or_none():
- if (!pmd_present(pmde))
- return SCAN_PMD_NULL;
+ if (pmd_none(pmde))
+ return SCAN_PMD_NONE;
This was for-use by MADV_COLLAPSE file/shmem codepaths, where
MADV_COLLAPSE might identify a pte-mapped hugepage, only to have
khugepaged race-in, free the pte table, and clear the pmd. Such codepaths
include:
A) If we find a suitably-aligned compound page of order HPAGE_PMD_ORDER
already in the pagecache.
B) In retract_page_tables(), if we fail to grab mmap_lock for the target
mm/address.
In these cases, collapse_pte_mapped_thp() really does expect a none (not
just !present) pmd, and we want to suitably identify that case separate
from the case where no pmd is found, or it's a bad-pmd (of course, many
things could happen once we drop mmap_lock, and the pmd could plausibly
undergo multiple transitions due to intervening fault, split, etc).
Regardless, the code is prepared install a huge-pmd only when the existing
pmd entry is either a genuine pte-table-mapping-pmd, or the none-pmd.
However, the commit introduces a logical hole; namely, that we've allowed
!none- && !huge- && !bad-pmds to be classified as genuine
pte-table-mapping-pmds. One such example that could leak through are swap
entries. The pmd values aren't checked again before use in
pte_offset_map_lock(), which is expecting nothing less than a genuine
pte-table-mapping-pmd.
We want to put back the !pmd_present() check (below the pmd_none() check),
but need to be careful to deal with subtleties in pmd transitions and
treatments by various arch.
The issue is that __split_huge_pmd_locked() temporarily clears the present
bit (or otherwise marks the entry as invalid), but pmd_present() and
pmd_trans_huge() still need to return true while the pmd is in this
transitory state. For example, x86's pmd_present() also checks the
_PAGE_PSE , riscv's version also checks the _PAGE_LEAF bit, and arm64 also
checks a PMD_PRESENT_INVALID bit.
Covering all 4 cases for x86 (all checks done on the same pmd value):
1) pmd_present() && pmd_trans_huge()
All we actually know here is that the PSE bit is set. Either:
a) We aren't racing with __split_huge_page(), and PRESENT or PROTNONE
is set.
=> huge-pmd
b) We are currently racing with __split_huge_page(). The danger here
is that we proceed as-if we have a huge-pmd, but really we are
looking at a pte-mapping-pmd. So, what is the risk of this
danger?
The only relevant path is:
madvise_collapse() -> collapse_pte_mapped_thp()
Where we might just incorrectly report back "success", when really
the memory isn't pmd-backed. This is fine, since split could
happen immediately after (actually) successful madvise_collapse().
So, it should be safe to just assume huge-pmd here.
2) pmd_present() && !pmd_trans_huge()
Either:
a) PSE not set and either PRESENT or PROTNONE is.
=> pte-table-mapping pmd (or PROT_NONE)
b) devmap. This routine can be called immediately after
unlocking/locking mmap_lock -- or called with no locks held (see
khugepaged_scan_mm_slot()), so previous VMA checks have since been
invalidated.
3) !pmd_present() && pmd_trans_huge()
Not possible.
4) !pmd_present() && !pmd_trans_huge()
Neither PRESENT nor PROTNONE set
=> not present
I've checked all archs that implement pmd_trans_huge() (arm64, riscv,
powerpc, longarch, x86, mips, s390) and this logic roughly translates
(though devmap treatment is unique to x86 and powerpc, and (3) doesn't
necessarily hold in general -- but that doesn't matter since
!pmd_present() always takes failure path).
Also, add a comment above find_pmd_or_thp_or_none() to help future
travelers reason about the validity of the code; namely, the possible
mutations that might happen out from under us, depending on how mmap_lock
is held (if at all).
Link: https://lkml.kernel.org/r/20230125225358.2576151-1-zokeefe@google.com
Fixes: 34488399fa08 ("mm/madvise: add file and shmem support to MADV_COLLAPSE")
Signed-off-by: Zach O'Keefe <zokeefe@google.com>
Reported-by: Hugh Dickins <hughd@google.com>
Reviewed-by: Yang Shi <shy828301@gmail.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit d014cd7c1c358edc3ea82ebf327a036a42ed0164 upstream.
