IF YOU WOULD LIKE TO GET AN ACCOUNT, please write an
email to Administrator. User accounts are meant only to access repo
and report issues and/or generate pull requests.
This is a purpose-specific Git hosting for
BaseALT
projects. Thank you for your understanding!
Только зарегистрированные пользователи имеют доступ к сервису!
Для получения аккаунта, обратитесь к администратору.
This idea was introduced by David Rientjes[1].
Introduce a new madvise mode, MADV_COLLAPSE, that allows users to request
a synchronous collapse of memory at their own expense.
The benefits of this approach are:
* CPU is charged to the process that wants to spend the cycles for the
THP
* Avoid unpredictable timing of khugepaged collapse
Semantics
This call is independent of the system-wide THP sysfs settings, but will
fail for memory marked VM_NOHUGEPAGE. If the ranges provided span
multiple VMAs, the semantics of the collapse over each VMA is independent
from the others. This implies a hugepage cannot cross a VMA boundary. If
collapse of a given hugepage-aligned/sized region fails, the operation may
continue to attempt collapsing the remainder of memory specified.
The memory ranges provided must be page-aligned, but are not required to
be hugepage-aligned. If the memory ranges are not hugepage-aligned, the
start/end of the range will be clamped to the first/last hugepage-aligned
address covered by said range. The memory ranges must span at least one
hugepage-sized region.
All non-resident pages covered by the range will first be
swapped/faulted-in, before being internally copied onto a freshly
allocated hugepage. Unmapped pages will have their data directly
initialized to 0 in the new hugepage. However, for every eligible
hugepage aligned/sized region to-be collapsed, at least one page must
currently be backed by memory (a PMD covering the address range must
already exist).
Allocation for the new hugepage may enter direct reclaim and/or
compaction, regardless of VMA flags. When the system has multiple NUMA
nodes, the hugepage will be allocated from the node providing the most
native pages. This operation operates on the current state of the
specified process and makes no persistent changes or guarantees on how
pages will be mapped, constructed, or faulted in the future
Return Value
If all hugepage-sized/aligned regions covered by the provided range were
either successfully collapsed, or were already PMD-mapped THPs, this
operation will be deemed successful. On success, process_madvise(2)
returns the number of bytes advised, and madvise(2) returns 0. Else, -1
is returned and errno is set to indicate the error for the most-recently
attempted hugepage collapse. Note that many failures might have occurred,
since the operation may continue to collapse in the event a single
hugepage-sized/aligned region fails.
ENOMEM Memory allocation failed or VMA not found
EBUSY Memcg charging failed
EAGAIN Required resource temporarily unavailable. Try again
might succeed.
EINVAL Other error: No PMD found, subpage doesn't have Present
bit set, "Special" page no backed by struct page, VMA
incorrectly sized, address not page-aligned, ...
Most notable here is ENOMEM and EBUSY (new to madvise) which are intended
to provide the caller with actionable feedback so they may take an
appropriate fallback measure.
Use Cases
An immediate user of this new functionality are malloc() implementations
that manage memory in hugepage-sized chunks, but sometimes subrelease
memory back to the system in native-sized chunks via MADV_DONTNEED;
zapping the pmd. Later, when the memory is hot, the implementation could
madvise(MADV_COLLAPSE) to re-back the memory by THPs to regain hugepage
coverage and dTLB performance. TCMalloc is such an implementation that
could benefit from this[2].
Only privately-mapped anon memory is supported for now, but additional
support for file, shmem, and HugeTLB high-granularity mappings[2] is
expected. File and tmpfs/shmem support would permit:
* Backing executable text by THPs. Current support provided by
CONFIG_READ_ONLY_THP_FOR_FS may take a long time on a large system which
might impair services from serving at their full rated load after
(re)starting. Tricks like mremap(2)'ing text onto anonymous memory to
immediately realize iTLB performance prevents page sharing and demand
paging, both of which increase steady state memory footprint. With
MADV_COLLAPSE, we get the best of both worlds: Peak upfront performance
and lower RAM footprints.
* Backing guest memory by hugapages after the memory contents have been
migrated in native-page-sized chunks to a new host, in a
userfaultfd-based live-migration stack.
[1] https://lore.kernel.org/linux-mm/d098c392-273a-36a4-1a29-59731cdf5d3d@google.com/
[2] https://github.com/google/tcmalloc/tree/master/tcmalloc
[jrdr.linux@gmail.com: avoid possible memory leak in failure path]
Link: https://lkml.kernel.org/r/20220713024109.62810-1-jrdr.linux@gmail.com
[zokeefe@google.com add missing kfree() to madvise_collapse()]
Link: https://lore.kernel.org/linux-mm/20220713024109.62810-1-jrdr.linux@gmail.com/
Link: https://lkml.kernel.org/r/20220713161851.1879439-1-zokeefe@google.com
[zokeefe@google.com: delay computation of hpage boundaries until use]]
Link: https://lkml.kernel.org/r/20220720140603.1958773-4-zokeefe@google.com
Link: https://lkml.kernel.org/r/20220706235936.2197195-10-zokeefe@google.com
Signed-off-by: Zach O'Keefe <zokeefe@google.com>
Signed-off-by: "Souptick Joarder (HPE)" <jrdr.linux@gmail.com>
Suggested-by: David Rientjes <rientjes@google.com>
Cc: Alex Shi <alex.shi@linux.alibaba.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Arnd Bergmann <arnd@arndb.de>
Cc: Axel Rasmussen <axelrasmussen@google.com>
Cc: Chris Kennelly <ckennelly@google.com>
Cc: Chris Zankel <chris@zankel.net>
Cc: David Hildenbrand <david@redhat.com>
Cc: Helge Deller <deller@gmx.de>
Cc: Hugh Dickins <hughd@google.com>
Cc: Ivan Kokshaysky <ink@jurassic.park.msu.ru>
Cc: James Bottomley <James.Bottomley@HansenPartnership.com>
Cc: Jens Axboe <axboe@kernel.dk>
Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Matt Turner <mattst88@gmail.com>
Cc: Max Filippov <jcmvbkbc@gmail.com>
Cc: Miaohe Lin <linmiaohe@huawei.com>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Pasha Tatashin <pasha.tatashin@soleen.com>
Cc: Pavel Begunkov <asml.silence@gmail.com>
Cc: Peter Xu <peterx@redhat.com>
Cc: Rongwei Wang <rongwei.wang@linux.alibaba.com>
Cc: SeongJae Park <sj@kernel.org>
Cc: Song Liu <songliubraving@fb.com>
Cc: Thomas Bogendoerfer <tsbogend@alpha.franken.de>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Yang Shi <shy828301@gmail.com>
Cc: Zi Yan <ziy@nvidia.com>
Cc: Dan Carpenter <dan.carpenter@oracle.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
When scanning an anon pmd to see if it's eligible for collapse, return
SCAN_PMD_MAPPED if the pmd already maps a hugepage. Note that
SCAN_PMD_MAPPED is different from SCAN_PAGE_COMPOUND used in the
file-collapse path, since the latter might identify pte-mapped compound
pages. This is required by MADV_COLLAPSE which necessarily needs to know
what hugepage-aligned/sized regions are already pmd-mapped.
In order to determine if a pmd already maps a hugepage, refactor
mm_find_pmd():
Return mm_find_pmd() to it's pre-commit f72e7dcdd252 ("mm: let mm_find_pmd
fix buggy race with THP fault") behavior. ksm was the only caller that
explicitly wanted a pte-mapping pmd, so open code the pte-mapping logic
there (pmd_present() and pmd_trans_huge() checks).
Undo revert change in commit f72e7dcdd252 ("mm: let mm_find_pmd fix buggy
race with THP fault") that open-coded split_huge_pmd_address() pmd lookup
and use mm_find_pmd() instead.
