1140591 Commits

Author SHA1 Message Date
Bixuan Cui
192db0943f jbd2: use the correct print format
commit d87a7b4c77a997d5388566dd511ca8e6b8e8a0a8 upstream.

The print format error was found when using ftrace event:
    <...>-1406 [000] .... 23599442.895823: jbd2_end_commit: dev 252,8 transaction -1866216965 sync 0 head -1866217368
    <...>-1406 [000] .... 23599442.896299: jbd2_start_commit: dev 252,8 transaction -1866216964 sync 0

Use the correct print format for transaction, head and tid.

Fixes: 879c5e6b7cb4 ('jbd2: convert instrumentation from markers to tracepoints')
Signed-off-by: Bixuan Cui <cuibixuan@linux.alibaba.com>
Reviewed-by: Jason Yan <yanaijie@huawei.com>
Link: https://lore.kernel.org/r/1665488024-95172-1-git-send-email-cuibixuan@linux.alibaba.com
Signed-off-by: Theodore Ts'o <tytso@mit.edu>
Cc: stable@kernel.org
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2023-01-07 11:11:37 +01:00
Steven Rostedt
14a6e5330a ktest.pl minconfig: Unset configs instead of just removing them
commit ef784eebb56425eed6e9b16e7d47e5c00dcf9c38 upstream.

After a full run of a make_min_config test, I noticed there were a lot of
CONFIGs still enabled that really should not be. Looking at them, I
noticed they were all defined as "default y". The issue is that the test
simple removes the config and re-runs make oldconfig, which enables it
again because it is set to default 'y'. Instead, explicitly disable the
config with writing "# CONFIG_FOO is not set" to the file to keep it from
being set again.

With this change, one of my box's minconfigs went from 768 configs set,
down to 521 configs set.

Link: https://lkml.kernel.org/r/20221202115936.016fce23@gandalf.local.home

Cc: stable@vger.kernel.org
Fixes: 0a05c769a9de5 ("ktest: Added config_bisect test type")
Reviewed-by: John 'Warthog9' Hawley (VMware) <warthog9@eaglescrag.net>
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2023-01-07 11:11:37 +01:00
Steven Rostedt
178d7cf891 kest.pl: Fix grub2 menu handling for rebooting
commit 26df05a8c1420ad3de314fdd407e7fc2058cc7aa upstream.

grub2 has submenus where to use grub-reboot, it requires:

  grub-reboot X>Y

where X is the main index and Y is the submenu. Thus if you have:

menuentry 'Debian GNU/Linux' --class debian --class gnu-linux ...
	[...]
}
submenu 'Advanced options for Debian GNU/Linux' $menuentry_id_option ...
        menuentry 'Debian GNU/Linux, with Linux 6.0.0-4-amd64' --class debian --class gnu-linux ...
                [...]
        }
        menuentry 'Debian GNU/Linux, with Linux 6.0.0-4-amd64 (recovery mode)' --class debian --class gnu-linux ...
		[...]
        }
        menuentry 'Debian GNU/Linux, with Linux test' --class debian --class gnu-linux ...
                [...]
        }

And wanted to boot to the "Linux test" kernel, you need to run:

 # grub-reboot 1>2

As 1 is the second top menu (the submenu) and 2 is the third of the sub
menu entries.

Have the grub.cfg parsing for grub2 handle such cases.

Cc: stable@vger.kernel.org
Fixes: a15ba91361d46 ("ktest: Add support for grub2")
Reviewed-by: John 'Warthog9' Hawley (VMware) <warthog9@eaglescrag.net>
Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2023-01-07 11:11:36 +01:00
Manivannan Sadhasivam
ca6536972e soc: qcom: Select REMAP_MMIO for ICC_BWMON driver
commit a84160fbf4f2c8c5ffa588e19ea8f92eabd7ad17 upstream.

ICC_BWMON driver uses REGMAP_MMIO for accessing the hardware registers.
So select the dependency in Kconfig. Without this, there will be errors
while building the driver with COMPILE_TEST only:

ERROR: modpost: "__devm_regmap_init_mmio_clk" [drivers/soc/qcom/icc-bwmon.ko] undefined!
make[1]: *** [scripts/Makefile.modpost:126: Module.symvers] Error 1
make: *** [Makefile:1944: modpost] Error 2

Cc: <stable@vger.kernel.org> # 6.0
Cc: Krzysztof Kozlowski <krzysztof.kozlowski@linaro.org>
Fixes: b9c2ae6cac40 ("soc: qcom: icc-bwmon: Add bandwidth monitoring driver")
Signed-off-by: Manivannan Sadhasivam <manivannan.sadhasivam@linaro.org>
Reviewed-by: Krzysztof Kozlowski <krzysztof.kozlowski@linaro.org>
Signed-off-by: Bjorn Andersson <andersson@kernel.org>
Link: https://lore.kernel.org/r/20221129072022.41962-1-manivannan.sadhasivam@linaro.org
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2023-01-07 11:11:36 +01:00
Manivannan Sadhasivam
70e71f0dc8 soc: qcom: Select REMAP_MMIO for LLCC driver
commit 5d2fe2d7b616b8baa18348ead857b504fc2de336 upstream.

LLCC driver uses REGMAP_MMIO for accessing the hardware registers. So
select the dependency in Kconfig. Without this, there will be errors
while building the driver with COMPILE_TEST only:

ERROR: modpost: "__devm_regmap_init_mmio_clk" [drivers/soc/qcom/llcc-qcom.ko] undefined!
make[1]: *** [scripts/Makefile.modpost:126: Module.symvers] Error 1
make: *** [Makefile:1944: modpost] Error 2

Cc: <stable@vger.kernel.org> # 4.19
Fixes: a3134fb09e0b ("drivers: soc: Add LLCC driver")
Reported-by: Borislav Petkov <bp@alien8.de>
Signed-off-by: Manivannan Sadhasivam <manivannan.sadhasivam@linaro.org>
Signed-off-by: Bjorn Andersson <andersson@kernel.org>
Link: https://lore.kernel.org/r/20221129071201.30024-2-manivannan.sadhasivam@linaro.org
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2023-01-07 11:11:36 +01:00
Masami Hiramatsu (Google)
50950c0176 arm64: Prohibit instrumentation on arch_stack_walk()
commit 0fbcd8abf3375052cc7627cc53aba6f2eb189fbb upstream.

Mark arch_stack_walk() as noinstr instead of notrace and inline functions
called from arch_stack_walk() as __always_inline so that user does not
put any instrumentations on it, because this function can be used from
return_address() which is used by lockdep.

Without this, if the kernel built with CONFIG_LOCKDEP=y, just probing
arch_stack_walk() via <tracefs>/kprobe_events will crash the kernel on
arm64.

 # echo p arch_stack_walk >> ${TRACEFS}/kprobe_events
 # echo 1 > ${TRACEFS}/events/kprobes/enable
  kprobes: Failed to recover from reentered kprobes.
  kprobes: Dump kprobe:
  .symbol_name = arch_stack_walk, .offset = 0, .addr = arch_stack_walk+0x0/0x1c0
  ------------[ cut here ]------------
  kernel BUG at arch/arm64/kernel/probes/kprobes.c:241!
  kprobes: Failed to recover from reentered kprobes.
  kprobes: Dump kprobe:
  .symbol_name = arch_stack_walk, .offset = 0, .addr = arch_stack_walk+0x0/0x1c0
  ------------[ cut here ]------------
  kernel BUG at arch/arm64/kernel/probes/kprobes.c:241!
  PREEMPT SMP
  Modules linked in:
  CPU: 0 PID: 17 Comm: migration/0 Tainted: G                 N 6.1.0-rc5+ #6
  Hardware name: linux,dummy-virt (DT)
  Stopper: 0x0 <- 0x0
  pstate: 600003c5 (nZCv DAIF -PAN -UAO -TCO -DIT -SSBS BTYPE=--)
  pc : kprobe_breakpoint_handler+0x178/0x17c
  lr : kprobe_breakpoint_handler+0x178/0x17c
  sp : ffff8000080d3090
  x29: ffff8000080d3090 x28: ffff0df5845798c0 x27: ffffc4f59057a774
  x26: ffff0df5ffbba770 x25: ffff0df58f420f18 x24: ffff49006f641000
  x23: ffffc4f590579768 x22: ffff0df58f420f18 x21: ffff8000080d31c0
  x20: ffffc4f590579768 x19: ffffc4f590579770 x18: 0000000000000006
  x17: 5f6b636174735f68 x16: 637261203d207264 x15: 64612e202c30203d
  x14: 2074657366666f2e x13: 30633178302f3078 x12: 302b6b6c61775f6b
  x11: 636174735f686372 x10: ffffc4f590dc5bd8 x9 : ffffc4f58eb31958
  x8 : 00000000ffffefff x7 : ffffc4f590dc5bd8 x6 : 80000000fffff000
  x5 : 000000000000bff4 x4 : 0000000000000000 x3 : 0000000000000000
  x2 : 0000000000000000 x1 : ffff0df5845798c0 x0 : 0000000000000064
  Call trace:
  kprobes: Failed to recover from reentered kprobes.
  kprobes: Dump kprobe:
  .symbol_name = arch_stack_walk, .offset = 0, .addr = arch_stack_walk+0x0/0x1c0
  ------------[ cut here ]------------
  kernel BUG at arch/arm64/kernel/probes/kprobes.c:241!

Fixes: 39ef362d2d45 ("arm64: Make return_address() use arch_stack_walk()")
Cc: stable@vger.kernel.org
Signed-off-by: Masami Hiramatsu (Google) <mhiramat@kernel.org>
Acked-by: Mark Rutland <mark.rutland@arm.com>
Link: https://lore.kernel.org/r/166994751368.439920.3236636557520824664.stgit@devnote3
Signed-off-by: Will Deacon <will@kernel.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2023-01-07 11:11:36 +01:00
Johan Hovold
15e7433e1d arm64: dts: qcom: sc8280xp: fix UFS DMA coherency
commit 0953777640354dc459a22369eea488603d225dd9 upstream.