Fabian has reported another regression in 6.1 due to ca3d76b0aa80 ("mm:
add merging after mremap resize"). The problem is that vma_merge() can
fail when vma has a vm_ops->close() method, causing is_mergeable_vma()
test to be negative. This was happening for vma mapping a file from
fuse-overlayfs, which does have the method. But when we are simply
expanding the vma, we never remove it due to the "merge" with the added
area, so the test should not prevent the expansion.
As a quick fix, check for such vmas and expand them using vma_adjust()
directly as was done before commit ca3d76b0aa80. For a more robust long
term solution we should try to limit the check for vma_ops->close only to
cases that actually result in vma removal, so that no merge would be
prevented unnecessarily.
[akpm@linux-foundation.org: fix indenting whitespace, reflow comment]
Link: https://lkml.kernel.org/r/20230117101939.9753-1-vbabka@suse.cz
Fixes: ca3d76b0aa80 ("mm: add merging after mremap resize")
Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
Reported-by: Fabian Vogt <fvogt@suse.com>
Link: https://bugzilla.suse.com/show_bug.cgi?id=1206359#c35
Tested-by: Fabian Vogt <fvogt@suse.com>
Cc: Jakub Matěna <matenajakub@gmail.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 023f47a8250c6bdb4aebe744db4bf7f73414028b upstream.
If an ->anon_vma is attached to the VMA, collapse_and_free_pmd() requires
it to be locked.
Page table traversal is allowed under any one of the mmap lock, the
anon_vma lock (if the VMA is associated with an anon_vma), and the
mapping lock (if the VMA is associated with a mapping); and so to be
able to remove page tables, we must hold all three of them.
retract_page_tables() bails out if an ->anon_vma is attached, but does
this check before holding the mmap lock (as the comment above the check
explains).
If we racily merged an existing ->anon_vma (shared with a child
process) from a neighboring VMA, subsequent rmap traversals on pages
belonging to the child will be able to see the page tables that we are
concurrently removing while assuming that nothing else can access them.
Repeat the ->anon_vma check once we hold the mmap lock to ensure that
there really is no concurrent page table access.
Hitting this bug causes a lockdep warning in collapse_and_free_pmd(),
in the line "lockdep_assert_held_write(&vma->anon_vma->root->rwsem)".
It can also lead to use-after-free access.
Link: https://lore.kernel.org/linux-mm/CAG48ez3434wZBKFFbdx4M9j6eUwSUVPd4dxhzW_k_POneSDF+A@mail.gmail.com/
Link: https://lkml.kernel.org/r/20230111133351.807024-1-jannh@google.com
Fixes: f3f0e1d2150b ("khugepaged: add support of collapse for tmpfs/shmem pages")
Signed-off-by: Jann Horn <jannh@google.com>
Reported-by: Zach O'Keefe <zokeefe@google.com>
Acked-by: Kirill A. Shutemov <kirill.shutemov@intel.linux.com>
Reviewed-by: Yang Shi <shy828301@gmail.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 7717fc1a12f88701573f9ed897cc4f6699c661e3 upstream.
The softlockup still occurs in get_swap_pages() under memory pressure. 64
CPU cores, 64GB memory, and 28 zram devices, the disksize of each zram
device is 50MB with same priority as si. Use the stress-ng tool to
increase memory pressure, causing the system to oom frequently.
The plist_for_each_entry_safe() loops in get_swap_pages() could reach tens
of thousands of times to find available space (extreme case:
cond_resched() is not called in scan_swap_map_slots()). Let's add
cond_resched() into get_swap_pages() when failed to find available space
to avoid softlockup.
Link: https://lkml.kernel.org/r/20230128094757.1060525-1-xialonglong1@huawei.com
Signed-off-by: Longlong Xia <xialonglong1@huawei.com>
Reviewed-by: "Huang, Ying" <ying.huang@intel.com>
Cc: Chen Wandun <chenwandun@huawei.com>
Cc: Huang Ying <ying.huang@intel.com>
Cc: Kefeng Wang <wangkefeng.wang@huawei.com>
Cc: Nanyong Sun <sunnanyong@huawei.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 49d6d7fb631345b0f2957a7c4be24ad63903150f upstream.