Link: https://lkml.kernel.org/r/20220706235936.2197195-9-zokeefe@google.com
Signed-off-by: Zach O'Keefe <zokeefe@google.com>
Reviewed-by: Yang Shi <shy828301@gmail.com>
Cc: Alex Shi <alex.shi@linux.alibaba.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Arnd Bergmann <arnd@arndb.de>
Cc: Axel Rasmussen <axelrasmussen@google.com>
Cc: Chris Kennelly <ckennelly@google.com>
Cc: Chris Zankel <chris@zankel.net>
Cc: David Hildenbrand <david@redhat.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Helge Deller <deller@gmx.de>
Cc: Hugh Dickins <hughd@google.com>
Cc: Ivan Kokshaysky <ink@jurassic.park.msu.ru>
Cc: James Bottomley <James.Bottomley@HansenPartnership.com>
Cc: Jens Axboe <axboe@kernel.dk>
Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Matt Turner <mattst88@gmail.com>
Cc: Max Filippov <jcmvbkbc@gmail.com>
Cc: Miaohe Lin <linmiaohe@huawei.com>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Pasha Tatashin <pasha.tatashin@soleen.com>
Cc: Pavel Begunkov <asml.silence@gmail.com>
Cc: Peter Xu <peterx@redhat.com>
Cc: Rongwei Wang <rongwei.wang@linux.alibaba.com>
Cc: SeongJae Park <sj@kernel.org>
Cc: Song Liu <songliubraving@fb.com>
Cc: Thomas Bogendoerfer <tsbogend@alpha.franken.de>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Zi Yan <ziy@nvidia.com>
Cc: Dan Carpenter <dan.carpenter@oracle.com>
Cc: "Souptick Joarder (HPE)" <jrdr.linux@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
MADV_COLLAPSE is not coupled to the kernel-oriented sysfs THP settings[1].
hugepage_vma_check() is the authority on determining if a VMA is eligible
for THP allocation/collapse, and currently enforces the sysfs THP
settings. Add a flag to disable these checks. For now, only apply this
arg to anon and file, which use /sys/kernel/transparent_hugepage/enabled.
We can expand this to shmem, which uses
/sys/kernel/transparent_hugepage/shmem_enabled, later.
Use this flag in collapse_pte_mapped_thp() where previously the VMA flags
passed to hugepage_vma_check() were OR'd with VM_HUGEPAGE to elide the
VM_HUGEPAGE check in "madvise" THP mode. Prior to "mm: khugepaged: check
THP flag in hugepage_vma_check()", this check also didn't check "never"
THP mode. As such, this restores the previous behavior of
collapse_pte_mapped_thp() where sysfs THP settings are ignored. See
comment in code for justification why this is OK.
[1] https://lore.kernel.org/linux-mm/CAAa6QmQxay1_=Pmt8oCX2-Va18t44FV-Vs-WsQt_6+qBks4nZA@mail.gmail.com/
Link: https://lkml.kernel.org/r/20220706235936.2197195-8-zokeefe@google.com
Signed-off-by: Zach O'Keefe <zokeefe@google.com>
Reviewed-by: Yang Shi <shy828301@gmail.com>
Cc: Alex Shi <alex.shi@linux.alibaba.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Arnd Bergmann <arnd@arndb.de>
Cc: Axel Rasmussen <axelrasmussen@google.com>
Cc: Chris Kennelly <ckennelly@google.com>
Cc: Chris Zankel <chris@zankel.net>
Cc: David Hildenbrand <david@redhat.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Helge Deller <deller@gmx.de>
Cc: Hugh Dickins <hughd@google.com>
Cc: Ivan Kokshaysky <ink@jurassic.park.msu.ru>
Cc: James Bottomley <James.Bottomley@HansenPartnership.com>
Cc: Jens Axboe <axboe@kernel.dk>
Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Matt Turner <mattst88@gmail.com>
Cc: Max Filippov <jcmvbkbc@gmail.com>
Cc: Miaohe Lin <linmiaohe@huawei.com>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Pasha Tatashin <pasha.tatashin@soleen.com>
Cc: Pavel Begunkov <asml.silence@gmail.com>
Cc: Peter Xu <peterx@redhat.com>
Cc: Rongwei Wang <rongwei.wang@linux.alibaba.com>
Cc: SeongJae Park <sj@kernel.org>
Cc: Song Liu <songliubraving@fb.com>
Cc: Thomas Bogendoerfer <tsbogend@alpha.franken.de>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Zi Yan <ziy@nvidia.com>
Cc: Dan Carpenter <dan.carpenter@oracle.com>
Cc: "Souptick Joarder (HPE)" <jrdr.linux@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Add .is_khugepaged flag to struct collapse_control so khugepaged-specific
behavior can be elided by MADV_COLLAPSE context.
Start by protecting khugepaged-specific heuristics by this flag. In
MADV_COLLAPSE, the user presumably has reason to believe the collapse will
be beneficial and khugepaged heuristics shouldn't prevent the user from
doing so:
1) sysfs-controlled knobs khugepaged_max_ptes_[none|swap|shared]
2) requirement that some pages in region being collapsed be young or
referenced
[zokeefe@google.com: consistently order cc->is_khugepaged and pte_* checks]
Link: https://lkml.kernel.org/r/20220720140603.1958773-3-zokeefe@google.com
Link: https://lore.kernel.org/linux-mm/Ys2qJm6FaOQcxkha@google.com/
Link: https://lkml.kernel.org/r/20220706235936.2197195-7-zokeefe@google.com
Signed-off-by: Zach O'Keefe <zokeefe@google.com>
Reviewed-by: Yang Shi <shy828301@gmail.com>
Cc: Alex Shi <alex.shi@linux.alibaba.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Arnd Bergmann <arnd@arndb.de>
Cc: Axel Rasmussen <axelrasmussen@google.com>
Cc: Chris Kennelly <ckennelly@google.com>
Cc: Chris Zankel <chris@zankel.net>
Cc: David Hildenbrand <david@redhat.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Helge Deller <deller@gmx.de>
Cc: Hugh Dickins <hughd@google.com>
Cc: Ivan Kokshaysky <ink@jurassic.park.msu.ru>
Cc: James Bottomley <James.Bottomley@HansenPartnership.com>
Cc: Jens Axboe <axboe@kernel.dk>
Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Matt Turner <mattst88@gmail.com>
Cc: Max Filippov <jcmvbkbc@gmail.com>
Cc: Miaohe Lin <linmiaohe@huawei.com>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Pasha Tatashin <pasha.tatashin@soleen.com>
Cc: Pavel Begunkov <asml.silence@gmail.com>
Cc: Peter Xu <peterx@redhat.com>
Cc: Rongwei Wang <rongwei.wang@linux.alibaba.com>
Cc: SeongJae Park <sj@kernel.org>
Cc: Song Liu <songliubraving@fb.com>
Cc: Thomas Bogendoerfer <tsbogend@alpha.franken.de>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Zi Yan <ziy@nvidia.com>
Cc: Dan Carpenter <dan.carpenter@oracle.com>
Cc: "Souptick Joarder (HPE)" <jrdr.linux@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Propagate enum scan_result codes back through return values of
functions downstream of khugepaged_scan_file() and
khugepaged_scan_pmd() to inform callers if the operation was
successful, and if not, why.
Since khugepaged_scan_pmd()'s return value already has a specific meaning
(whether mmap_lock was unlocked or not), add a bool* argument to
khugepaged_scan_pmd() to retrieve this information.
Change khugepaged to take action based on the return values of
khugepaged_scan_file() and khugepaged_scan_pmd() instead of acting deep
within the collapsing functions themselves.
hugepage_vma_revalidate() now returns SCAN_SUCCEED on success to be more
consistent with enum scan_result propagation.
Remove dependency on error pointers to communicate to khugepaged that
allocation failed and it should sleep; instead just use the result of the
scan (SCAN_ALLOC_HUGE_PAGE_FAIL if allocation fails).