The SC8280XP UFS controllers are cache coherent and must be marked as
such in the devicetree to avoid potential data corruption.

Fixes: 152d1faf1e2f ("arm64: dts: qcom: add SC8280XP platform")
Cc: stable@vger.kernel.org      # 6.0
Signed-off-by: Johan Hovold <johan+linaro@kernel.org>
Reviewed-by: Manivannan Sadhasivam <manivannan.sadhasivam@linaro.org>
Reviewed-by: Konrad Dybcio <konrad.dybcio@linaro.org>
Signed-off-by: Bjorn Andersson <andersson@kernel.org>
Link: https://lore.kernel.org/r/20221205100837.29212-3-johan+linaro@kernel.org
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2023-01-07 11:11:36 +01:00
Fan Ni
189c499376 cxl/region: Fix memdev reuse check
commit f04facfb993de47e2133b2b842d72b97b1c50162 upstream.

Due to a typo, the check of whether or not a memdev has already been
used as a target for the region (above code piece) will always be
skipped. Given a memdev with more than one HDM decoder, an interleaved
region can be created that maps multiple HPAs to the same DPA. According
to CXL spec 3.0 8.1.3.8.4, "Aliasing (mapping more than one Host
Physical Address (HPA) to a single Device Physical Address) is
forbidden."

Fix this by using existing iterator for memdev reuse check.

Cc: <stable@vger.kernel.org>
Fixes: 384e624bb211 ("cxl/region: Attach endpoint decoders")
Signed-off-by: Fan Ni <fan.ni@samsung.com>
Link: https://lore.kernel.org/r/20221107212153.745993-1-fan.ni@samsung.com
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2023-01-07 11:11:36 +01:00
Jason A. Donenfeld
fab4655990 media: stv0288: use explicitly signed char
commit 7392134428c92a4cb541bd5c8f4f5c8d2e88364d upstream.

With char becoming unsigned by default, and with `char` alone being
ambiguous and based on architecture, signed chars need to be marked
explicitly as such. Use `s8` and `u8` types here, since that's what
surrounding code does. This fixes:

drivers/media/dvb-frontends/stv0288.c:471 stv0288_set_frontend() warn: assigning (-9) to unsigned variable 'tm'
drivers/media/dvb-frontends/stv0288.c:471 stv0288_set_frontend() warn: we never enter this loop

Cc: Mauro Carvalho Chehab <mchehab@kernel.org>
Cc: linux-media@vger.kernel.org
Cc: stable@vger.kernel.org
Signed-off-by: Jason A. Donenfeld <Jason@zx2c4.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2023-01-07 11:11:36 +01:00
Tim Huang
a354a9e3fc drm/amdgpu: skip mes self test after s0i3 resume for MES IP v11.0
commit 8660495a9c5b9afeec4cc006b3b75178f0fb2f10 upstream.

MES is part of gfxoff and MES suspend and resume are skipped for S0i3.
But the mes_self_test call path is still in the amdgpu_device_ip_late_init.
it's should also be skipped for s0ix as no hardware re-initialization
happened.

Besides, mes_self_test will free the BO that triggers a lot of warning
messages while in the suspend state.

[   81.656085] WARNING: CPU: 2 PID: 1550 at drivers/gpu/drm/amd/amdgpu/amdgpu_object.c:425 amdgpu_bo_free_kernel+0xfc/0x110 [amdgpu]
[   81.679435] Call Trace:
[   81.679726]  <TASK>
[   81.679981]  amdgpu_mes_remove_hw_queue+0x17a/0x230 [amdgpu]
[   81.680857]  amdgpu_mes_self_test+0x390/0x430 [amdgpu]
[   81.681665]  mes_v11_0_late_init+0x37/0x50 [amdgpu]
[   81.682423]  amdgpu_device_ip_late_init+0x53/0x280 [amdgpu]
[   81.683257]  amdgpu_device_resume+0xae/0x2a0 [amdgpu]
[   81.684043]  amdgpu_pmops_resume+0x37/0x70 [amdgpu]
[   81.684818]  pci_pm_resume+0x5c/0xa0
[   81.685247]  ? pci_pm_thaw+0x90/0x90
[   81.685658]  dpm_run_callback+0x4e/0x160
[   81.686110]  device_resume+0xad/0x210
[   81.686529]  async_resume+0x1e/0x40
[   81.686931]  async_run_entry_fn+0x33/0x120
[   81.687405]  process_one_work+0x21d/0x3f0
[   81.687869]  worker_thread+0x4a/0x3c0
[   81.688293]  ? process_one_work+0x3f0/0x3f0
[   81.688777]  kthread+0xff/0x130
[   81.689157]  ? kthread_complete_and_exit+0x20/0x20
[   81.689707]  ret_from_fork+0x22/0x30
[   81.690118]  </TASK>
[   81.690380] ---[ end trace 0000000000000000 ]---

v2: make the comment clean and use adev->in_s0ix instead of
adev->suspend

Signed-off-by: Tim Huang <tim.huang@amd.com>
Reviewed-by: Mario Limonciello <mario.limonciello@amd.com>
Signed-off-by: Alex Deucher <alexander.deucher@amd.com>
Cc: stable@vger.kernel.org # 6.0, 6.1
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2023-01-07 11:11:36 +01:00
Alex Deucher
33a3b7fad8 drm/amdgpu: skip MES for S0ix as well since it's part of GFX
commit afa6646b1c5d3affd541f76bd7476e4b835a9174 upstream.

It's also part of gfxoff.

Cc: stable@vger.kernel.org # 6.0, 6.1
Reviewed-by: Mario Limonciello <mario.limonciello@amd.com>
Signed-off-by: Alex Deucher <alexander.deucher@amd.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2023-01-07 11:11:35 +01:00
Greg Kroah-Hartman
4adc0fbe03 Linux 6.1.3
Link: https://lore.kernel.org/r/20230102110551.509937186@linuxfoundation.org
Tested-by: Ronald Warsow <rwarsow@gmx.de>
Tested-by: Salvatore Bonaccorso <carnil@debian.org>
Tested-by: Rudi Heitbaum <rudi@heitbaum.com>
Tested-by: Shuah Khan <skhan@linuxfoundation.org>
Tested-by: Guenter Roeck <linux@roeck-us.net>
Tested-by: Fenil Jain <fkjainco@gmail.com>
Tested-by: Takeshi Ogasawara <takeshi.ogasawara@futuring-girl.com>
Tested-by: Linux Kernel Functional Testing <lkft@linaro.org>
Tested-by: Ron Economos <re@w6rz.net>
Tested-by: Sudip Mukherjee <sudip.mukherjee@codethink.co.uk>
Tested-by: Bagas Sanjaya <bagasdotme@gmail.com>
Tested-by: Allen Pais <apais@linux.microsoft.com>
Tested-by: Jon Hunter <jonathanh@nvidia.com>
Tested-by: Florian Fainelli <f.fainelli@gmail.com>
Tested-by: Justin M. Forbes <jforbes@fedoraproject.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
v6.1.3
2023-01-04 11:29:02 +01:00
Marco Elver
6a0ef7326e kcsan: Instrument memcpy/memset/memmove with newer Clang
commit 7c201739beef1a586d806463f1465429cdce34c5 upstream.

With Clang version 16+, -fsanitize=thread will turn
memcpy/memset/memmove calls in instrumented functions into
__tsan_memcpy/__tsan_memset/__tsan_memmove calls respectively.

Add these functions to the core KCSAN runtime, so that we (a) catch data
races with mem* functions, and (b) won't run into linker errors with
such newer compilers.

Cc: stable@vger.kernel.org # v5.10+
Signed-off-by: Marco Elver <elver@google.com>
Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2023-01-04 11:29:02 +01:00
Chuck Lever
c9ded831e2 SUNRPC: Don't leak netobj memory when gss_read_proxy_verf() fails
commit da522b5fe1a5f8b7c20a0023e87b52a150e53bf5 upstream.

Fixes: 030d794bf498 ("SUNRPC: Use gssproxy upcall for server RPCGSS authentication.")
Signed-off-by: Chuck Lever <chuck.lever@oracle.com>
Cc: <stable@vger.kernel.org>
Reviewed-by: Jeff Layton <jlayton@kernel.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2023-01-04 11:29:02 +01:00
Hanjun Guo
e60fa800a3 tpm: tpm_tis: Add the missed acpi_put_table() to fix memory leak
commit db9622f762104459ff87ecdf885cc42c18053fd9 upstream.

In check_acpi_tpm2(), we get the TPM2 table just to make
sure the table is there, not used after the init, so the
acpi_put_table() should be added to release the ACPI memory.

Fixes: 4cb586a188d4 ("tpm_tis: Consolidate the platform and acpi probe flow")
Cc: stable@vger.kernel.org
Signed-off-by: Hanjun Guo <guohanjun@huawei.com>
Signed-off-by: Jarkko Sakkinen <jarkko@kernel.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2023-01-04 11:29:02 +01:00
Hanjun Guo
b0785edaf6 tpm: tpm_crb: Add the missed acpi_put_table() to fix memory leak
commit 37e90c374dd11cf4919c51e847c6d6ced0abc555 upstream.

In crb_acpi_add(), we get the TPM2 table to retrieve information
like start method, and then assign them to the priv data, so the
TPM2 table is not used after the init, should be freed, call
acpi_put_table() to fix the memory leak.

Fixes: 30fc8d138e91 ("tpm: TPM 2.0 CRB Interface")
Cc: stable@vger.kernel.org
Signed-off-by: Hanjun Guo <guohanjun@huawei.com>
Reviewed-by: Jarkko Sakkinen <jarkko@kernel.org>
Signed-off-by: Jarkko Sakkinen <jarkko@kernel.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2023-01-04 11:29:02 +01:00
Hanjun Guo
bf31e3f807 tpm: acpi: Call acpi_put_table() to fix memory leak
commit 8740a12ca2e2959531ad253bac99ada338b33d80 upstream.