Patch series "mm: Fixes on pte markers".
Patch 1 resolves the syzkiller report from Pengfei.
Patch 2 further harden pte markers when used with the recent swapin error
markers. The major case is we should persist a swapin error marker after
fork(), so child shouldn't read a corrupted page.
This patch (of 2):
When fork(), dst_vma is not guaranteed to have VM_UFFD_WP even if src may
have it and has pte marker installed. The warning is improper along with
the comment. The right thing is to inherit the pte marker when needed, or
keep the dst pte empty.
A vague guess is this happened by an accident when there's the prior patch
to introduce src/dst vma into this helper during the uffd-wp feature got
developed and I probably messed up in the rebase, since if we replace
dst_vma with src_vma the warning & comment it all makes sense too.
Hugetlb did exactly the right here (copy_hugetlb_page_range()). Fix the
general path.
Reproducer:
https://github.com/xupengfe/syzkaller_logs/blob/main/221208_115556_copy_page_range/repro.c
Bugzilla report: https://bugzilla.kernel.org/show_bug.cgi?id=216808
Link: https://lkml.kernel.org/r/20221214200453.1772655-1-peterx@redhat.com
Link: https://lkml.kernel.org/r/20221214200453.1772655-2-peterx@redhat.com
Fixes: c56d1b62cce8 ("mm/shmem: handle uffd-wp during fork()")
Signed-off-by: Peter Xu <peterx@redhat.com>
Reported-by: Pengfei Xu <pengfei.xu@intel.com>
Acked-by: David Hildenbrand <david@redhat.com>
Reviewed-by: Miaohe Lin <linmiaohe@huawei.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: "Huang, Ying" <ying.huang@intel.com>
Cc: Nadav Amit <nadav.amit@gmail.com>
Cc: <stable@vger.kernel.org> # 5.19+
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
[ Upstream commit de4eda9de2d957ef2d6a8365a01e26a435e958cb ]
READ/WRITE proved to be actively confusing - the meanings are
"data destination, as used with read(2)" and "data source, as
used with write(2)", but people keep interpreting those as
"we read data from it" and "we write data to it", i.e. exactly
the wrong way.
Call them ITER_DEST and ITER_SOURCE - at least that is harder
to misinterpret...
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
Stable-dep-of: 6dd88fd59da8 ("vhost-scsi: unbreak any layout for response")
Signed-off-by: Sasha Levin <sashal@kernel.org>
commit 95e7a450b8190673675836bfef236262ceff084a upstream.
This reverts commit 7efc3b7261030da79001c00d92bc3392fd6c664c.
We have got openSUSE reports (Link 1) for 6.1 kernel with khugepaged
stalling CPU for long periods of time. Investigation of tracepoint data
shows that compaction is stuck in repeating fast_find_migrateblock()
based migrate page isolation, and then fails to migrate all isolated
pages.
Commit 7efc3b726103 ("mm/compaction: fix set skip in fast_find_migrateblock")
was suspected as it was merged in 6.1 and in theory can indeed remove a
termination condition for fast_find_migrateblock() under certain
conditions, as it removes a place that always marks a scanned pageblock
from being re-scanned. There are other such places, but those can be
skipped under certain conditions, which seems to match the tracepoint
data.
Testing of revert also appears to have resolved the issue, thus revert
the commit until a more robust solution for the original problem is
developed.
It's also likely this will fix qemu stalls with 6.1 kernel reported in
Link 2, but that is not yet confirmed.
Link: https://bugzilla.suse.com/show_bug.cgi?id=1206848
Link: https://lore.kernel.org/kvm/b8017e09-f336-3035-8344-c549086c2340@kernel.org/
Link: https://lore.kernel.org/lkml/20230125134434.18017-1-mgorman@techsingularity.net/
Fixes: 7efc3b726103 ("mm/compaction: fix set skip in fast_find_migrateblock")
Cc: <stable@vger.kernel.org>
Tested-by: Pedro Falcato <pedro.falcato@gmail.com>
Acked-by: Mel Gorman <mgorman@techsingularity.net>
Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 79cc1ba7badf9e7a12af99695a557e9ce27ee967 upstream.