Link: https://lkml.kernel.org/r/20220706235936.2197195-6-zokeefe@google.com
Signed-off-by: Zach O'Keefe <zokeefe@google.com>
Reviewed-by: Yang Shi <shy828301@gmail.com>
Cc: Alex Shi <alex.shi@linux.alibaba.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Arnd Bergmann <arnd@arndb.de>
Cc: Axel Rasmussen <axelrasmussen@google.com>
Cc: Chris Kennelly <ckennelly@google.com>
Cc: Chris Zankel <chris@zankel.net>
Cc: David Hildenbrand <david@redhat.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Helge Deller <deller@gmx.de>
Cc: Hugh Dickins <hughd@google.com>
Cc: Ivan Kokshaysky <ink@jurassic.park.msu.ru>
Cc: James Bottomley <James.Bottomley@HansenPartnership.com>
Cc: Jens Axboe <axboe@kernel.dk>
Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Matt Turner <mattst88@gmail.com>
Cc: Max Filippov <jcmvbkbc@gmail.com>
Cc: Miaohe Lin <linmiaohe@huawei.com>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Pasha Tatashin <pasha.tatashin@soleen.com>
Cc: Pavel Begunkov <asml.silence@gmail.com>
Cc: Peter Xu <peterx@redhat.com>
Cc: Rongwei Wang <rongwei.wang@linux.alibaba.com>
Cc: SeongJae Park <sj@kernel.org>
Cc: Song Liu <songliubraving@fb.com>
Cc: Thomas Bogendoerfer <tsbogend@alpha.franken.de>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Zi Yan <ziy@nvidia.com>
Cc: Dan Carpenter <dan.carpenter@oracle.com>
Cc: "Souptick Joarder (HPE)" <jrdr.linux@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
The following code is duplicated in collapse_huge_page() and
collapse_file():
gfp = alloc_hugepage_khugepaged_gfpmask() | __GFP_THISNODE;
new_page = khugepaged_alloc_page(hpage, gfp, node);
if (!new_page) {
result = SCAN_ALLOC_HUGE_PAGE_FAIL;
goto out;
}
if (unlikely(mem_cgroup_charge(page_folio(new_page), mm, gfp))) {
result = SCAN_CGROUP_CHARGE_FAIL;
goto out;
}
count_memcg_page_event(new_page, THP_COLLAPSE_ALLOC);
Also, "node" is passed as an argument to both collapse_huge_page() and
collapse_file() and obtained the same way, via
khugepaged_find_target_node().
Move all this into a new helper, alloc_charge_hpage(), and remove the
duplicate code from collapse_huge_page() and collapse_file(). Also,
simplify khugepaged_alloc_page() by returning a bool indicating allocation
success instead of a copy of the allocated struct page *.
Link: https://lkml.kernel.org/r/20220706235936.2197195-5-zokeefe@google.com
Signed-off-by: Zach O'Keefe <zokeefe@google.com>
Suggested-by: Peter Xu <peterx@redhat.com>
Acked-by: David Rientjes <rientjes@google.com>
Reviewed-by: Yang Shi <shy828301@gmail.com>
Cc: Alex Shi <alex.shi@linux.alibaba.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Arnd Bergmann <arnd@arndb.de>
Cc: Axel Rasmussen <axelrasmussen@google.com>
Cc: Chris Kennelly <ckennelly@google.com>
Cc: Chris Zankel <chris@zankel.net>
Cc: David Hildenbrand <david@redhat.com>
Cc: Helge Deller <deller@gmx.de>
Cc: Hugh Dickins <hughd@google.com>
Cc: Ivan Kokshaysky <ink@jurassic.park.msu.ru>
Cc: James Bottomley <James.Bottomley@HansenPartnership.com>
Cc: Jens Axboe <axboe@kernel.dk>
Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Matt Turner <mattst88@gmail.com>
Cc: Max Filippov <jcmvbkbc@gmail.com>
Cc: Miaohe Lin <linmiaohe@huawei.com>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Pasha Tatashin <pasha.tatashin@soleen.com>
Cc: Pavel Begunkov <asml.silence@gmail.com>
Cc: Rongwei Wang <rongwei.wang@linux.alibaba.com>
Cc: SeongJae Park <sj@kernel.org>
Cc: Song Liu <songliubraving@fb.com>
Cc: Thomas Bogendoerfer <tsbogend@alpha.franken.de>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Zi Yan <ziy@nvidia.com>
Cc: Dan Carpenter <dan.carpenter@oracle.com>
Cc: "Souptick Joarder (HPE)" <jrdr.linux@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Modularize hugepage collapse by introducing struct collapse_control. This
structure serves to describe the properties of the requested collapse, as
well as serve as a local scratch pad to use during the collapse itself.
Start by moving global per-node khugepaged statistics into this new
structure. Note that this structure is still statically allocated since
CONFIG_NODES_SHIFT might be arbitrary large, and stack-allocating a
MAX_NUMNODES-sized array could cause -Wframe-large-than= errors.
[zokeefe@google.com: use minimal bits to store num page < HPAGE_PMD_NR]
Link: https://lkml.kernel.org/r/20220720140603.1958773-2-zokeefe@google.com
Link: https://lore.kernel.org/linux-mm/Ys2CeIm%2FQmQwWh9a@google.com/
[sfr@canb.auug.org.au: fix build]
Link: https://lkml.kernel.org/r/20220721195508.15f1e07a@canb.auug.org.au
[zokeefe@google.com: fix struct collapse_control load_node definition]
Link: https://lore.kernel.org/linux-mm/202209021349.F73i5d6X-lkp@intel.com/
Link: https://lkml.kernel.org/r/20220903021221.1130021-1-zokeefe@google.com
Link: https://lkml.kernel.org/r/20220706235936.2197195-4-zokeefe@google.com
Signed-off-by: Zach O'Keefe <zokeefe@google.com>
Cc: Alex Shi <alex.shi@linux.alibaba.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Arnd Bergmann <arnd@arndb.de>
Cc: Axel Rasmussen <axelrasmussen@google.com>
Cc: Chris Kennelly <ckennelly@google.com>
Cc: Chris Zankel <chris@zankel.net>
Cc: David Hildenbrand <david@redhat.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Helge Deller <deller@gmx.de>
Cc: Hugh Dickins <hughd@google.com>
Cc: Ivan Kokshaysky <ink@jurassic.park.msu.ru>
Cc: James Bottomley <James.Bottomley@HansenPartnership.com>
Cc: Jens Axboe <axboe@kernel.dk>
Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Matt Turner <mattst88@gmail.com>
Cc: Max Filippov <jcmvbkbc@gmail.com>
Cc: Miaohe Lin <linmiaohe@huawei.com>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Pasha Tatashin <pasha.tatashin@soleen.com>
Cc: Pavel Begunkov <asml.silence@gmail.com>
Cc: Peter Xu <peterx@redhat.com>
Cc: Rongwei Wang <rongwei.wang@linux.alibaba.com>
Cc: SeongJae Park <sj@kernel.org>
Cc: Song Liu <songliubraving@fb.com>
Cc: Thomas Bogendoerfer <tsbogend@alpha.franken.de>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Yang Shi <shy828301@gmail.com>
Cc: Zi Yan <ziy@nvidia.com>
Cc: Dan Carpenter <dan.carpenter@oracle.com>
Cc: "Souptick Joarder (HPE)" <jrdr.linux@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Patch series "mm: userspace hugepage collapse", v7.
Introduction
--------------------------------
This series provides a mechanism for userspace to induce a collapse of
eligible ranges of memory into transparent hugepages in process context,
thus permitting users to more tightly control their own hugepage
utilization policy at their own expense.
This idea was introduced by David Rientjes[5].
Interface
--------------------------------
The proposed interface adds a new madvise(2) mode, MADV_COLLAPSE, and
leverages the new process_madvise(2) call.
process_madvise(2)
Performs a synchronous collapse of the native pages
mapped by the list of iovecs into transparent hugepages.
This operation is independent of the system THP sysfs settings,
but attempts to collapse VMAs marked VM_NOHUGEPAGE will still fail.
THP allocation may enter direct reclaim and/or compaction.
When a range spans multiple VMAs, the semantics of the collapse
over of each VMA is independent from the others.
Caller must have CAP_SYS_ADMIN if not acting on self.
Return value follows existing process_madvise(2) conventions. A
“success” indicates that all hugepage-sized/aligned regions
covered by the provided range were either successfully
collapsed, or were already pmd-mapped THPs.
madvise(2)
Equivalent to process_madvise(2) on self, with 0 returned on
“success”.
Current Use-Cases
--------------------------------
(1) Immediately back executable text by THPs. Current support provided
by CONFIG_READ_ONLY_THP_FOR_FS may take a long time on a large
system which might impair services from serving at their full rated
load after (re)starting. Tricks like mremap(2)'ing text onto
anonymous memory to immediately realize iTLB performance prevents
page sharing and demand paging, both of which increase steady state
memory footprint. With MADV_COLLAPSE, we get the best of both
worlds: Peak upfront performance and lower RAM footprints. Note
that subsequent support for file-backed memory is required here.