The start and length of the event log area are obtained from
TPM2 or TCPA table, so we call acpi_get_table() to get the
ACPI information, but the acpi_get_table() should be coupled with
acpi_put_table() to release the ACPI memory, add the acpi_put_table()
properly to fix the memory leak.

While we are at it, remove the redundant empty line at the
end of the tpm_read_log_acpi().

Fixes: 0bfb23746052 ("tpm: Move eventlog files to a subdirectory")
Fixes: 85467f63a05c ("tpm: Add support for event log pointer found in TPM2 ACPI table")
Cc: stable@vger.kernel.org
Signed-off-by: Hanjun Guo <guohanjun@huawei.com>
Reviewed-by: Jarkko Sakkinen <jarkko@kernel.org>
Signed-off-by: Jarkko Sakkinen <jarkko@kernel.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2023-01-04 11:29:02 +01:00
Deren Wu
ba2e7d07dd mmc: vub300: fix warning - do not call blocking ops when !TASK_RUNNING
commit 4a44cd249604e29e7b90ae796d7692f5773dd348 upstream.

vub300_enable_sdio_irq() works with mutex and need TASK_RUNNING here.
Ensure that we mark current as TASK_RUNNING for sleepable context.

[   77.554641] do not call blocking ops when !TASK_RUNNING; state=1 set at [<ffffffff92a72c1d>] sdio_irq_thread+0x17d/0x5b0
[   77.554652] WARNING: CPU: 2 PID: 1983 at kernel/sched/core.c:9813 __might_sleep+0x116/0x160
[   77.554905] CPU: 2 PID: 1983 Comm: ksdioirqd/mmc1 Tainted: G           OE      6.1.0-rc5 #1
[   77.554910] Hardware name: Intel(R) Client Systems NUC8i7BEH/NUC8BEB, BIOS BECFL357.86A.0081.2020.0504.1834 05/04/2020
[   77.554912] RIP: 0010:__might_sleep+0x116/0x160
[   77.554920] RSP: 0018:ffff888107b7fdb8 EFLAGS: 00010282
[   77.554923] RAX: 0000000000000000 RBX: ffff888118c1b740 RCX: 0000000000000000
[   77.554926] RDX: 0000000000000001 RSI: 0000000000000004 RDI: ffffed1020f6ffa9
[   77.554928] RBP: ffff888107b7fde0 R08: 0000000000000001 R09: ffffed1043ea60ba
[   77.554930] R10: ffff88821f5305cb R11: ffffed1043ea60b9 R12: ffffffff93aa3a60
[   77.554932] R13: 000000000000011b R14: 7fffffffffffffff R15: ffffffffc0558660
[   77.554934] FS:  0000000000000000(0000) GS:ffff88821f500000(0000) knlGS:0000000000000000
[   77.554937] CS:  0010 DS: 0000 ES: 0000 CR0: 0000000080050033
[   77.554939] CR2: 00007f8a44010d68 CR3: 000000024421a003 CR4: 00000000003706e0
[   77.554942] Call Trace:
[   77.554944]  <TASK>
[   77.554952]  mutex_lock+0x78/0xf0
[   77.554973]  vub300_enable_sdio_irq+0x103/0x3c0 [vub300]
[   77.554981]  sdio_irq_thread+0x25c/0x5b0
[   77.555006]  kthread+0x2b8/0x370
[   77.555017]  ret_from_fork+0x1f/0x30
[   77.555023]  </TASK>
[   77.555025] ---[ end trace 0000000000000000 ]---

Fixes: 88095e7b473a ("mmc: Add new VUB300 USB-to-SD/SDIO/MMC driver")
Signed-off-by: Deren Wu <deren.wu@mediatek.com>
Cc: stable@vger.kernel.org
Link: https://lore.kernel.org/r/87dc45b122d26d63c80532976813c9365d7160b3.1670140888.git.deren.wu@mediatek.com
Signed-off-by: Ulf Hansson <ulf.hansson@linaro.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2023-01-04 11:29:02 +01:00
Jan Kara
a35b4bcb43 block: Do not reread partition table on exclusively open device
commit 36369f46e91785688a5f39d7a5590e3f07981316 upstream.

Since commit 10c70d95c0f2 ("block: remove the bd_openers checks in
blk_drop_partitions") we allow rereading of partition table although
there are users of the block device. This has an undesirable consequence
that e.g. if sda and sdb are assembled to a RAID1 device md0 with
partitions, BLKRRPART ioctl on sda will rescan partition table and
create sda1 device. This partition device under a raid device confuses
some programs (such as libstorage-ng used for initial partitioning for
distribution installation) leading to failures.

Fix the problem refusing to rescan partitions if there is another user
that has the block device exclusively open.

Cc: stable@vger.kernel.org
Link: https://lore.kernel.org/all/20221130135344.2ul4cyfstfs3znxg@quack3
Fixes: 10c70d95c0f2 ("block: remove the bd_openers checks in blk_drop_partitions")
Signed-off-by: Jan Kara <jack@suse.cz>
Link: https://lore.kernel.org/r/20221130175653.24299-1-jack@suse.cz
[axboe: fold in followup fix]
Signed-off-by: Jens Axboe <axboe@kernel.dk>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2023-01-04 11:29:01 +01:00
Jaegeuk Kim
01bb485730 f2fs: allow to read node block after shutdown
commit e6ecb142429183cef4835f31d4134050ae660032 upstream.

If block address is still alive, we should give a valid node block even after
shutdown. Otherwise, we can see zero data when reading out a file.

Cc: stable@vger.kernel.org
Fixes: 83a3bfdb5a8a ("f2fs: indicate shutdown f2fs to allow unmount successfully")
Reviewed-by: Chao Yu <chao@kernel.org>
Signed-off-by: Jaegeuk Kim <jaegeuk@kernel.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2023-01-04 11:29:01 +01:00
Pavel Machek
6028ec01c4 f2fs: should put a page when checking the summary info
commit c3db3c2fd9992c08f49aa93752d3c103c3a4f6aa upstream.

The commit introduces another bug.

Cc: stable@vger.kernel.org
Fixes: c6ad7fd16657e ("f2fs: fix to do sanity check on summary info")
Signed-off-by: Pavel Machek <pavel@denx.de>
Reviewed-by: Chao Yu <chao@kernel.org>
Signed-off-by: Jaegeuk Kim <jaegeuk@kernel.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2023-01-04 11:29:01 +01:00
NARIBAYASHI Akira
b3b3212725 mm, compaction: fix fast_isolate_around() to stay within boundaries
commit be21b32afe470c5ae98e27e49201158a47032942 upstream.

Depending on the memory configuration, isolate_freepages_block() may scan
pages out of the target range and causes panic.

Panic can occur on systems with multiple zones in a single pageblock.

The reason it is rare is that it only happens in special
configurations.  Depending on how many similar systems there are, it
may be a good idea to fix this problem for older kernels as well.

The problem is that pfn as argument of fast_isolate_around() could be out
of the target range.  Therefore we should consider the case where pfn <
start_pfn, and also the case where end_pfn < pfn.

This problem should have been addressd by the commit 6e2b7044c199 ("mm,
compaction: make fast_isolate_freepages() stay within zone") but there was
an oversight.

 Case1: pfn < start_pfn

  <at memory compaction for node Y>
  |  node X's zone  | node Y's zone
  +-----------------+------------------------------...
   pageblock    ^   ^     ^
  +-----------+-----------+-----------+-----------+...
                ^   ^     ^
                ^   ^      end_pfn
                ^    start_pfn = cc->zone->zone_start_pfn
                 pfn
                <---------> scanned range by "Scan After"

 Case2: end_pfn < pfn

  <at memory compaction for node X>
  |  node X's zone  | node Y's zone
  +-----------------+------------------------------...
   pageblock  ^     ^   ^
  +-----------+-----------+-----------+-----------+...
              ^     ^   ^
              ^     ^    pfn
              ^      end_pfn
               start_pfn
              <---------> scanned range by "Scan Before"

It seems that there is no good reason to skip nr_isolated pages just after
given pfn.  So let perform simple scan from start to end instead of
dividing the scan into "Before" and "After".

Link: https://lkml.kernel.org/r/20221026112438.236336-1-a.naribayashi@fujitsu.com
Fixes: 6e2b7044c199 ("mm, compaction: make fast_isolate_freepages() stay within zone").
Signed-off-by: NARIBAYASHI Akira <a.naribayashi@fujitsu.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2023-01-04 11:29:01 +01:00
Mikulas Patocka
97ce99984b md: fix a crash in mempool_free
commit 341097ee53573e06ab9fc675d96a052385b851fa upstream.

There's a crash in mempool_free when running the lvm test
shell/lvchange-rebuild-raid.sh.

The reason for the crash is this:
* super_written calls atomic_dec_and_test(&mddev->pending_writes) and
  wake_up(&mddev->sb_wait). Then it calls rdev_dec_pending(rdev, mddev)
  and bio_put(bio).
* so, the process that waited on sb_wait and that is woken up is racing
  with bio_put(bio).
* if the process wins the race, it calls bioset_exit before bio_put(bio)
  is executed.
* bio_put(bio) attempts to free a bio into a destroyed bio set - causing
  a crash in mempool_free.

We fix this bug by moving bio_put before atomic_dec_and_test.

We also move rdev_dec_pending before atomic_dec_and_test as suggested by
Neil Brown.

The function md_end_flush has a similar bug - we must call bio_put before
we decrement the number of in-progress bios.