Several run-time checkers (KASAN, UBSAN, KFENCE, KCSAN, sched) roll
their own warnings, and each check "panic_on_warn". Consolidate this
into a single function so that future instrumentation can be added in
a single location.
Cc: Marco Elver <elver@google.com>
Cc: Dmitry Vyukov <dvyukov@google.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Juri Lelli <juri.lelli@redhat.com>
Cc: Vincent Guittot <vincent.guittot@linaro.org>
Cc: Dietmar Eggemann <dietmar.eggemann@arm.com>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Ben Segall <bsegall@google.com>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Daniel Bristot de Oliveira <bristot@redhat.com>
Cc: Valentin Schneider <vschneid@redhat.com>
Cc: Andrey Ryabinin <ryabinin.a.a@gmail.com>
Cc: Alexander Potapenko <glider@google.com>
Cc: Andrey Konovalov <andreyknvl@gmail.com>
Cc: Vincenzo Frascino <vincenzo.frascino@arm.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: David Gow <davidgow@google.com>
Cc: tangmeng <tangmeng@uniontech.com>
Cc: Jann Horn <jannh@google.com>
Cc: Shuah Khan <skhan@linuxfoundation.org>
Cc: Petr Mladek <pmladek@suse.com>
Cc: "Paul E. McKenney" <paulmck@kernel.org>
Cc: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
Cc: "Guilherme G. Piccoli" <gpiccoli@igalia.com>
Cc: Tiezhu Yang <yangtiezhu@loongson.cn>
Cc: kasan-dev@googlegroups.com
Cc: linux-mm@kvack.org
Reviewed-by: Luis Chamberlain <mcgrof@kernel.org>
Signed-off-by: Kees Cook <keescook@chromium.org>
Reviewed-by: Marco Elver <elver@google.com>
Reviewed-by: Andrey Konovalov <andreyknvl@gmail.com>
Link: https://lore.kernel.org/r/20221117234328.594699-4-keescook@chromium.org
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 52dc031088f00e323140ece4004e70c33153c6dd upstream.
MADV_COLLAPSE acts on one hugepage-aligned/sized region at a time, until
it has collapsed all eligible memory contained within the bounds supplied
by the user.
At the top of each hugepage iteration we (re)lock mmap_lock and
(re)validate the VMA for eligibility and update variables that might have
changed while mmap_lock was dropped. One thing that might occur is that
the VMA could be resized, and as such, we refetch vma->vm_end to make sure
we don't collapse past the end of the VMA's new end.
However, it's possible that when refetching vma->vm_end that we expand the
region acted on by MADV_COLLAPSE if vma->vm_end is greater than size+len
supplied by the user.
The consequence here is that we may attempt to collapse more memory than
requested, possibly yielding either "too much success" or "false failure"
user-visible results. An example of the former is if we MADV_COLLAPSE the
first 4MiB of a 2TiB mmap()'d file, the incorrect refetch would cause the
operation to block for much longer than anticipated as we attempt to
collapse the entire TiB region. An example of the latter is that applying
MADV_COLLPSE to a 4MiB file mapped to the start of a 6MiB VMA will
successfully collapse the first 4MiB, then incorrectly attempt to collapse
the last hugepage-aligned/sized region -- fail (since readahead/page cache
lookup will fail) -- and report a failure to the user.
I don't believe there is a kernel stability concern here as we always
(re)validate the VMA / region accordingly. Also as Hugh mentions, the
user-visible effects are: we try to collapse more memory than requested
by the user, and/or failing an operation that should have otherwise
succeeded. An example is trying to collapse a 4MiB file contained
within a 12MiB VMA.
Don't expand the acted-on region when refetching vma->vm_end.
Link: https://lkml.kernel.org/r/20221224082035.3197140-1-zokeefe@google.com
Fixes: 4d24de9425f7 ("mm: MADV_COLLAPSE: refetch vm_end after reacquiring mmap_lock")
Signed-off-by: Zach O'Keefe <zokeefe@google.com>
Reported-by: Hugh Dickins <hughd@google.com>
Cc: Yang Shi <shy828301@gmail.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 51d3d5eb74ff53b92dcff48b30ae2ed8edd85a32 upstream.