(2) malloc() implementations that manage memory in hugepage-sized
chunks, but sometimes subrelease memory back to the system in
native-sized chunks via MADV_DONTNEED; zapping the pmd. Later,
when the memory is hot, the implementation could
madvise(MADV_COLLAPSE) to re-back the memory by THPs to regain
hugepage coverage and dTLB performance. TCMalloc is such an
implementation that could benefit from this[6]. A prior study of
Google internal workloads during evaluation of Temeraire, a
hugepage-aware enhancement to TCMalloc, showed that nearly 20% of
all cpu cycles were spent in dTLB stalls, and that increasing
hugepage coverage by even small amount can help with that[7].
(3) userfaultfd-based live migration of virtual machines satisfy UFFD
faults by fetching native-sized pages over the network (to avoid
latency of transferring an entire hugepage). However, after guest
memory has been fully copied to the new host, MADV_COLLAPSE can
be used to immediately increase guest performance. Note that
subsequent support for file/shmem-backed memory is required here.
(4) HugeTLB high-granularity mapping allows HugeTLB a HugeTLB page to
be mapped at different levels in the page tables[8]. As it's not
"transparent" like THP, HugeTLB high-granularity mappings require
an explicit user API. It is intended that MADV_COLLAPSE be co-opted
for this use case[9]. Note that subsequent support for HugeTLB
memory is required here.
Future work
--------------------------------
Only private anonymous memory is supported by this series. File and
shmem memory support will be added later.
One possible user of this functionality is a userspace agent that
attempts to optimize THP utilization system-wide by allocating THPs
based on, for example, task priority, task performance requirements, or
heatmaps. For the latter, one idea that has already surfaced is using
DAMON to identify hot regions, and driving THP collapse through a new
DAMOS_COLLAPSE scheme[10].
This patch (of 17):
The khugepaged has optimization to reduce huge page allocation calls for
!CONFIG_NUMA by carrying the allocated but failed to collapse huge page to
the next loop. CONFIG_NUMA doesn't do so since the next loop may try to
collapse huge page from a different node, so it doesn't make too much
sense to carry it.
But when NUMA=n, the huge page is allocated by khugepaged_prealloc_page()
before scanning the address space, so it means huge page may be allocated
even though there is no suitable range for collapsing. Then the page
would be just freed if khugepaged already made enough progress. This
could make NUMA=n run have 5 times as much thp_collapse_alloc as NUMA=y
run. This problem actually makes things worse due to the way more
pointless THP allocations and makes the optimization pointless.
This could be fixed by carrying the huge page across scans, but it will
complicate the code further and the huge page may be carried indefinitely.
But if we take one step back, the optimization itself seems not worth
keeping nowadays since:
* Not too many users build NUMA=n kernel nowadays even though the kernel is
actually running on a non-NUMA machine. Some small devices may run NUMA=n
kernel, but I don't think they actually use THP.
* Since commit 44042b449872 ("mm/page_alloc: allow high-order pages to be
stored on the per-cpu lists"), THP could be cached by pcp. This actually
somehow does the job done by the optimization.
Link: https://lkml.kernel.org/r/20220706235936.2197195-1-zokeefe@google.com
Link: https://lkml.kernel.org/r/20220706235936.2197195-3-zokeefe@google.com
Signed-off-by: Yang Shi <shy828301@gmail.com>
Signed-off-by: Zach O'Keefe <zokeefe@google.com>
Co-developed-by: Peter Xu <peterx@redhat.com>
Signed-off-by: Peter Xu <peterx@redhat.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com>
Cc: Alex Shi <alex.shi@linux.alibaba.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Arnd Bergmann <arnd@arndb.de>
Cc: Axel Rasmussen <axelrasmussen@google.com>
Cc: Chris Kennelly <ckennelly@google.com>
Cc: Chris Zankel <chris@zankel.net>
Cc: David Hildenbrand <david@redhat.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Helge Deller <deller@gmx.de>
Cc: Ivan Kokshaysky <ink@jurassic.park.msu.ru>
Cc: James Bottomley <James.Bottomley@HansenPartnership.com>
Cc: Jens Axboe <axboe@kernel.dk>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Matt Turner <mattst88@gmail.com>
Cc: Max Filippov <jcmvbkbc@gmail.com>
Cc: Miaohe Lin <linmiaohe@huawei.com>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Pasha Tatashin <pasha.tatashin@soleen.com>
Cc: Pavel Begunkov <asml.silence@gmail.com>
Cc: Rongwei Wang <rongwei.wang@linux.alibaba.com>
Cc: SeongJae Park <sj@kernel.org>
Cc: Song Liu <songliubraving@fb.com>
Cc: Thomas Bogendoerfer <tsbogend@alpha.franken.de>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Zi Yan <ziy@nvidia.com>
Cc: Dan Carpenter <dan.carpenter@oracle.com>
Cc: "Souptick Joarder (HPE)" <jrdr.linux@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Smatch checker complains that 'secretmem_mnt' dereferencing possible
ERR_PTR(). Let the function return if 'secretmem_mnt' is ERR_PTR, to
avoid deferencing it.
Link: https://lkml.kernel.org/r/20220904074647.GA64291@cloud-MacBookPro
Fixes: 1507f51255c9f ("mm: introduce memfd_secret system call to create "secret" memory areas")
Signed-off-by: Binyi Han <dantengknight@gmail.com>
Reviewed-by: Andrew Morton <akpm@linux-foudation.org>
Cc: Mike Rapoport <rppt@kernel.org>
Cc: Ammar Faizi <ammarfaizi2@gnuweeb.org>
Cc: Hagen Paul Pfeifer <hagen@jauu.net>
Cc: James Bottomley <James.Bottomley@HansenPartnership.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
These two predicates are the same for file pages, but are not the same for
anonymous pages.
Link: https://lkml.kernel.org/r/20220902192639.1737108-3-willy@infradead.org
Fixes: 07f67a8dedc0 ("mm/vmscan: convert shrink_active_list() to use a folio")
Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org>
Reported-by: Hugh Dickins <hughd@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Patch series "Folio fixes for 6.0".
This patch (of 2):
The recent folio conversion changed the VM_BUG_ON() to dump the folio
we're storing instead of the entry we retrieved. This was a mistake;
the entry we retrieved is the more interesting page to dump.
Link: https://lkml.kernel.org/r/20220902192639.1737108-1-willy@infradead.org
Link: https://lkml.kernel.org/r/20220902192639.1737108-2-willy@infradead.org
Fixes: ceff9d3354e9 ("mm/swap: convert __delete_from_swap_cache() to a folio")
Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org>
Cc: Hugh Dickins <hughd@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
When calling debugfs_lookup() the result must have dput() called on it,
otherwise the memory will leak over time. Fix this up by properly calling
dput().
Link: https://lkml.kernel.org/r/20220902191149.112434-1-sj@kernel.org
Fixes: 75c1c2b53c78b ("mm/damon/dbgfs: support multiple contexts")
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Signed-off-by: SeongJae Park <sj@kernel.org>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
migrate_vma_setup() has a fast path in migrate_vma_collect_pmd() that
installs migration entries directly if it can lock the migrating page.
When removing a dirty pte the dirty bit is supposed to be carried over to
the underlying page to prevent it being lost.
Currently migrate_vma_*() can only be used for private anonymous mappings.
That means loss of the dirty bit usually doesn't result in data loss
because these pages are typically not file-backed. However pages may be
backed by swap storage which can result in data loss if an attempt is made
to migrate a dirty page that doesn't yet have the PageDirty flag set.
In this case migration will fail due to unexpected references but the
dirty pte bit will be lost. If the page is subsequently reclaimed data
won't be written back to swap storage as it is considered uptodate,
resulting in data loss if the page is subsequently accessed.
Prevent this by copying the dirty bit to the page when removing the pte to
match what try_to_migrate_one() does.