 BUG: kernel NULL pointer dereference, address: 0000000000000000
 #PF: supervisor write access in kernel mode
 #PF: error_code(0x0002) - not-present page
 PGD 11557f0067 P4D 11557f0067 PUD 0
 Oops: 0002 [#1] PREEMPT SMP
 CPU: 0 PID: 73 Comm: kworker/0:1 Not tainted 6.1.0-rc3 #5
 Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.14.0-2 04/01/2014
 Workqueue: kdelayd flush_expired_bios [dm_delay]
 RIP: 0010:mempool_free+0x47/0x80
 Code: 48 89 ef 5b 5d ff e0 f3 c3 48 89 f7 e8 32 45 3f 00 48 63 53 08 48 89 c6 3b 53 04 7d 2d 48 8b 43 10 8d 4a 01 48 89 df 89 4b 08 <48> 89 2c d0 e8 b0 45 3f 00 48 8d 7b 30 5b 5d 31 c9 ba 01 00 00 00
 RSP: 0018:ffff88910036bda8 EFLAGS: 00010093
 RAX: 0000000000000000 RBX: ffff8891037b65d8 RCX: 0000000000000001
 RDX: 0000000000000000 RSI: 0000000000000202 RDI: ffff8891037b65d8
 RBP: ffff8891447ba240 R08: 0000000000012908 R09: 00000000003d0900
 R10: 0000000000000000 R11: 0000000000173544 R12: ffff889101a14000
 R13: ffff8891562ac300 R14: ffff889102b41440 R15: ffffe8ffffa00d05
 FS:  0000000000000000(0000) GS:ffff88942fa00000(0000) knlGS:0000000000000000
 CS:  0010 DS: 0000 ES: 0000 CR0: 0000000080050033
 CR2: 0000000000000000 CR3: 0000001102e99000 CR4: 00000000000006b0
 Call Trace:
  <TASK>
  clone_endio+0xf4/0x1c0 [dm_mod]
  clone_endio+0xf4/0x1c0 [dm_mod]
  __submit_bio+0x76/0x120
  submit_bio_noacct_nocheck+0xb6/0x2a0
  flush_expired_bios+0x28/0x2f [dm_delay]
  process_one_work+0x1b4/0x300
  worker_thread+0x45/0x3e0
  ? rescuer_thread+0x380/0x380
  kthread+0xc2/0x100
  ? kthread_complete_and_exit+0x20/0x20
  ret_from_fork+0x1f/0x30
  </TASK>
 Modules linked in: brd dm_delay dm_raid dm_mod af_packet uvesafb cfbfillrect cfbimgblt cn cfbcopyarea fb font fbdev tun autofs4 binfmt_misc configfs ipv6 virtio_rng virtio_balloon rng_core virtio_net pcspkr net_failover failover qemu_fw_cfg button mousedev raid10 raid456 libcrc32c async_raid6_recov async_memcpy async_pq raid6_pq async_xor xor async_tx raid1 raid0 md_mod sd_mod t10_pi crc64_rocksoft crc64 virtio_scsi scsi_mod evdev psmouse bsg scsi_common [last unloaded: brd]
 CR2: 0000000000000000
 ---[ end trace 0000000000000000 ]---

Signed-off-by: Mikulas Patocka <mpatocka@redhat.com>
Cc: stable@vger.kernel.org
Signed-off-by: Song Liu <song@kernel.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2023-01-04 11:29:01 +01:00
ChiYuan Huang
e9d055b8df mfd: mt6360: Add bounds checking in Regmap read/write call-backs
commit 5f4f94e9f26cca6514474b307b59348b8485e711 upstream.

Fix the potential risk of OOB read if bank index is over the maximum.

Refer to the discussion list for the experiment result on mt6370.
https://lore.kernel.org/all/20220914013345.GA5802@cyhuang-hp-elitebook-840-g3.rt/
If not to check the bound, there is the same issue on mt6360.

Cc: stable@vger.kernel.org
Fixes: 3b0850440a06c (mfd: mt6360: Merge different sub-devices I2C read/write)
Signed-off-by: ChiYuan Huang <cy_huang@richtek.com>
Signed-off-by: Lee Jones <lee@kernel.org>
Link: https://lore.kernel.org/r/1664416817-31590-1-git-send-email-u0084500@gmail.com
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2023-01-04 11:29:01 +01:00
Christian Brauner
784a4f995e pnode: terminate at peers of source
commit 11933cf1d91d57da9e5c53822a540bbdc2656c16 upstream.

The propagate_mnt() function handles mount propagation when creating
mounts and propagates the source mount tree @source_mnt to all
applicable nodes of the destination propagation mount tree headed by
@dest_mnt.

Unfortunately it contains a bug where it fails to terminate at peers of
@source_mnt when looking up copies of the source mount that become
masters for copies of the source mount tree mounted on top of slaves in
the destination propagation tree causing a NULL dereference.

Once the mechanics of the bug are understood it's easy to trigger.
Because of unprivileged user namespaces it is available to unprivileged
users.

While fixing this bug we've gotten confused multiple times due to
unclear terminology or missing concepts. So let's start this with some
clarifications:

* The terms "master" or "peer" denote a shared mount. A shared mount
  belongs to a peer group.

* A peer group is a set of shared mounts that propagate to each other.
  They are identified by a peer group id. The peer group id is available
  in @shared_mnt->mnt_group_id.
  Shared mounts within the same peer group have the same peer group id.
  The peers in a peer group can be reached via @shared_mnt->mnt_share.

* The terms "slave mount" or "dependent mount" denote a mount that
  receives propagation from a peer in a peer group. IOW, shared mounts
  may have slave mounts and slave mounts have shared mounts as their
  master. Slave mounts of a given peer in a peer group are listed on
  that peers slave list available at @shared_mnt->mnt_slave_list.

* The term "master mount" denotes a mount in a peer group. IOW, it
  denotes a shared mount or a peer mount in a peer group. The term
  "master mount" - or "master" for short - is mostly used when talking
  in the context of slave mounts that receive propagation from a master
  mount. A master mount of a slave identifies the closest peer group a
  slave mount receives propagation from. The master mount of a slave can
  be identified via @slave_mount->mnt_master. Different slaves may point
  to different masters in the same peer group.

* Multiple peers in a peer group can have non-empty ->mnt_slave_lists.
  Non-empty ->mnt_slave_lists of peers don't intersect. Consequently, to
  ensure all slave mounts of a peer group are visited the
  ->mnt_slave_lists of all peers in a peer group have to be walked.

* Slave mounts point to a peer in the closest peer group they receive
  propagation from via @slave_mnt->mnt_master (see above). Together with
  these peers they form a propagation group (see below). The closest
  peer group can thus be identified through the peer group id
  @slave_mnt->mnt_master->mnt_group_id of the peer/master that a slave
  mount receives propagation from.

* A shared-slave mount is a slave mount to a peer group pg1 while also
  a peer in another peer group pg2. IOW, a peer group may receive
  propagation from another peer group.

  If a peer group pg1 is a slave to another peer group pg2 then all
  peers in peer group pg1 point to the same peer in peer group pg2 via
  ->mnt_master. IOW, all peers in peer group pg1 appear on the same
  ->mnt_slave_list. IOW, they cannot be slaves to different peer groups.

* A pure slave mount is a slave mount that is a slave to a peer group
  but is not a peer in another peer group.

* A propagation group denotes the set of mounts consisting of a single
  peer group pg1 and all slave mounts and shared-slave mounts that point
  to a peer in that peer group via ->mnt_master. IOW, all slave mounts
  such that @slave_mnt->mnt_master->mnt_group_id is equal to
  @shared_mnt->mnt_group_id.

  The concept of a propagation group makes it easier to talk about a
  single propagation level in a propagation tree.

  For example, in propagate_mnt() the immediate peers of @dest_mnt and
  all slaves of @dest_mnt's peer group form a propagation group propg1.
  So a shared-slave mount that is a slave in propg1 and that is a peer
  in another peer group pg2 forms another propagation group propg2
  together with all slaves that point to that shared-slave mount in
  their ->mnt_master.

* A propagation tree refers to all mounts that receive propagation
  starting from a specific shared mount.

  For example, for propagate_mnt() @dest_mnt is the start of a
  propagation tree. The propagation tree ecompasses all mounts that
  receive propagation from @dest_mnt's peer group down to the leafs.

With that out of the way let's get to the actual algorithm.

We know that @dest_mnt is guaranteed to be a pure shared mount or a
shared-slave mount. This is guaranteed by a check in
attach_recursive_mnt(). So propagate_mnt() will first propagate the
source mount tree to all peers in @dest_mnt's peer group:

for (n = next_peer(dest_mnt); n != dest_mnt; n = next_peer(n)) {
        ret = propagate_one(n);
        if (ret)
               goto out;
}

Notice, that the peer propagation loop of propagate_mnt() doesn't
propagate @dest_mnt itself. @dest_mnt is mounted directly in
attach_recursive_mnt() after we propagated to the destination
propagation tree.

The mount that will be mounted on top of @dest_mnt is @source_mnt. This
copy was created earlier even before we entered attach_recursive_mnt()
and doesn't concern us a lot here.

It's just important to notice that when propagate_mnt() is called
@source_mnt will not yet have been mounted on top of @dest_mnt. Thus,
@source_mnt->mnt_parent will either still point to @source_mnt or - in
the case @source_mnt is moved and thus already attached - still to its
former parent.

For each peer @m in @dest_mnt's peer group propagate_one() will create a
new copy of the source mount tree and mount that copy @child on @m such
that @child->mnt_parent points to @m after propagate_one() returns.

propagate_one() will stash the last destination propagation node @m in
@last_dest and the last copy it created for the source mount tree in
@last_source.

Hence, if we call into propagate_one() again for the next destination
propagation node @m, @last_dest will point to the previous destination
propagation node and @last_source will point to the previous copy of the
source mount tree and mounted on @last_dest.

Each new copy of the source mount tree is created from the previous copy
of the source mount tree. This will become important later.

The peer loop in propagate_mnt() is straightforward. We iterate through
the peers copying and updating @last_source and @last_dest as we go
through them and mount each copy of the source mount tree @child on a
peer @m in @dest_mnt's peer group.

After propagate_mnt() handled the peers in @dest_mnt's peer group
propagate_mnt() will propagate the source mount tree down the
propagation tree that @dest_mnt's peer group propagates to:

for (m = next_group(dest_mnt, dest_mnt); m;
                m = next_group(m, dest_mnt)) {
        /* everything in that slave group */
        n = m;
        do {
                ret = propagate_one(n);
                if (ret)
                        goto out;
                n = next_peer(n);
        } while (n != m);
}

The next_group() helper will recursively walk the destination
propagation tree, descending into each propagation group of the
propagation tree.