Currently, we don't enable writenotify when enabling userfaultfd-wp on a
shared writable mapping (for now only shmem and hugetlb). The consequence
is that vma->vm_page_prot will still include write permissions, to be set
as default for all PTEs that get remapped (e.g., mprotect(), NUMA hinting,
page migration, ...).
So far, vma->vm_page_prot is assumed to be a safe default, meaning that we
only add permissions (e.g., mkwrite) but not remove permissions (e.g.,
wrprotect). For example, when enabling softdirty tracking, we enable
writenotify. With uffd-wp on shared mappings, that changed. More details
on vma->vm_page_prot semantics were summarized in [1].
This is problematic for uffd-wp: we'd have to manually check for a uffd-wp
PTEs/PMDs and manually write-protect PTEs/PMDs, which is error prone.
Prone to such issues is any code that uses vma->vm_page_prot to set PTE
permissions: primarily pte_modify() and mk_pte().
Instead, let's enable writenotify such that PTEs/PMDs/... will be mapped
write-protected as default and we will only allow selected PTEs that are
definitely safe to be mapped without write-protection (see
can_change_pte_writable()) to be writable. In the future, we might want
to enable write-bit recovery -- e.g., can_change_pte_writable() -- at more
locations, for example, also when removing uffd-wp protection.
This fixes two known cases:
(a) remove_migration_pte() mapping uffd-wp'ed PTEs writable, resulting
in uffd-wp not triggering on write access.
(b) do_numa_page() / do_huge_pmd_numa_page() mapping uffd-wp'ed PTEs/PMDs
writable, resulting in uffd-wp not triggering on write access.
Note that do_numa_page() / do_huge_pmd_numa_page() can be reached even
without NUMA hinting (which currently doesn't seem to be applicable to
shmem), for example, by using uffd-wp with a PROT_WRITE shmem VMA. On
such a VMA, userfaultfd-wp is currently non-functional.
Note that when enabling userfaultfd-wp, there is no need to walk page
tables to enforce the new default protection for the PTEs: we know that
they cannot be uffd-wp'ed yet, because that can only happen after enabling
uffd-wp for the VMA in general.
Also note that this makes mprotect() on ranges with uffd-wp'ed PTEs not
accidentally set the write bit -- which would result in uffd-wp not
triggering on later write access. This commit makes uffd-wp on shmem
behave just like uffd-wp on anonymous memory in that regard, even though,
mixing mprotect with uffd-wp is controversial.
[1] https://lkml.kernel.org/r/92173bad-caa3-6b43-9d1e-9a471fdbc184@redhat.com
Link: https://lkml.kernel.org/r/20221209080912.7968-1-david@redhat.com
Fixes: b1f9e876862d ("mm/uffd: enable write protection for shmem & hugetlbfs")
Signed-off-by: David Hildenbrand <david@redhat.com>
Reported-by: Ives van Hoorne <ives@codesandbox.io>
Debugged-by: Peter Xu <peterx@redhat.com>
Acked-by: Peter Xu <peterx@redhat.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Alistair Popple <apopple@nvidia.com>
Cc: Mike Rapoport <rppt@linux.vnet.ibm.com>
Cc: Nadav Amit <nadav.amit@gmail.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit fed15f1345dc8a7fc8baa81e8b55c3ba010d7f4b upstream.
Userfaultfd-wp uses pte markers to mark wr-protected pages for both shmem
and hugetlb. Shmem has pre-allocation ready for markers, but hugetlb path
was overlooked.
Doing so by calling huge_pte_alloc() if the initial pgtable walk fails to
find the huge ptep. It's possible that huge_pte_alloc() can fail with
high memory pressure, in that case stop the loop immediately and fail
silently. This is not the most ideal solution but it matches with what we
do with shmem meanwhile it avoids the splat in dmesg.
Link: https://lkml.kernel.org/r/20230104225207.1066932-2-peterx@redhat.com
Fixes: 60dfaad65aa9 ("mm/hugetlb: allow uffd wr-protect none ptes")
Signed-off-by: Peter Xu <peterx@redhat.com>
Reported-by: James Houghton <jthoughton@google.com>
Reviewed-by: Mike Kravetz <mike.kravetz@oracle.com>
Acked-by: David Hildenbrand <david@redhat.com>
Acked-by: James Houghton <jthoughton@google.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Axel Rasmussen <axelrasmussen@google.com>
Cc: Muchun Song <songmuchun@bytedance.com>
Cc: Nadav Amit <nadav.amit@gmail.com>
Cc: <stable@vger.kernel.org> [5.19+]
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 44f86392bdd165da7e43d3c772aeb1e128ffd6c8 upstream.