Link: https://lkml.kernel.org/r/dd48e4882ce859c295c1a77612f66d198b0403f9.1662078528.git-series.apopple@nvidia.com
Fixes: 8c3328f1f36a ("mm/migrate: migrate_vma() unmap page from vma while collecting pages")
Signed-off-by: Alistair Popple <apopple@nvidia.com>
Acked-by: Peter Xu <peterx@redhat.com>
Reviewed-by: "Huang, Ying" <ying.huang@intel.com>
Reported-by: "Huang, Ying" <ying.huang@intel.com>
Acked-by: David Hildenbrand <david@redhat.com>
Cc: Alex Sierra <alex.sierra@amd.com>
Cc: Ben Skeggs <bskeggs@redhat.com>
Cc: Felix Kuehling <Felix.Kuehling@amd.com>
Cc: huang ying <huang.ying.caritas@gmail.com>
Cc: Jason Gunthorpe <jgg@nvidia.com>
Cc: John Hubbard <jhubbard@nvidia.com>
Cc: Karol Herbst <kherbst@redhat.com>
Cc: Logan Gunthorpe <logang@deltatee.com>
Cc: Lyude Paul <lyude@redhat.com>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Nadav Amit <nadav.amit@gmail.com>
Cc: Paul Mackerras <paulus@ozlabs.org>
Cc: Ralph Campbell <rcampbell@nvidia.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Currently we only call flush_cache_page() for the anon_exclusive case,
however in both cases we clear the pte so should flush the cache.
Link: https://lkml.kernel.org/r/5676f30436ab71d1a587ac73f835ed8bd2113ff5.1662078528.git-series.apopple@nvidia.com
Fixes: 8c3328f1f36a ("mm/migrate: migrate_vma() unmap page from vma while collecting pages")
Signed-off-by: Alistair Popple <apopple@nvidia.com>
Reviewed-by: David Hildenbrand <david@redhat.com>
Acked-by: Peter Xu <peterx@redhat.com>
Cc: Alex Sierra <alex.sierra@amd.com>
Cc: Ben Skeggs <bskeggs@redhat.com>
Cc: Felix Kuehling <Felix.Kuehling@amd.com>
Cc: huang ying <huang.ying.caritas@gmail.com>
Cc: "Huang, Ying" <ying.huang@intel.com>
Cc: Jason Gunthorpe <jgg@nvidia.com>
Cc: John Hubbard <jhubbard@nvidia.com>
Cc: Karol Herbst <kherbst@redhat.com>
Cc: Logan Gunthorpe <logang@deltatee.com>
Cc: Lyude Paul <lyude@redhat.com>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Nadav Amit <nadav.amit@gmail.com>
Cc: Paul Mackerras <paulus@ozlabs.org>
Cc: Ralph Campbell <rcampbell@nvidia.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
When clearing a PTE the TLB should be flushed whilst still holding the PTL
to avoid a potential race with madvise/munmap/etc. For example consider
the following sequence:
CPU0 CPU1
---- ----
migrate_vma_collect_pmd()
pte_unmap_unlock()
madvise(MADV_DONTNEED)
-> zap_pte_range()
pte_offset_map_lock()
[ PTE not present, TLB not flushed ]
pte_unmap_unlock()
[ page is still accessible via stale TLB ]
flush_tlb_range()
In this case the page may still be accessed via the stale TLB entry after
madvise returns. Fix this by flushing the TLB while holding the PTL.
Fixes: 8c3328f1f36a ("mm/migrate: migrate_vma() unmap page from vma while collecting pages")
Link: https://lkml.kernel.org/r/9f801e9d8d830408f2ca27821f606e09aa856899.1662078528.git-series.apopple@nvidia.com
Signed-off-by: Alistair Popple <apopple@nvidia.com>
Reported-by: Nadav Amit <nadav.amit@gmail.com>
Reviewed-by: "Huang, Ying" <ying.huang@intel.com>
Acked-by: David Hildenbrand <david@redhat.com>
Acked-by: Peter Xu <peterx@redhat.com>
Cc: Alex Sierra <alex.sierra@amd.com>
Cc: Ben Skeggs <bskeggs@redhat.com>
Cc: Felix Kuehling <Felix.Kuehling@amd.com>
Cc: huang ying <huang.ying.caritas@gmail.com>
Cc: Jason Gunthorpe <jgg@nvidia.com>
Cc: John Hubbard <jhubbard@nvidia.com>
Cc: Karol Herbst <kherbst@redhat.com>
Cc: Logan Gunthorpe <logang@deltatee.com>
Cc: Lyude Paul <lyude@redhat.com>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Paul Mackerras <paulus@ozlabs.org>
Cc: Ralph Campbell <rcampbell@nvidia.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
In the case where a filesystem is polled to take over the memory failure
and receives -EOPNOTSUPP it indicates that page->index and page->mapping
are valid for reverse mapping the failure address. Introduce
FSDAX_INVALID_PGOFF to distinguish when add_to_kill() is being called from
mf_dax_kill_procs() by a filesytem vs the typical memory_failure() path.
Otherwise, vma_pgoff_address() is called with an invalid fsdax_pgoff which
then trips this failing signature:
kernel BUG at mm/memory-failure.c:319!
invalid opcode: 0000 [#1] PREEMPT SMP PTI
CPU: 13 PID: 1262 Comm: dax-pmd Tainted: G OE N 6.0.0-rc2+ #62
Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS 0.0.0 02/06/2015
RIP: 0010:add_to_kill.cold+0x19d/0x209
[..]
Call Trace:
<TASK>
collect_procs.part.0+0x2c4/0x460
memory_failure+0x71b/0xba0
? _printk+0x58/0x73
do_madvise.part.0.cold+0xaf/0xc5
Link: https://lkml.kernel.org/r/166153429427.2758201.14605968329933175594.stgit@dwillia2-xfh.jf.intel.com
Fixes: c36e20249571 ("mm: introduce mf_dax_kill_procs() for fsdax case")
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
Acked-by: Naoya Horiguchi <naoya.horiguchi@nec.com>
Reviewed-by: Miaohe Lin <linmiaohe@huawei.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Cc: Shiyang Ruan <ruansy.fnst@fujitsu.com>
Cc: Darrick J. Wong <djwong@kernel.org>
Cc: Al Viro <viro@zeniv.linux.org.uk>
Cc: Dave Chinner <david@fromorbit.com>
Cc: Goldwyn Rodrigues <rgoldwyn@suse.de>
Cc: Jane Chu <jane.chu@oracle.com>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Ritesh Harjani <riteshh@linux.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Patrick Daly reported the following problem;
NODE_DATA(nid)->node_zonelists[ZONELIST_FALLBACK] - before offline operation
[0] - ZONE_MOVABLE
[1] - ZONE_NORMAL
[2] - NULL
For a GFP_KERNEL allocation, alloc_pages_slowpath() will save the
offset of ZONE_NORMAL in ac->preferred_zoneref. If a concurrent
memory_offline operation removes the last page from ZONE_MOVABLE,
build_all_zonelists() & build_zonerefs_node() will update
node_zonelists as shown below. Only populated zones are added.
NODE_DATA(nid)->node_zonelists[ZONELIST_FALLBACK] - after offline operation
[0] - ZONE_NORMAL
[1] - NULL
[2] - NULL
The race is simple -- page allocation could be in progress when a memory
hot-remove operation triggers a zonelist rebuild that removes zones. The
allocation request will still have a valid ac->preferred_zoneref that is
now pointing to NULL and triggers an OOM kill.
This problem probably always existed but may be slightly easier to trigger
due to 6aa303defb74 ("mm, vmscan: only allocate and reclaim from zones
with pages managed by the buddy allocator") which distinguishes between
zones that are completely unpopulated versus zones that have valid pages
not managed by the buddy allocator (e.g. reserved, memblock, ballooning
etc). Memory hotplug had multiple stages with timing considerations
around managed/present page updates, the zonelist rebuild and the zone
span updates. As David Hildenbrand puts it
memory offlining adjusts managed+present pages of the zone
essentially in one go. If after the adjustments, the zone is no
longer populated (present==0), we rebuild the zone lists.
Once that's done, we try shrinking the zone (start+spanned
pages) -- which results in zone_start_pfn == 0 if there are no
more pages. That happens *after* rebuilding the zonelists via
remove_pfn_range_from_zone().