The important part is that it takes care to propagate the source mount
tree to all peers in the peer group of a propagation group before it
propagates to the slaves to those peers in the propagation group. IOW,
it creates and mounts copies of the source mount tree that become
masters before it creates and mounts copies of the source mount tree
that become slaves to these masters.

It is important to remember that propagating the source mount tree to
each mount @m in the destination propagation tree simply means that we
create and mount new copies @child of the source mount tree on @m such
that @child->mnt_parent points to @m.

Since we know that each node @m in the destination propagation tree
headed by @dest_mnt's peer group will be overmounted with a copy of the
source mount tree and since we know that the propagation properties of
each copy of the source mount tree we create and mount at @m will mostly
mirror the propagation properties of @m. We can use that information to
create and mount the copies of the source mount tree that become masters
before their slaves.

The easy case is always when @m and @last_dest are peers in a peer group
of a given propagation group. In that case we know that we can simply
copy @last_source without having to figure out what the master for the
new copy @child of the source mount tree needs to be as we've done that
in a previous call to propagate_one().

The hard case is when we're dealing with a slave mount or a shared-slave
mount @m in a destination propagation group that we need to create and
mount a copy of the source mount tree on.

For each propagation group in the destination propagation tree we
propagate the source mount tree to we want to make sure that the copies
@child of the source mount tree we create and mount on slaves @m pick an
ealier copy of the source mount tree that we mounted on a master @m of
the destination propagation group as their master. This is a mouthful
but as far as we can tell that's the core of it all.

But, if we keep track of the masters in the destination propagation tree
@m we can use the information to find the correct master for each copy
of the source mount tree we create and mount at the slaves in the
destination propagation tree @m.

Let's walk through the base case as that's still fairly easy to grasp.

If we're dealing with the first slave in the propagation group that
@dest_mnt is in then we don't yet have marked any masters in the
destination propagation tree.

We know the master for the first slave to @dest_mnt's peer group is
simple @dest_mnt. So we expect this algorithm to yield a copy of the
source mount tree that was mounted on a peer in @dest_mnt's peer group
as the master for the copy of the source mount tree we want to mount at
the first slave @m:

for (n = m; ; n = p) {
        p = n->mnt_master;
        if (p == dest_master || IS_MNT_MARKED(p))
                break;
}

For the first slave we walk the destination propagation tree all the way
up to a peer in @dest_mnt's peer group. IOW, the propagation hierarchy
can be walked by walking up the @mnt->mnt_master hierarchy of the
destination propagation tree @m. We will ultimately find a peer in
@dest_mnt's peer group and thus ultimately @dest_mnt->mnt_master.

Btw, here the assumption we listed at the beginning becomes important.
Namely, that peers in a peer group pg1 that are slaves in another peer
group pg2 appear on the same ->mnt_slave_list. IOW, all slaves who are
peers in peer group pg1 point to the same peer in peer group pg2 via
their ->mnt_master. Otherwise the termination condition in the code
above would be wrong and next_group() would be broken too.

So the first iteration sets:

n = m;
p = n->mnt_master;

such that @p now points to a peer or @dest_mnt itself. We walk up one
more level since we don't have any marked mounts. So we end up with:

n = dest_mnt;
p = dest_mnt->mnt_master;

If @dest_mnt's peer group is not slave to another peer group then @p is
now NULL. If @dest_mnt's peer group is a slave to another peer group
then @p now points to @dest_mnt->mnt_master points which is a master
outside the propagation tree we're dealing with.

Now we need to figure out the master for the copy of the source mount
tree we're about to create and mount on the first slave of @dest_mnt's
peer group:

do {
        struct mount *parent = last_source->mnt_parent;
        if (last_source == first_source)
                break;
        done = parent->mnt_master == p;
        if (done && peers(n, parent))
                break;
        last_source = last_source->mnt_master;
} while (!done);

We know that @last_source->mnt_parent points to @last_dest and
@last_dest is the last peer in @dest_mnt's peer group we propagated to
in the peer loop in propagate_mnt().

Consequently, @last_source is the last copy we created and mount on that
last peer in @dest_mnt's peer group. So @last_source is the master we
want to pick.

We know that @last_source->mnt_parent->mnt_master points to
@last_dest->mnt_master. We also know that @last_dest->mnt_master is
either NULL or points to a master outside of the destination propagation
tree and so does @p. Hence:

done = parent->mnt_master == p;

is trivially true in the base condition.

We also know that for the first slave mount of @dest_mnt's peer group
that @last_dest either points @dest_mnt itself because it was
initialized to:

last_dest = dest_mnt;

at the beginning of propagate_mnt() or it will point to a peer of
@dest_mnt in its peer group. In both cases it is guaranteed that on the
first iteration @n and @parent are peers (Please note the check for
peers here as that's important.):

if (done && peers(n, parent))
        break;

So, as we expected, we select @last_source, which referes to the last
copy of the source mount tree we mounted on the last peer in @dest_mnt's
peer group, as the master of the first slave in @dest_mnt's peer group.
The rest is taken care of by clone_mnt(last_source, ...). We'll skip
over that part otherwise this becomes a blogpost.

At the end of propagate_mnt() we now mark @m->mnt_master as the first
master in the destination propagation tree that is distinct from
@dest_mnt->mnt_master. IOW, we mark @dest_mnt itself as a master.

By marking @dest_mnt or one of it's peers we are able to easily find it
again when we later lookup masters for other copies of the source mount
tree we mount copies of the source mount tree on slaves @m to
@dest_mnt's peer group. This, in turn allows us to find the master we
selected for the copies of the source mount tree we mounted on master in
the destination propagation tree again.

The important part is to realize that the code makes use of the fact
that the last copy of the source mount tree stashed in @last_source was
mounted on top of the previous destination propagation node @last_dest.
What this means is that @last_source allows us to walk the destination
propagation hierarchy the same way each destination propagation node @m
does.

If we take @last_source, which is the copy of @source_mnt we have
mounted on @last_dest in the previous iteration of propagate_one(), then
we know @last_source->mnt_parent points to @last_dest but we also know
that as we walk through the destination propagation tree that
@last_source->mnt_master will point to an earlier copy of the source
mount tree we mounted one an earlier destination propagation node @m.

IOW, @last_source->mnt_parent will be our hook into the destination
propagation tree and each consecutive @last_source->mnt_master will lead
us to an earlier propagation node @m via
@last_source->mnt_master->mnt_parent.

Hence, by walking up @last_source->mnt_master, each of which is mounted
on a node that is a master @m in the destination propagation tree we can
also walk up the destination propagation hierarchy.

So, for each new destination propagation node @m we use the previous
copy of @last_source and the fact it's mounted on the previous
propagation node @last_dest via @last_source->mnt_master->mnt_parent to
determine what the master of the new copy of @last_source needs to be.

The goal is to find the _closest_ master that the new copy of the source
mount tree we are about to create and mount on a slave @m in the
destination propagation tree needs to pick. IOW, we want to find a
suitable master in the propagation group.

As the propagation structure of the source mount propagation tree we
create mirrors the propagation structure of the destination propagation
tree we can find @m's closest master - i.e., a marked master - which is
a peer in the closest peer group that @m receives propagation from. We
store that closest master of @m in @p as before and record the slave to
that master in @n

We then search for this master @p via @last_source by walking up the
master hierarchy starting from the last copy of the source mount tree
stored in @last_source that we created and mounted on the previous
destination propagation node @m.

We will try to find the master by walking @last_source->mnt_master and
by comparing @last_source->mnt_master->mnt_parent->mnt_master to @p. If
we find @p then we can figure out what earlier copy of the source mount
tree needs to be the master for the new copy of the source mount tree
we're about to create and mount at the current destination propagation
node @m.

If @last_source->mnt_master->mnt_parent and @n are peers then we know
that the closest master they receive propagation from is
@last_source->mnt_master->mnt_parent->mnt_master. If not then the
closest immediate peer group that they receive propagation from must be
one level higher up.

This builds on the earlier clarification at the beginning that all peers
in a peer group which are slaves of other peer groups all point to the
same ->mnt_master, i.e., appear on the same ->mnt_slave_list, of the
closest peer group that they receive propagation from.

However, terminating the walk has corner cases.

If the closest marked master for a given destination node @m cannot be
found by walking up the master hierarchy via @last_source->mnt_master
then we need to terminate the walk when we encounter @source_mnt again.

This isn't an arbitrary termination. It simply means that the new copy
of the source mount tree we're about to create has a copy of the source
mount tree we created and mounted on a peer in @dest_mnt's peer group as
its master. IOW, @source_mnt is the peer in the closest peer group that
the new copy of the source mount tree receives propagation from.

We absolutely have to stop @source_mnt because @last_source->mnt_master
either points outside the propagation hierarchy we're dealing with or it
is NULL because @source_mnt isn't a shared-slave.

So continuing the walk past @source_mnt would cause a NULL dereference
via @last_source->mnt_master->mnt_parent. And so we have to stop the
walk when we encounter @source_mnt again.

One scenario where this can happen is when we first handled a series of
slaves of @dest_mnt's peer group and then encounter peers in a new peer
group that is a slave to @dest_mnt's peer group. We handle them and then
we encounter another slave mount to @dest_mnt that is a pure slave to
@dest_mnt's peer group. That pure slave will have a peer in @dest_mnt's
peer group as its master. Consequently, the new copy of the source mount
tree will need to have @source_mnt as it's master. So we walk the
propagation hierarchy all the way up to @source_mnt based on
@last_source->mnt_master.

So terminate on @source_mnt, easy peasy. Except, that the check misses
something that the rest of the algorithm already handles.