We have to update the uffd-wp SWP PTE bit independent of the type of
migration entry. Currently, if we're unlucky and we want to install/clear
the uffd-wp bit just while we're migrating a read-only mapped hugetlb
page, we would miss to set/clear the uffd-wp bit.
Further, if we're processing a readable-exclusive migration entry and
neither want to set or clear the uffd-wp bit, we could currently end up
losing the uffd-wp bit. Note that the same would hold for writable
migrating entries, however, having a writable migration entry with the
uffd-wp bit set would already mean that something went wrong.
Note that the change from !is_readable_migration_entry ->
writable_migration_entry is harmless and actually cleaner, as raised by
Miaohe Lin and discussed in [1].
[1] https://lkml.kernel.org/r/90dd6a93-4500-e0de-2bf0-bf522c311b0c@huawei.com
Link: https://lkml.kernel.org/r/20221222205511.675832-3-david@redhat.com
Fixes: 60dfaad65aa9 ("mm/hugetlb: allow uffd wr-protect none ptes")
Signed-off-by: David Hildenbrand <david@redhat.com>
Reviewed-by: Mike Kravetz <mike.kravetz@oracle.com>
Cc: Miaohe Lin <linmiaohe@huawei.com>
Cc: Muchun Song <muchun.song@linux.dev>
Cc: Peter Xu <peterx@redhat.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 0e678153f5be7e6c8d28835f5a678618da4b7a9c upstream.
Patch series "mm/hugetlb: uffd-wp fixes for hugetlb_change_protection()".
Playing with virtio-mem and background snapshots (using uffd-wp) on
hugetlb in QEMU, I managed to trigger a VM_BUG_ON(). Looking into the
details, hugetlb_change_protection() seems to not handle uffd-wp correctly
in all cases.
Patch #1 fixes my test case. I don't have reproducers for patch #2, as it
requires running into migration entries.
I did not yet check in detail yet if !hugetlb code requires similar care.
This patch (of 2):
There are two problematic cases when stumbling over a PTE marker in
hugetlb_change_protection():
(1) We protect an uffd-wp PTE marker a second time using uffd-wp: we will
end up in the "!huge_pte_none(pte)" case and mess up the PTE marker.
(2) We unprotect a uffd-wp PTE marker: we will similarly end up in the
"!huge_pte_none(pte)" case even though we cleared the PTE, because
the "pte" variable is stale. We'll mess up the PTE marker.
For example, if we later stumble over such a "wrongly modified" PTE marker,
we'll treat it like a present PTE that maps some garbage page.
This can, for example, be triggered by mapping a memfd backed by huge
pages, registering uffd-wp, uffd-wp'ing an unmapped page and (a)
uffd-wp'ing it a second time; or (b) uffd-unprotecting it; or (c)
unregistering uffd-wp. Then, ff we trigger fallocate(FALLOC_FL_PUNCH_HOLE)
on that file range, we will run into a VM_BUG_ON:
[ 195.039560] page:00000000ba1f2987 refcount:1 mapcount:0 mapping:0000000000000000 index:0x0 pfn:0x0
[ 195.039565] flags: 0x7ffffc0001000(reserved|node=0|zone=0|lastcpupid=0x1fffff)
[ 195.039568] raw: 0007ffffc0001000 ffffe742c0000008 ffffe742c0000008 0000000000000000
[ 195.039569] raw: 0000000000000000 0000000000000000 00000001ffffffff 0000000000000000
[ 195.039569] page dumped because: VM_BUG_ON_PAGE(compound && !PageHead(page))
[ 195.039573] ------------[ cut here ]------------
[ 195.039574] kernel BUG at mm/rmap.c:1346!