The only requirement to fix the race is that a page allocation request
identifies when a zonelist rebuild has happened since the allocation
request started and no page has yet been allocated. Use a seqlock_t to
track zonelist updates with a lockless read-side of the zonelist and
protecting the rebuild and update of the counter with a spinlock.
[akpm@linux-foundation.org: make zonelist_update_seq static]
Link: https://lkml.kernel.org/r/20220824110900.vh674ltxmzb3proq@techsingularity.net
Fixes: 6aa303defb74 ("mm, vmscan: only allocate and reclaim from zones with pages managed by the buddy allocator")
Signed-off-by: Mel Gorman <mgorman@techsingularity.net>
Reported-by: Patrick Daly <quic_pdaly@quicinc.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Reviewed-by: David Hildenbrand <david@redhat.com>
Cc: <stable@vger.kernel.org> [4.9+]
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Rewrite the core freezer to behave better wrt thawing and be simpler
in general.
By replacing PF_FROZEN with TASK_FROZEN, a special block state, it is
ensured frozen tasks stay frozen until thawed and don't randomly wake
up early, as is currently possible.
As such, it does away with PF_FROZEN and PF_FREEZER_SKIP, freeing up
two PF_flags (yay!).
Specifically; the current scheme works a little like:
freezer_do_not_count();
schedule();
freezer_count();
And either the task is blocked, or it lands in try_to_freezer()
through freezer_count(). Now, when it is blocked, the freezer
considers it frozen and continues.
However, on thawing, once pm_freezing is cleared, freezer_count()
stops working, and any random/spurious wakeup will let a task run
before its time.
That is, thawing tries to thaw things in explicit order; kernel
threads and workqueues before doing bringing SMP back before userspace
etc.. However due to the above mentioned races it is entirely possible
for userspace tasks to thaw (by accident) before SMP is back.
This can be a fatal problem in asymmetric ISA architectures (eg ARMv9)
where the userspace task requires a special CPU to run.
As said; replace this with a special task state TASK_FROZEN and add
the following state transitions:
TASK_FREEZABLE -> TASK_FROZEN
__TASK_STOPPED -> TASK_FROZEN
__TASK_TRACED -> TASK_FROZEN
The new TASK_FREEZABLE can be set on any state part of TASK_NORMAL
(IOW. TASK_INTERRUPTIBLE and TASK_UNINTERRUPTIBLE) -- any such state
is already required to deal with spurious wakeups and the freezer
causes one such when thawing the task (since the original state is
lost).
The special __TASK_{STOPPED,TRACED} states *can* be restored since
their canonical state is in ->jobctl.
With this, frozen tasks need an explicit TASK_FROZEN wakeup and are
free of undue (early / spurious) wakeups.
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Ingo Molnar <mingo@kernel.org>
Acked-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Link: https://lore.kernel.org/r/20220822114649.055452969@infradead.org
The mmap lock protects the page walker from changes to the page tables
during the walk. However a read lock is insufficient to protect those
areas which don't have a VMA as munmap() detaches the VMAs before
downgrading to a read lock and actually tearing down PTEs/page tables.
For users of walk_page_range() the solution is to simply call pte_hole()
immediately without checking the actual page tables when a VMA is not
present. We now never call __walk_page_range() without a valid vma.
For walk_page_range_novma() the locking requirements are tightened to
require the mmap write lock to be taken, and then walking the pgd
directly with 'no_vma' set.
This in turn means that all page walkers either have a valid vma, or
it's that special 'novma' case for page table debugging. As a result,
all the odd '(!walk->vma && !walk->no_vma)' tests can be removed.
Fixes: dd2283f2605e ("mm: mmap: zap pages with read mmap_sem in munmap")
Reported-by: Jann Horn <jannh@google.com>
Signed-off-by: Steven Price <steven.price@arm.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Thomas Hellström <thomas.hellstrom@linux.intel.com>
Cc: Konstantin Khlebnikov <koct9i@gmail.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
-----BEGIN PGP SIGNATURE-----
iQEzBAABCAAdFiEEjUuTAak14xi+SF7M4CHKc/GJqRAFAmMQhqcACgkQ4CHKc/GJ
qRC1ywf+JPE12TvdYL5s3V6OySv4Qx2lSXe2Ka/FcQIM0nCYH+dunKgBDK4+/cyf
4Jh9gNZhA8OMBlbRKA+hvOab7qgk+iGCLmVv+5JjBalUPufp1IWTEGAY0NP4CIjy
6b8okqIMPnZnJq3QpBgONfnv7ymILQevw8g1rmvw2/0hxjxWN3eAWVQgfYyawh7p
mDubKcqqYV5b5hxgJbY9/STgb6VzWuAp6nm5YCPrlSzQPRuOxE5IgCAJ0mWOFoLN
qhzc4JAh/Pt4jr+bKzeMgPhA3oqrEMvHctT/PMzbV8oAesr97Das/csTQEhba7Vj
3P9HOyMFs/lPT5+hmMam7hdrslrzGQ==
=jIKX
-----END PGP SIGNATURE-----
Merge tag 'slab-for-6.0-rc4' of git://git.kernel.org/pub/scm/linux/kernel/git/vbabka/slab
Pull slab fix from Vlastimil Babka:
- A fix from Waiman Long to avoid a theoretical deadlock reported by
lockdep.
* tag 'slab-for-6.0-rc4' of git://git.kernel.org/pub/scm/linux/kernel/git/vbabka/slab:
mm/slab_common: Deleting kobject in kmem_cache_destroy() without holding slab_mutex/cpu_hotplug_lock
A circular locking problem is reported by lockdep due to the following
circular locking dependency.
+--> cpu_hotplug_lock --> slab_mutex --> kn->active --+
| |
+-----------------------------------------------------+
The forward cpu_hotplug_lock ==> slab_mutex ==> kn->active dependency
happens in
kmem_cache_destroy(): cpus_read_lock(); mutex_lock(&slab_mutex);
==> sysfs_slab_unlink()
==> kobject_del()
==> kernfs_remove()
==> __kernfs_remove()
==> kernfs_drain(): rwsem_acquire(&kn->dep_map, ...);
The backward kn->active ==> cpu_hotplug_lock dependency happens in
kernfs_fop_write_iter(): kernfs_get_active();
==> slab_attr_store()
==> cpu_partial_store()
==> flush_all(): cpus_read_lock()
One way to break this circular locking chain is to avoid holding
cpu_hotplug_lock and slab_mutex while deleting the kobject in
sysfs_slab_unlink() which should be equivalent to doing a write_lock
and write_unlock pair of the kn->active virtual lock.
Since the kobject structures are not protected by slab_mutex or the
cpu_hotplug_lock, we can certainly release those locks before doing
the delete operation.
Move sysfs_slab_unlink() and sysfs_slab_release() to the newly
created kmem_cache_release() and call it outside the slab_mutex &
cpu_hotplug_lock critical sections. There will be a slight delay
in the deletion of sysfs files if kmem_cache_release() is called
indirectly from a work function.
Fixes: 5a836bf6b09f ("mm: slub: move flush_cpu_slab() invocations __free_slab() invocations out of IRQ context")
Signed-off-by: Waiman Long <longman@redhat.com>
Reviewed-by: Hyeonggon Yoo <42.hyeyoo@gmail.com>
Reviewed-by: Roman Gushchin <roman.gushchin@linux.dev>
Acked-by: David Rientjes <rientjes@google.com>
Link: https://lore.kernel.org/all/YwOImVd+nRUsSAga@hyeyoo/
Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
If address of large object is not beginning of folio or size of the
folio is too small, it must be invalid. WARN() and return 0 in such
cases.
Cc: Marco Elver <elver@google.com>
Suggested-by: Vlastimil Babka <vbabka@suse.cz>
Signed-off-by: Hyeonggon Yoo <42.hyeyoo@gmail.com>
Reviewed-by: Vlastimil Babka <vbabka@suse.cz>
Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
__ksize() is only called by KASAN. Remove export symbol and move
declaration to mm/slab.h as we don't want to grow its callers.
Signed-off-by: Hyeonggon Yoo <42.hyeyoo@gmail.com>
Reviewed-by: Vlastimil Babka <vbabka@suse.cz>
Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
Drop kmem_alloc event class, and define kmalloc and kmem_cache_alloc
using TRACE_EVENT() macro.