If @dest_mnt has peers in it's peer group the peer loop in
propagate_mnt():

for (n = next_peer(dest_mnt); n != dest_mnt; n = next_peer(n)) {
        ret = propagate_one(n);
        if (ret)
                goto out;
}

will consecutively update @last_source with each previous copy of the
source mount tree we created and mounted at the previous peer in
@dest_mnt's peer group. So after that loop terminates @last_source will
point to whatever copy of the source mount tree was created and mounted
on the last peer in @dest_mnt's peer group.

Furthermore, if there is even a single additional peer in @dest_mnt's
peer group then @last_source will __not__ point to @source_mnt anymore.
Because, as we mentioned above, @dest_mnt isn't even handled in this
loop but directly in attach_recursive_mnt(). So it can't even accidently
come last in that peer loop.

So the first time we handle a slave mount @m of @dest_mnt's peer group
the copy of the source mount tree we create will make the __last copy of
the source mount tree we created and mounted on the last peer in
@dest_mnt's peer group the master of the new copy of the source mount
tree we create and mount on the first slave of @dest_mnt's peer group__.

But this means that the termination condition that checks for
@source_mnt is wrong. The @source_mnt cannot be found anymore by
propagate_one(). Instead it will find the last copy of the source mount
tree we created and mounted for the last peer of @dest_mnt's peer group
again. And that is a peer of @source_mnt not @source_mnt itself.

IOW, we fail to terminate the loop correctly and ultimately dereference
@last_source->mnt_master->mnt_parent. When @source_mnt's peer group
isn't slave to another peer group then @last_source->mnt_master is NULL
causing the splat below.

For example, assume @dest_mnt is a pure shared mount and has three peers
in its peer group:

===================================================================================
                                         mount-id   mount-parent-id   peer-group-id
===================================================================================
(@dest_mnt) mnt_master[216]              309        297               shared:216
    \
     (@source_mnt) mnt_master[218]:      609        609               shared:218

(1) mnt_master[216]:                     607        605               shared:216
    \
     (P1) mnt_master[218]:               624        607               shared:218

(2) mnt_master[216]:                     576        574               shared:216
    \
     (P2) mnt_master[218]:               625        576               shared:218

(3) mnt_master[216]:                     545        543               shared:216
    \
     (P3) mnt_master[218]:               626        545               shared:218

After this sequence has been processed @last_source will point to (P3),
the copy generated for the third peer in @dest_mnt's peer group we
handled. So the copy of the source mount tree (P4) we create and mount
on the first slave of @dest_mnt's peer group:

===================================================================================
                                         mount-id   mount-parent-id   peer-group-id
===================================================================================
    mnt_master[216]                      309        297               shared:216
   /
  /
(S0) mnt_slave                           483        481               master:216
  \
   \    (P3) mnt_master[218]             626        545               shared:218
    \  /
     \/
    (P4) mnt_slave                       627        483               master:218

will pick the last copy of the source mount tree (P3) as master, not (S0).

When walking the propagation hierarchy via @last_source's master
hierarchy we encounter (P3) but not (S0), i.e., @source_mnt.

We can fix this in multiple ways:

(1) By setting @last_source to @source_mnt after we processed the peers
    in @dest_mnt's peer group right after the peer loop in
    propagate_mnt().

(2) By changing the termination condition that relies on finding exactly
    @source_mnt to finding a peer of @source_mnt.

(3) By only moving @last_source when we actually venture into a new peer
    group or some clever variant thereof.

The first two options are minimally invasive and what we want as a fix.
The third option is more intrusive but something we'd like to explore in
the near future.

This passes all LTP tests and specifically the mount propagation
testsuite part of it. It also holds up against all known reproducers of
this issues.

Final words.
First, this is a clever but __worringly__ underdocumented algorithm.
There isn't a single detailed comment to be found in next_group(),
propagate_one() or anywhere else in that file for that matter. This has
been a giant pain to understand and work through and a bug like this is
insanely difficult to fix without a detailed understanding of what's
happening. Let's not talk about the amount of time that was sunk into
fixing this.

Second, all the cool kids with access to
unshare --mount --user --map-root --propagation=unchanged
are going to have a lot of fun. IOW, triggerable by unprivileged users
while namespace_lock() lock is held.

[  115.848393] BUG: kernel NULL pointer dereference, address: 0000000000000010
[  115.848967] #PF: supervisor read access in kernel mode
[  115.849386] #PF: error_code(0x0000) - not-present page
[  115.849803] PGD 0 P4D 0
[  115.850012] Oops: 0000 [#1] PREEMPT SMP PTI
[  115.850354] CPU: 0 PID: 15591 Comm: mount Not tainted 6.1.0-rc7 #3
[  115.850851] Hardware name: innotek GmbH VirtualBox/VirtualBox, BIOS
VirtualBox 12/01/2006
[  115.851510] RIP: 0010:propagate_one.part.0+0x7f/0x1a0
[  115.851924] Code: 75 eb 4c 8b 05 c2 25 37 02 4c 89 ca 48 8b 4a 10
49 39 d0 74 1e 48 3b 81 e0 00 00 00 74 26 48 8b 92 e0 00 00 00 be 01
00 00 00 <48> 8b 4a 10 49 39 d0 75 e2 40 84 f6 74 38 4c 89 05 84 25 37
02 4d
[  115.853441] RSP: 0018:ffffb8d5443d7d50 EFLAGS: 00010282
[  115.853865] RAX: ffff8e4d87c41c80 RBX: ffff8e4d88ded780 RCX: ffff8e4da4333a00
[  115.854458] RDX: 0000000000000000 RSI: 0000000000000001 RDI: ffff8e4d88ded780
[  115.855044] RBP: ffff8e4d88ded780 R08: ffff8e4da4338000 R09: ffff8e4da43388c0
[  115.855693] R10: 0000000000000002 R11: ffffb8d540158000 R12: ffffb8d5443d7da8
[  115.856304] R13: ffff8e4d88ded780 R14: 0000000000000000 R15: 0000000000000000
[  115.856859] FS:  00007f92c90c9800(0000) GS:ffff8e4dfdc00000(0000)
knlGS:0000000000000000
[  115.857531] CS:  0010 DS: 0000 ES: 0000 CR0: 0000000080050033
[  115.858006] CR2: 0000000000000010 CR3: 0000000022f4c002 CR4: 00000000000706f0
[  115.858598] DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000
[  115.859393] DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400
[  115.860099] Call Trace:
[  115.860358]  <TASK>
[  115.860535]  propagate_mnt+0x14d/0x190
[  115.860848]  attach_recursive_mnt+0x274/0x3e0
[  115.861212]  path_mount+0x8c8/0xa60
[  115.861503]  __x64_sys_mount+0xf6/0x140
[  115.861819]  do_syscall_64+0x5b/0x80
[  115.862117]  ? do_faccessat+0x123/0x250
[  115.862435]  ? syscall_exit_to_user_mode+0x17/0x40
[  115.862826]  ? do_syscall_64+0x67/0x80
[  115.863133]  ? syscall_exit_to_user_mode+0x17/0x40
[  115.863527]  ? do_syscall_64+0x67/0x80
[  115.863835]  ? do_syscall_64+0x67/0x80
[  115.864144]  ? do_syscall_64+0x67/0x80
[  115.864452]  ? exc_page_fault+0x70/0x170
[  115.864775]  entry_SYSCALL_64_after_hwframe+0x63/0xcd
[  115.865187] RIP: 0033:0x7f92c92b0ebe
[  115.865480] Code: 48 8b 0d 75 4f 0c 00 f7 d8 64 89 01 48 83 c8 ff
c3 66 2e 0f 1f 84 00 00 00 00 00 90 f3 0f 1e fa 49 89 ca b8 a5 00 00
00 0f 05 <48> 3d 01 f0 ff ff 73 01 c3 48 8b 0d 42 4f 0c 00 f7 d8 64 89
01 48
[  115.866984] RSP: 002b:00007fff000aa728 EFLAGS: 00000246 ORIG_RAX:
00000000000000a5
[  115.867607] RAX: ffffffffffffffda RBX: 000055a77888d6b0 RCX: 00007f92c92b0ebe
[  115.868240] RDX: 000055a77888d8e0 RSI: 000055a77888e6e0 RDI: 000055a77888e620
[  115.868823] RBP: 0000000000000000 R08: 0000000000000000 R09: 0000000000000001
[  115.869403] R10: 0000000000001000 R11: 0000000000000246 R12: 000055a77888e620
[  115.869994] R13: 000055a77888d8e0 R14: 00000000ffffffff R15: 00007f92c93e4076
[  115.870581]  </TASK>
[  115.870763] Modules linked in: nft_fib_inet nft_fib_ipv4
nft_fib_ipv6 nft_fib nft_reject_inet nf_reject_ipv4 nf_reject_ipv6
nft_reject nft_ct nft_chain_nat nf_nat nf_conntrack nf_defrag_ipv6
nf_defrag_ipv4 ip_set rfkill nf_tables nfnetlink qrtr snd_intel8x0
sunrpc snd_ac97_codec ac97_bus snd_pcm snd_timer intel_rapl_msr
intel_rapl_common snd vboxguest intel_powerclamp video rapl joydev
soundcore i2c_piix4 wmi fuse zram xfs vmwgfx crct10dif_pclmul
crc32_pclmul crc32c_intel polyval_clmulni polyval_generic
drm_ttm_helper ttm e1000 ghash_clmulni_intel serio_raw ata_generic
pata_acpi scsi_dh_rdac scsi_dh_emc scsi_dh_alua dm_multipath
[  115.875288] CR2: 0000000000000010
[  115.875641] ---[ end trace 0000000000000000 ]---
[  115.876135] RIP: 0010:propagate_one.part.0+0x7f/0x1a0
[  115.876551] Code: 75 eb 4c 8b 05 c2 25 37 02 4c 89 ca 48 8b 4a 10
49 39 d0 74 1e 48 3b 81 e0 00 00 00 74 26 48 8b 92 e0 00 00 00 be 01
00 00 00 <48> 8b 4a 10 49 39 d0 75 e2 40 84 f6 74 38 4c 89 05 84 25 37
02 4d
[  115.878086] RSP: 0018:ffffb8d5443d7d50 EFLAGS: 00010282
[  115.878511] RAX: ffff8e4d87c41c80 RBX: ffff8e4d88ded780 RCX: ffff8e4da4333a00
[  115.879128] RDX: 0000000000000000 RSI: 0000000000000001 RDI: ffff8e4d88ded780
[  115.879715] RBP: ffff8e4d88ded780 R08: ffff8e4da4338000 R09: ffff8e4da43388c0
[  115.880359] R10: 0000000000000002 R11: ffffb8d540158000 R12: ffffb8d5443d7da8
[  115.880962] R13: ffff8e4d88ded780 R14: 0000000000000000 R15: 0000000000000000
[  115.881548] FS:  00007f92c90c9800(0000) GS:ffff8e4dfdc00000(0000)
knlGS:0000000000000000
[  115.882234] CS:  0010 DS: 0000 ES: 0000 CR0: 0000000080050033
[  115.882713] CR2: 0000000000000010 CR3: 0000000022f4c002 CR4: 00000000000706f0
[  115.883314] DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000
[  115.883966] DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400