[ 195.039579] invalid opcode: 0000 [#1] PREEMPT SMP NOPTI
[ 195.039581] CPU: 7 PID: 4777 Comm: qemu-system-x86 Not tainted 6.0.12-200.fc36.x86_64 #1
[ 195.039583] Hardware name: LENOVO 20WNS1F81N/20WNS1F81N, BIOS N35ET50W (1.50 ) 09/15/2022
[ 195.039584] RIP: 0010:page_remove_rmap+0x45b/0x550
[ 195.039588] Code: [...]
[ 195.039589] RSP: 0018:ffffbc03c3633ba8 EFLAGS: 00010292
[ 195.039591] RAX: 0000000000000040 RBX: ffffe742c0000000 RCX: 0000000000000000
[ 195.039592] RDX: 0000000000000002 RSI: ffffffff8e7aac1a RDI: 00000000ffffffff
[ 195.039592] RBP: 0000000000000001 R08: 0000000000000000 R09: ffffbc03c3633a08
[ 195.039593] R10: 0000000000000003 R11: ffffffff8f146328 R12: ffff9b04c42754b0
[ 195.039594] R13: ffffffff8fcc6328 R14: ffffbc03c3633c80 R15: ffff9b0484ab9100
[ 195.039595] FS: 00007fc7aaf68640(0000) GS:ffff9b0bbf7c0000(0000) knlGS:0000000000000000
[ 195.039596] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
[ 195.039597] CR2: 000055d402c49110 CR3: 0000000159392003 CR4: 0000000000772ee0
[ 195.039598] PKRU: 55555554
[ 195.039599] Call Trace:
[ 195.039600] <TASK>
[ 195.039602] __unmap_hugepage_range+0x33b/0x7d0
[ 195.039605] unmap_hugepage_range+0x55/0x70
[ 195.039608] hugetlb_vmdelete_list+0x77/0xa0
[ 195.039611] hugetlbfs_fallocate+0x410/0x550
[ 195.039612] ? _raw_spin_unlock_irqrestore+0x23/0x40
[ 195.039616] vfs_fallocate+0x12e/0x360
[ 195.039618] __x64_sys_fallocate+0x40/0x70
[ 195.039620] do_syscall_64+0x58/0x80
[ 195.039623] ? syscall_exit_to_user_mode+0x17/0x40
[ 195.039624] ? do_syscall_64+0x67/0x80
[ 195.039626] entry_SYSCALL_64_after_hwframe+0x63/0xcd
[ 195.039628] RIP: 0033:0x7fc7b590651f
[ 195.039653] Code: [...]
[ 195.039654] RSP: 002b:00007fc7aaf66e70 EFLAGS: 00000293 ORIG_RAX: 000000000000011d
[ 195.039655] RAX: ffffffffffffffda RBX: 0000558ef4b7f370 RCX: 00007fc7b590651f
[ 195.039656] RDX: 0000000018000000 RSI: 0000000000000003 RDI: 000000000000000c
[ 195.039657] RBP: 0000000008000000 R08: 0000000000000000 R09: 0000000000000073
[ 195.039658] R10: 0000000008000000 R11: 0000000000000293 R12: 0000000018000000
[ 195.039658] R13: 00007fb8bbe00000 R14: 000000000000000c R15: 0000000000001000
[ 195.039661] </TASK>
Fix it by not going into the "!huge_pte_none(pte)" case if we stumble over
an exclusive marker. spin_unlock() + continue would get the job done.
However, instead, make it clearer that there are no fall-through
statements: we process each case (hwpoison, migration, marker, !none,
none) and then unlock the page table to continue with the next PTE. Let's
avoid "continue" statements and use a single spin_unlock() at the end.
Link: https://lkml.kernel.org/r/20221222205511.675832-1-david@redhat.com
Link: https://lkml.kernel.org/r/20221222205511.675832-2-david@redhat.com
Fixes: 60dfaad65aa9 ("mm/hugetlb: allow uffd wr-protect none ptes")
Signed-off-by: David Hildenbrand <david@redhat.com>
Reviewed-by: Peter Xu <peterx@redhat.com>
Reviewed-by: Mike Kravetz <mike.kravetz@oracle.com>
Cc: Miaohe Lin <linmiaohe@huawei.com>
Cc: Muchun Song <muchun.song@linux.dev>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit ab0c3f1251b4670978fde0bd54161795a139b060 upstream.
uprobe_write_opcode() uses collapse_pte_mapped_thp() to restore huge pmd,
when removing a breakpoint from hugepage text: vma->anon_vma is always set
in that case, so undo the prohibition. And MADV_COLLAPSE ought to be able
to collapse some page tables in a vma which happens to have anon_vma set
from CoWing elsewhere.