And then this patch does:
- Do not pass pointer to struct kmem_cache to trace_kmalloc.
gfp flag is enough to know if it's accounted or not.
- Avoid dereferencing s->object_size and s->size when not using kmem_cache_alloc event.
- Avoid dereferencing s->name in when not using kmem_cache_free event.
- Adjust s->size to SLOB_UNITS(s->size) * SLOB_UNIT in SLOB
Cc: Vasily Averin <vasily.averin@linux.dev>
Suggested-by: Vlastimil Babka <vbabka@suse.cz>
Signed-off-by: Hyeonggon Yoo <42.hyeyoo@gmail.com>
Reviewed-by: Vlastimil Babka <vbabka@suse.cz>
Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
Drop kmem_alloc event class, rename kmem_alloc_node to kmem_alloc, and
remove _node postfix for NUMA version of tracepoints.
This will break some tools that depend on {kmem_cache_alloc,kmalloc}_node,
but at this point maintaining both kmem_alloc and kmem_alloc_node
event classes does not makes sense at all.
Signed-off-by: Hyeonggon Yoo <42.hyeyoo@gmail.com>
Reviewed-by: Vlastimil Babka <vbabka@suse.cz>
Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
Despite its name, kmem_cache_alloc[_node]_trace() is hook for inlined
kmalloc. So rename it to kmalloc[_node]_trace().
Move its implementation to slab_common.c by using
__kmem_cache_alloc_node(), but keep CONFIG_TRACING=n varients to save a
function call when CONFIG_TRACING=n.
Use __assume_kmalloc_alignment for kmalloc[_node]_trace instead of
__assume_slab_alignement. Generally kmalloc has larger alignment
requirements.
Suggested-by: Vlastimil Babka <vbabka@suse.cz>
Signed-off-by: Hyeonggon Yoo <42.hyeyoo@gmail.com>
Reviewed-by: Vlastimil Babka <vbabka@suse.cz>
Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
Now everything in kmalloc subsystem can be generalized.
Let's do it!
Generalize __do_kmalloc_node(), __kmalloc_node_track_caller(),
kfree(), __ksize(), __kmalloc(), __kmalloc_node() and move them
to slab_common.c.
In the meantime, rename kmalloc_large_node_notrace()
to __kmalloc_large_node() and make it static as it's now only called in
slab_common.c.
[ feng.tang@intel.com: adjust kfence skip list to include
__kmem_cache_free so that kfence kunit tests do not fail ]
Signed-off-by: Hyeonggon Yoo <42.hyeyoo@gmail.com>
Reviewed-by: Vlastimil Babka <vbabka@suse.cz>
Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
anon_vma->degree tracks the combined number of child anon_vmas and VMAs
that use the anon_vma as their ->anon_vma.
anon_vma_clone() then assumes that for any anon_vma attached to
src->anon_vma_chain other than src->anon_vma, it is impossible for it to
be a leaf node of the VMA tree, meaning that for such VMAs ->degree is
elevated by 1 because of a child anon_vma, meaning that if ->degree
equals 1 there are no VMAs that use the anon_vma as their ->anon_vma.
This assumption is wrong because the ->degree optimization leads to leaf
nodes being abandoned on anon_vma_clone() - an existing anon_vma is
reused and no new parent-child relationship is created. So it is
possible to reuse an anon_vma for one VMA while it is still tied to
another VMA.
This is an issue because is_mergeable_anon_vma() and its callers assume
that if two VMAs have the same ->anon_vma, the list of anon_vmas
attached to the VMAs is guaranteed to be the same. When this assumption
is violated, vma_merge() can merge pages into a VMA that is not attached
to the corresponding anon_vma, leading to dangling page->mapping
pointers that will be dereferenced during rmap walks.
Fix it by separately tracking the number of child anon_vmas and the
number of VMAs using the anon_vma as their ->anon_vma.
Fixes: 7a3ef208e662 ("mm: prevent endless growth of anon_vma hierarchy")
Cc: stable@kernel.org
Acked-by: Michal Hocko <mhocko@suse.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Signed-off-by: Jann Horn <jannh@google.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
fa7e439cf90b ("cgroup: Homogenize cgroup_get_from_id() return value") broken
build when CONFIG_SHRINKER_DEBUG by trying to return an errno from
mem_cgroup_get_from_ino() which returns struct mem_cgroup *. Fix by using
ERR_CAST() instead.
Signed-off-by: Tejun Heo <tj@kernel.org>
Reported-by: Stephen Rothwell <sfr@canb.auug.org.au>
Cc: Michal Koutný <mkoutny@suse.com>f
Fixes: fa7e439cf90b ("cgroup: Homogenize cgroup_get_from_id() return value")
When user tries to create a DAMON context via the DAMON debugfs interface
with a name of an already existing context, the context directory creation
fails but a new context is created and added in the internal data
structure, due to absence of the directory creation success check. As a
result, memory could leak and DAMON cannot be turned on. An example test
case is as below:
# cd /sys/kernel/debug/damon/
# echo "off" > monitor_on
# echo paddr > target_ids
# echo "abc" > mk_context
# echo "abc" > mk_context
# echo $$ > abc/target_ids
# echo "on" > monitor_on <<< fails
Return value of 'debugfs_create_dir()' is expected to be ignored in
general, but this is an exceptional case as DAMON feature is depending
on the debugfs functionality and it has the potential duplicate name
issue. This commit therefore fixes the issue by checking the directory
creation failure and immediately return the error in the case.
Link: https://lkml.kernel.org/r/20220821180853.2400-1-sj@kernel.org
Fixes: 75c1c2b53c78 ("mm/damon/dbgfs: support multiple contexts")
Signed-off-by: Badari Pulavarty <badari.pulavarty@intel.com>
Signed-off-by: SeongJae Park <sj@kernel.org>
Cc: <stable@vger.kernel.org> [ 5.15.x]
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
The vmemmap pages is marked by kmemleak when allocated from memblock.
Remove it from kmemleak when freeing the page. Otherwise, when we reuse
the page, kmemleak may report such an error and then stop working.
kmemleak: Cannot insert 0xffff98fb6eab3d40 into the object search tree (overlaps existing)
kmemleak: Kernel memory leak detector disabled
kmemleak: Object 0xffff98fb6be00000 (size 335544320):
kmemleak: comm "swapper", pid 0, jiffies 4294892296
kmemleak: min_count = 0
kmemleak: count = 0
kmemleak: flags = 0x1
kmemleak: checksum = 0
kmemleak: backtrace:
Link: https://lkml.kernel.org/r/20220819094005.2928241-1-liushixin2@huawei.com
Fixes: f41f2ed43ca5 (mm: hugetlb: free the vmemmap pages associated with each HugeTLB page)
Signed-off-by: Liu Shixin <liushixin2@huawei.com>
Reviewed-by: Muchun Song <songmuchun@bytedance.com>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Mike Kravetz <mike.kravetz@oracle.com>
Cc: Oscar Salvador <osalvador@suse.de>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
zsmalloc() now returns ERR_PTR values as handles, which zram accidentally
can pass to zs_free(). Another bad scenario is when zcomp_compress()
fails - handle has default -ENOMEM value, and zs_free() will try to free
that "pointer value".
Add the missing check and make sure that zs_free() bails out when
ERR_PTR() is passed to it.
Link: https://lkml.kernel.org/r/20220816050906.2583956-1-senozhatsky@chromium.org
Fixes: c7e6f17b52e9 ("zsmalloc: zs_malloc: return ERR_PTR on failure")
Signed-off-by: Sergey Senozhatsky <senozhatsky@chromium.org>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Nitin Gupta <ngupta@vflare.org>,
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
When a disk is removed, bdi_unregister gets called to stop further
writeback and wait for associated delayed work to complete. However,
wb_inode_writeback_end() may schedule bandwidth estimation dwork after
this has completed, which can result in the timer attempting to access the
just freed bdi_writeback.
Fix this by checking if the bdi_writeback is alive, similar to when
scheduling writeback work.
Since this requires wb->work_lock, and wb_inode_writeback_end() may get
called from interrupt, switch wb->work_lock to an irqsafe lock.