Fixes: f2ebb3a921c1 ("smarter propagate_mnt()")
Fixes: 5ec0811d3037 ("propogate_mnt: Handle the first propogated copy being a slave")
Cc: <stable@vger.kernel.org>
Reported-by: Ditang Chen <ditang.c@gmail.com>
Signed-off-by: Seth Forshee (Digital Ocean) <sforshee@kernel.org>
Signed-off-by: Christian Brauner (Microsoft) <brauner@kernel.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2023-01-04 11:29:01 +01:00
Takashi Iwai
f9aafff544 ALSA: hda/hdmi: Static PCM mapping again with AMD HDMI codecs
commit 090ddad4c7a9fefd647c762093a555870a19c8b2 upstream.

The recent code refactoring for HD-audio HDMI codec driver caused a
regression on AMD/ATI HDMI codecs; namely, PulseAudioand pipewire
don't recognize HDMI outputs any longer while the direct output via
ALSA raw access still works.

The problem turned out that, after the code refactoring, the driver
assumes only the dynamic PCM assignment, and when a PCM stream that
still isn't assigned to any pin gets opened, the driver tries to
assign any free converter to the PCM stream.  This behavior is OK for
Intel and other codecs, as they have arbitrary connections between
pins and converters.  OTOH, on AMD chips that have a 1:1 mapping
between pins and converters, this may end up with blocking the open of
the next PCM stream for the pin that is tied with the formerly taken
converter.

Also, with the code refactoring, more PCM streams are exposed than
necessary as we assume all converters can be used, while this isn't
true for AMD case.  This may change the PCM stream assignment and
confuse users as well.

This patch fixes those problems by:

- Introducing a flag spec->static_pcm_mapping, and if it's set, the
  driver applies the static mapping between pins and converters at the
  probe time
- Limiting the number of PCM streams per pins, too; this avoids the
  superfluous PCM streams

Fixes: ef6f5494faf6 ("ALSA: hda/hdmi: Use only dynamic PCM device allocation")
Cc: <stable@vger.kernel.org>
Link: https://bugzilla.kernel.org/show_bug.cgi?id=216836
Co-developed-by: Jaroslav Kysela <perex@perex.cz>
Signed-off-by: Jaroslav Kysela <perex@perex.cz>
Link: https://lore.kernel.org/r/20221228125714.16329-1-tiwai@suse.de
Signed-off-by: Takashi Iwai <tiwai@suse.de>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2023-01-04 11:29:00 +01:00
Artem Egorkine
389d34c2a8 ALSA: line6: fix stack overflow in line6_midi_transmit
commit b8800d324abb50160560c636bfafe2c81001b66c upstream.

Correctly calculate available space including the size of the chunk
buffer. This fixes a buffer overflow when multiple MIDI sysex
messages are sent to a PODxt device.

Signed-off-by: Artem Egorkine <arteme@gmail.com>
Cc: <stable@vger.kernel.org>
Link: https://lore.kernel.org/r/20221225105728.1153989-2-arteme@gmail.com
Signed-off-by: Takashi Iwai <tiwai@suse.de>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2023-01-04 11:29:00 +01:00
Artem Egorkine
e58d1d2eb3 ALSA: line6: correct midi status byte when receiving data from podxt
commit 8508fa2e7472f673edbeedf1b1d2b7a6bb898ecc upstream.

A PODxt device sends 0xb2, 0xc2 or 0xf2 as a status byte for MIDI
messages over USB that should otherwise have a 0xb0, 0xc0 or 0xf0
status byte. This is usually corrected by the driver on other OSes.

This fixes MIDI sysex messages sent by PODxt.

[ tiwai: fixed white spaces ]

Signed-off-by: Artem Egorkine <arteme@gmail.com>
Cc: <stable@vger.kernel.org>
Link: https://lore.kernel.org/r/20221225105728.1153989-1-arteme@gmail.com
Signed-off-by: Takashi Iwai <tiwai@suse.de>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2023-01-04 11:29:00 +01:00
Al Viro
bc2e0c5bb9 ovl: update ->f_iocb_flags when ovl_change_flags() modifies ->f_flags
commit 456b59e757b0c558df550764a4fd5ae6877e93f8 upstream.

ovl_change_flags() is an open-coded variant of fs/fcntl.c:setfl() and it
got missed by commit 164f4064ca81 ("keep iocb_flags() result cached in
struct file"); the same change applies there.

Reported-by: Pierre Labastie <pierre.labastie@neuf.fr>
Fixes: 164f4064ca81 ("keep iocb_flags() result cached in struct file")
Cc: <stable@vger.kernel.org> # v6.0
Link: https://bugzilla.kernel.org/show_bug.cgi?id=216738
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
Signed-off-by: Miklos Szeredi <mszeredi@redhat.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2023-01-04 11:29:00 +01:00
Zhang Tianci
d84a696c86 ovl: Use ovl mounter's fsuid and fsgid in ovl_link()
commit 5b0db51215e895a361bc63132caa7cca36a53d6a upstream.

There is a wrong case of link() on overlay:
  $ mkdir /lower /fuse /merge
  $ mount -t fuse /fuse
  $ mkdir /fuse/upper /fuse/work
  $ mount -t overlay /merge -o lowerdir=/lower,upperdir=/fuse/upper,\
    workdir=work
  $ touch /merge/file
  $ chown bin.bin /merge/file // the file's caller becomes "bin"
  $ ln /merge/file /merge/lnkfile

Then we will get an error(EACCES) because fuse daemon checks the link()'s
caller is "bin", it denied this request.

In the changing history of ovl_link(), there are two key commits:

The first is commit bb0d2b8ad296 ("ovl: fix sgid on directory") which
overrides the cred's fsuid/fsgid using the new inode. The new inode's
owner is initialized by inode_init_owner(), and inode->fsuid is
assigned to the current user. So the override fsuid becomes the
current user. We know link() is actually modifying the directory, so
the caller must have the MAY_WRITE permission on the directory. The
current caller may should have this permission. This is acceptable
to use the caller's fsuid.

The second is commit 51f7e52dc943 ("ovl: share inode for hard link")
which removed the inode creation in ovl_link(). This commit move
inode_init_owner() into ovl_create_object(), so the ovl_link() just
give the old inode to ovl_create_or_link(). Then the override fsuid
becomes the old inode's fsuid, neither the caller nor the overlay's
mounter! So this is incorrect.

Fix this bug by using ovl mounter's fsuid/fsgid to do underlying
fs's link().

Link: https://lore.kernel.org/all/20220817102952.xnvesg3a7rbv576x@wittgenstein/T
Link: https://lore.kernel.org/lkml/20220825130552.29587-1-zhangtianci.1997@bytedance.com/t
Signed-off-by: Zhang Tianci <zhangtianci.1997@bytedance.com>
Signed-off-by: Jiachen Zhang <zhangjiachen.jaycee@bytedance.com>
Reviewed-by: Christian Brauner (Microsoft) <brauner@kernel.org>
Fixes: 51f7e52dc943 ("ovl: share inode for hard link")
Cc: <stable@vger.kernel.org> # v4.8
Signed-off-by: Miklos Szeredi <mszeredi@redhat.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2023-01-04 11:29:00 +01:00
Wang Yufen
703fd753a0 binfmt: Fix error return code in load_elf_fdpic_binary()
commit e7f703ff2507f4e9f496da96cd4b78fd3026120c upstream.

Fix to return a negative error code from create_elf_fdpic_tables()
instead of 0.

Fixes: 1da177e4c3f4 ("Linux-2.6.12-rc2")
Cc: stable@vger.kernel.org
Signed-off-by: Wang Yufen <wangyufen@huawei.com>
Signed-off-by: Kees Cook <keescook@chromium.org>
Link: https://lore.kernel.org/r/1669945261-30271-1-git-send-email-wangyufen@huawei.com
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2023-01-04 11:29:00 +01:00
Mario Limonciello
e6d180a35b ACPI: x86: s2idle: Stop using AMD specific codepath for Rembrandt+
commit e555c85792bd5f9828a2fd2ca9761f70efb1c77b upstream.

After we introduced a module parameter and quirk infrastructure for
picking the Microsoft GUID over the SOC vendor GUID we discovered
that lots and lots of systems are getting this wrong.

The table continues to grow, and is becoming unwieldy.

We don't really have any benefit to forcing vendors to populate the
AMD GUID. This is just extra work, and more and more vendors seem
to mess it up.  As the Microsoft GUID is used by Windows as well,
it's very likely that it won't be messed up like this.

So drop all the quirks forcing it and the Rembrandt behavior. This
means that Cezanne or later effectively only run the Microsoft GUID
codepath with the exception of HP Elitebook 8*5 G9.