Is anon_vma lock required? Almost not: if any page other than expected
subpage of the non-anon huge page is found in the page table, collapse is
aborted without making any change. However, it is possible that an anon
page was CoWed from this extent in another mm or vma, in which case a
concurrent lookup might look here: so keep it away while clearing pmd (but
perhaps we shall go back to using pmd_lock() there in future).
Note that collapse_pte_mapped_thp() is exceptional in freeing a page table
without having cleared its ptes: I'm uneasy about that, and had thought
pte_clear()ing appropriate; but exclusive i_mmap lock does fix the
problem, and we would have to move the mmu_notification if clearing those
ptes.
What this fixes is not a dangerous instability. But I suggest Cc stable
because uprobes "healing" has regressed in that way, so this should follow
8d3c106e19e8 into those stable releases where it was backported (and may
want adjustment there - I'll supply backports as needed).
Link: https://lkml.kernel.org/r/b740c9fb-edba-92ba-59fb-7a5592e5dfc@google.com
Fixes: 8d3c106e19e8 ("mm/khugepaged: take the right locks for page table retraction")
Signed-off-by: Hugh Dickins <hughd@google.com>
Acked-by: David Hildenbrand <david@redhat.com>
Cc: Jann Horn <jannh@google.com>
Cc: Yang Shi <shy828301@gmail.com>
Cc: Zach O'Keefe <zokeefe@google.com>
Cc: Song Liu <songliubraving@fb.com>
Cc: <stable@vger.kernel.org> [5.4+]
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit b30c14cd61025eeea2f2e8569606cd167ba9ad2d upstream.
PMD sharing can only be done in PUD_SIZE-aligned pieces of VMAs; however,
it is possible that HugeTLB VMAs are split without unsharing the PMDs
first.
Without this fix, it is possible to hit the uffd-wp-related WARN_ON_ONCE
in hugetlb_change_protection [1]. The key there is that
hugetlb_unshare_all_pmds will not attempt to unshare PMDs in
non-PUD_SIZE-aligned sections of the VMA.
It might seem ideal to unshare in hugetlb_vm_op_open, but we need to
unshare in both the new and old VMAs, so unsharing in hugetlb_vm_op_split
seems natural.
[1]: https://lore.kernel.org/linux-mm/CADrL8HVeOkj0QH5VZZbRzybNE8CG-tEGFshnA+bG9nMgcWtBSg@mail.gmail.com/
Link: https://lkml.kernel.org/r/20230104231910.1464197-1-jthoughton@google.com
Fixes: 6dfeaff93be1 ("hugetlb/userfaultfd: unshare all pmds for hugetlbfs when register wp")
Signed-off-by: James Houghton <jthoughton@google.com>
Reviewed-by: Mike Kravetz <mike.kravetz@oracle.com>
Acked-by: Peter Xu <peterx@redhat.com>
Cc: Axel Rasmussen <axelrasmussen@google.com>
Cc: Muchun Song <songmuchun@bytedance.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 3de0c269adc6c2fac0bb1fb11965f0de699dc32b upstream.
SHMEM_HUGE_DENY is for emergency use by the admin, to disable allocation
of shmem huge pages if, for example, a dangerous bug is found in their
usage: see "deny" in Documentation/mm/transhuge.rst. An app using
madvise(,,MADV_COLLAPSE) should not be allowed to override it: restore its
precedence over shmem_huge_force.
Restore SHMEM_HUGE_DENY precedence over MADV_COLLAPSE.
Link: https://lkml.kernel.org/r/20221224082035.3197140-2-zokeefe@google.com
Fixes: 7c6c6cc4d3a2 ("mm/shmem: add flag to enforce shmem THP in hugepage_vma_check()")
Signed-off-by: Zach O'Keefe <zokeefe@google.com>
Suggested-by: Hugh Dickins <hughd@google.com>
Acked-by: David Hildenbrand <david@redhat.com>
Cc: Yang Shi <shy828301@gmail.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>