Link: https://lkml.kernel.org/r/20220801155034.3772543-1-khazhy@google.com
Fixes: 45a2966fd641 ("writeback: fix bandwidth estimate for spiky workload")
Signed-off-by: Khazhismel Kumykov <khazhy@google.com>
Reviewed-by: Jan Kara <jack@suse.cz>
Cc: Michael Stapelberg <stapelberg+linux@google.com>
Cc: Wu Fengguang <fengguang.wu@intel.com>
Cc: Alexander Viro <viro@zeniv.linux.org.uk>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
If we allocate a new page, we need to make sure that our folio matches
that new page.
If we do end up in this code path, we store the wrong page in the shmem
inode's page cache, and I would rather imagine that data corruption
ensues.
This will be solved by changing shmem_replace_page() to
shmem_replace_folio(), but this is the minimal fix.
Link: https://lkml.kernel.org/r/20220730042518.1264767-1-willy@infradead.org
Fixes: da08e9b79323 ("mm/shmem: convert shmem_swapin_page() to shmem_swapin_folio()")
Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org>
Reviewed-by: William Kucharski <william.kucharski@oracle.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
In MCOPY_ATOMIC_CONTINUE case with a non-shared VMA, pages in the page
cache are installed in the ptes. But hugepage_add_new_anon_rmap is called
for them mistakenly because they're not vm_shared. This will corrupt the
page->mapping used by page cache code.
Link: https://lkml.kernel.org/r/20220712130542.18836-1-linmiaohe@huawei.com
Fixes: f619147104c8 ("userfaultfd: add UFFDIO_CONTINUE ioctl")
Signed-off-by: Miaohe Lin <linmiaohe@huawei.com>
Reviewed-by: Mike Kravetz <mike.kravetz@oracle.com>
Cc: Axel Rasmussen <axelrasmussen@google.com>
Cc: Peter Xu <peterx@redhat.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Cgroup id is user provided datum hence extend its return domain to
include possible error reason (similar to cgroup_get_from_fd()).
This change also fixes commit d4ccaf58a847 ("bpf: Introduce cgroup
iter") that would use NULL instead of proper error handling in
d4ccaf58a847 ("bpf: Introduce cgroup iter").
Additionally, neither of: fc_appid_store, bpf_iter_attach_cgroup,
mem_cgroup_get_from_ino (callers of cgroup_get_from_fd) is built without
CONFIG_CGROUPS (depends via CONFIG_BLK_CGROUP, direct, transitive
CONFIG_MEMCG respectively) transitive, so drop the singular definition
not needed with !CONFIG_CGROUPS.
Fixes: d4ccaf58a847 ("bpf: Introduce cgroup iter")
Signed-off-by: Michal Koutný <mkoutny@suse.com>
Signed-off-by: Tejun Heo <tj@kernel.org>
In the following patch, the function free_debug_processing() will be
calling add_partial(), remove_partial() and discard_slab(), se move it
below their definitions to avoid forward declarations. To make review
easier, separate the move from functional changes.
Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
Reviewed-by: Hyeonggon Yoo <42.hyeyoo@gmail.com>
Acked-by: David Rientjes <rientjes@google.com>
We keep track of several kernel memory stats (total kernel memory, page
tables, stack, vmalloc, etc) on multiple levels (global, per-node,
per-memcg, etc). These stats give insights to users to how much memory
is used by the kernel and for what purposes.
Currently, memory used by KVM mmu is not accounted in any of those
kernel memory stats. This patch series accounts the memory pages
used by KVM for page tables in those stats in a new
NR_SECONDARY_PAGETABLE stat. This stat can be later extended to account
for other types of secondary pages tables (e.g. iommu page tables).
KVM has a decent number of large allocations that aren't for page
tables, but for most of them, the number/size of those allocations
scales linearly with either the number of vCPUs or the amount of memory
assigned to the VM. KVM's secondary page table allocations do not scale
linearly, especially when nested virtualization is in use.
From a KVM perspective, NR_SECONDARY_PAGETABLE will scale with KVM's
per-VM pages_{4k,2m,1g} stats unless the guest is doing something
bizarre (e.g. accessing only 4kb chunks of 2mb pages so that KVM is
forced to allocate a large number of page tables even though the guest
isn't accessing that much memory). However, someone would need to either
understand how KVM works to make that connection, or know (or be told) to
go look at KVM's stats if they're running VMs to better decipher the stats.
Furthermore, having NR_PAGETABLE side-by-side with NR_SECONDARY_PAGETABLE
is informative. For example, when backing a VM with THP vs. HugeTLB,
NR_SECONDARY_PAGETABLE is roughly the same, but NR_PAGETABLE is an order
of magnitude higher with THP. So having this stat will at the very least
prove to be useful for understanding tradeoffs between VM backing types,
and likely even steer folks towards potential optimizations.
The original discussion with more details about the rationale:
https://lore.kernel.org/all/87ilqoi77b.wl-maz@kernel.org
This stat will be used by subsequent patches to count KVM mmu
memory usage.
Signed-off-by: Yosry Ahmed <yosryahmed@google.com>
Acked-by: Shakeel Butt <shakeelb@google.com>
Acked-by: Marc Zyngier <maz@kernel.org>
Link: https://lore.kernel.org/r/20220823004639.2387269-2-yosryahmed@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
To unify kmalloc functions in later patch, introduce common alloc/free
functions that does not have tracepoint.
Signed-off-by: Hyeonggon Yoo <42.hyeyoo@gmail.com>
Reviewed-by: Vlastimil Babka <vbabka@suse.cz>
Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
There is not much benefit for serving large objects in kmalloc().
Let's pass large requests to page allocator like SLUB for better
maintenance of common code.
Signed-off-by: Hyeonggon Yoo <42.hyeyoo@gmail.com>
Reviewed-by: Vlastimil Babka <vbabka@suse.cz>
Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
Now that kmalloc_large() and kmalloc_large_node() do mostly same job,
make kmalloc_large() wrapper of kmalloc_large_node_notrace().
In the meantime, add missing flag fix code in
kmalloc_large_node_notrace().
Signed-off-by: Hyeonggon Yoo <42.hyeyoo@gmail.com>
Reviewed-by: Vlastimil Babka <vbabka@suse.cz>
Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
Now that kmalloc_large_node() is in common code, pass large requests
to page allocator in kmalloc_node() using kmalloc_large_node().
One problem is that currently there is no tracepoint in
kmalloc_large_node(). Instead of simply putting tracepoint in it,
use kmalloc_large_node{,_notrace} depending on its caller to show
useful address for both inlined kmalloc_node() and
__kmalloc_node_track_caller() when large objects are allocated.
Signed-off-by: Hyeonggon Yoo <42.hyeyoo@gmail.com>
Reviewed-by: Vlastimil Babka <vbabka@suse.cz>
Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
In later patch SLAB will also pass requests larger than order-1 page
to page allocator. Move kmalloc_large_node() to slab_common.c.
Fold kmalloc_large_node_hook() into kmalloc_large_node() as there is
no other caller.
Signed-off-by: Hyeonggon Yoo <42.hyeyoo@gmail.com>
Reviewed-by: Vlastimil Babka <vbabka@suse.cz>
Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
There is no caller of kmalloc_order_trace() except kmalloc_large().
Fold it into kmalloc_large() and remove kmalloc_order{,_trace}().
Also add tracepoint in kmalloc_large() that was previously
in kmalloc_order_trace().
Signed-off-by: Hyeonggon Yoo <42.hyeyoo@gmail.com>
Reviewed-by: Vlastimil Babka <vbabka@suse.cz>
Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
__kmalloc(), __kmalloc_node(), __kmalloc_node_track_caller()
mostly do same job. Factor out common code into __do_kmalloc_node().
Note that this patch also fixes missing kasan_kmalloc() in SLUB's
__kmalloc_node_track_caller().
Signed-off-by: Hyeonggon Yoo <42.hyeyoo@gmail.com>
Reviewed-by: Vlastimil Babka <vbabka@suse.cz>
Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
Now that slab_alloc_node() is available for SLAB when CONFIG_NUMA=n,
remove CONFIG_NUMA ifdefs for common kmalloc functions.
Signed-off-by: Hyeonggon Yoo <42.hyeyoo@gmail.com>
Reviewed-by: Vlastimil Babka <vbabka@suse.cz>
Signed-off-by: Vlastimil Babka <vbabka@suse.cz>