Fixes: fd894f05cf30 ("ACPI: x86: s2idle: If a new AMD _HID is missing assume Rembrandt")
Cc: stable@vger.kernel.org # 6.1
Reported-by: Benjamin Cheng <ben@bcheng.me>
Reported-by: bilkow@tutanota.com
Reported-by: Paul <paul@zogpog.com>
Link: https://gitlab.freedesktop.org/drm/amd/-/issues/2292
Link: https://bugzilla.kernel.org/show_bug.cgi?id=216768
Signed-off-by: Mario Limonciello <mario.limonciello@amd.com>
Reviewed-by: Philipp Zabel <philipp.zabel@gmail.com>
Tested-by: Philipp Zabel <philipp.zabel@gmail.com>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2023-01-04 11:29:00 +01:00
Mario Limonciello
577821f756 ACPI: x86: s2idle: Force AMD GUID/_REV 2 on HP Elitebook 865
commit 3ea45390e9c0d35805ef8357ace55594fd4233d0 upstream.

HP Elitebook 865 supports both the AMD GUID w/ _REV 2 and Microsoft
GUID with _REV 0. Both have very similar code but the AMD GUID
has a special workaround that is specific to a problem with
spurious wakeups on systems with Qualcomm WLAN.

This is believed to be a bug in the Qualcomm WLAN F/W (it doesn't
affect any other WLAN H/W). If this WLAN firmware is fixed this
quirk can be dropped.

Cc: stable@vger.kernel.org # 6.1
Signed-off-by: Mario Limonciello <mario.limonciello@amd.com>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2023-01-04 11:29:00 +01:00
Aditya Garg
0478b94c6f hfsplus: fix bug causing custom uid and gid being unable to be assigned with mount
commit 9f2b5debc07073e6dfdd774e3594d0224b991927 upstream.

Despite specifying UID and GID in mount command, the specified UID and GID
were not being assigned. This patch fixes this issue.

Link: https://lkml.kernel.org/r/C0264BF5-059C-45CF-B8DA-3A3BD2C803A2@live.com
Signed-off-by: Aditya Garg <gargaditya08@live.com>
Reviewed-by: Viacheslav Dubeyko <slava@dubeyko.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2023-01-04 11:28:59 +01:00
Qiujun Huang
23ac2a31c5 pstore/zone: Use GFP_ATOMIC to allocate zone buffer
commit 99b3b837855b987563bcfb397cf9ddd88262814b upstream.

There is a case found when triggering a panic_on_oom, pstore fails to dump
kmsg. Because psz_kmsg_write_record can't get the new buffer.

Handle this by using GFP_ATOMIC to allocate a buffer at lower watermark.

Signed-off-by: Qiujun Huang <hqjagain@gmail.com>
Fixes: 335426c6dcdd ("pstore/zone: Provide way to skip "broken" zone for MTD devices")
Cc: WeiXiong Liao <gmpy.liaowx@gmail.com>
Cc: stable@vger.kernel.org
Signed-off-by: Kees Cook <keescook@chromium.org>
Link: https://lore.kernel.org/r/CAJRQjofRCF7wjrYmw3D7zd5QZnwHQq+F8U-mJDJ6NZ4bddYdLA@mail.gmail.com
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2023-01-04 11:28:59 +01:00
Luca Stefani
5c3a4cdc53 pstore: Properly assign mem_type property
commit beca3e311a49cd3c55a056096531737d7afa4361 upstream.

If mem-type is specified in the device tree
it would end up overriding the record_size
field instead of populating mem_type.

As record_size is currently parsed after the
improper assignment with default size 0 it
continued to work as expected regardless of the
value found in the device tree.

Simply changing the target field of the struct
is enough to get mem-type working as expected.

Fixes: 9d843e8fafc7 ("pstore: Add mem_type property DT parsing support")
Cc: stable@vger.kernel.org
Signed-off-by: Luca Stefani <luca@osomprivacy.com>
Signed-off-by: Kees Cook <keescook@chromium.org>
Link: https://lore.kernel.org/r/20221222131049.286288-1-luca@osomprivacy.com
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2023-01-04 11:28:59 +01:00
Arnd Bergmann
2cec280c49 kmsan: include linux/vmalloc.h
commit aaa746ad8b30f38ef89a301faf339ef1c19cf33a upstream.

This is needed for the vmap/vunmap declarations:

mm/kmsan/kmsan_test.c:316:9: error: implicit declaration of function 'vmap' is invalid in C99 [-Werror,-Wimplicit-function-declaration]
        vbuf = vmap(pages, npages, VM_MAP, PAGE_KERNEL);
               ^
mm/kmsan/kmsan_test.c:316:29: error: use of undeclared identifier 'VM_MAP'
        vbuf = vmap(pages, npages, VM_MAP, PAGE_KERNEL);
                                   ^
mm/kmsan/kmsan_test.c:322:3: error: implicit declaration of function 'vunmap' is invalid in C99 [-Werror,-Wimplicit-function-declaration]
                vunmap(vbuf);
                ^

Link: https://lkml.kernel.org/r/20221215163046.4079767-1-arnd@kernel.org
Fixes: 8ed691b02ade ("kmsan: add tests for KMSAN")
Signed-off-by: Arnd Bergmann <arnd@arndb.de>
Reviewed-by: Alexander Potapenko <glider@google.com>
Cc: Dmitry Vyukov <dvyukov@google.com>
Cc: Marco Elver <elver@google.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2023-01-04 11:28:59 +01:00
Arnd Bergmann
dace33a189 kmsan: export kmsan_handle_urb
commit 7ba594d700998bafa96a75360d2e060aa39156d2 upstream.

USB support can be in a loadable module, and this causes a link failure
with KMSAN:

ERROR: modpost: "kmsan_handle_urb" [drivers/usb/core/usbcore.ko] undefined!

Export the symbol so it can be used by this module.

Link: https://lkml.kernel.org/r/20221215162710.3802378-1-arnd@kernel.org
Fixes: 553a80188a5d ("kmsan: handle memory sent to/from USB")
Signed-off-by: Arnd Bergmann <arnd@arndb.de>
Reviewed-by: Alexander Potapenko <glider@google.com>
Cc: Dmitry Vyukov <dvyukov@google.com>
Cc: Marco Elver <elver@google.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2023-01-04 11:28:59 +01:00
Mathieu Desnoyers
0ce4cc6d26 mm/mempolicy: fix memory leak in set_mempolicy_home_node system call
commit 38ce7c9bdfc228c14d7621ba36d3eebedd9d4f76 upstream.

When encountering any vma in the range with policy other than MPOL_BIND or
MPOL_PREFERRED_MANY, an error is returned without issuing a mpol_put on
the policy just allocated with mpol_dup().

This allows arbitrary users to leak kernel memory.

Link: https://lkml.kernel.org/r/20221215194621.202816-1-mathieu.desnoyers@efficios.com
Fixes: c6018b4b2549 ("mm/mempolicy: add set_mempolicy_home_node syscall")
Signed-off-by: Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
Reviewed-by: Randy Dunlap <rdunlap@infradead.org>
Reviewed-by: "Huang, Ying" <ying.huang@intel.com>
Reviewed-by: Aneesh Kumar K.V <aneesh.kumar@linux.ibm.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Aneesh Kumar K.V <aneesh.kumar@linux.ibm.com>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Feng Tang <feng.tang@intel.com>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: Mike Kravetz <mike.kravetz@oracle.com>
Cc: Randy Dunlap <rdunlap@infradead.org>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Andi Kleen <ak@linux.intel.com>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Huang Ying <ying.huang@intel.com>
Cc: <stable@vger.kernel.org>	[5.17+]
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2023-01-04 11:28:59 +01:00
Vlastimil Babka
4d528dab40 mm, mremap: fix mremap() expanding vma with addr inside vma
commit 6f12be792fde994ed934168f93c2a0d2a0cf0bc5 upstream.

Since 6.1 we have noticed random rpm install failures that were tracked to
mremap() returning -ENOMEM and to commit ca3d76b0aa80 ("mm: add merging
after mremap resize").

The problem occurs when mremap() expands a VMA in place, but using an
starting address that's not vma->vm_start, but somewhere in the middle.
The extension_pgoff calculation introduced by the commit is wrong in that
case, so vma_merge() fails due to pgoffs not being compatible.  Fix the
calculation.

By the way it seems that the situations, where rpm now expands a vma from
the middle, were made possible also due to that commit, thanks to the
improved vma merging.  Yet it should work just fine, except for the buggy
calculation.

Link: https://lkml.kernel.org/r/20221216163227.24648-1-vbabka@suse.cz
Reported-by: Jiri Slaby <jirislaby@kernel.org>
  Link: https://bugzilla.suse.com/show_bug.cgi?id=1206359
Fixes: ca3d76b0aa80 ("mm: add merging after mremap resize")
Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Jakub Matěna <matenajakub@gmail.com>
Cc: "Kirill A . Shutemov" <kirill@shutemov.name>
Cc: Liam Howlett <liam.howlett@oracle.com>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2023-01-04 11:28:59 +01:00
Mel Gorman
97e14ae082 rtmutex: Add acquire semantics for rtmutex lock acquisition slow path
commit 1c0908d8e441631f5b8ba433523cf39339ee2ba0 upstream.

Jan Kara reported the following bug triggering on 6.0.5-rt14 running dbench
on XFS on arm64.

 kernel BUG at fs/inode.c:625!
 Internal error: Oops - BUG: 0 [#1] PREEMPT_RT SMP
 CPU: 11 PID: 6611 Comm: dbench Tainted: G            E   6.0.0-rt14-rt+ #1
 pc : clear_inode+0xa0/0xc0
 lr : clear_inode+0x38/0xc0
 Call trace:
  clear_inode+0xa0/0xc0
  evict+0x160/0x180
  iput+0x154/0x240
  do_unlinkat+0x184/0x300
  __arm64_sys_unlinkat+0x48/0xc0
  el0_svc_common.constprop.4+0xe4/0x2c0
  do_el0_svc+0xac/0x100
  el0_svc+0x78/0x200
  el0t_64_sync_handler+0x9c/0xc0
  el0t_64_sync+0x19c/0x1a0

It also affects 6.1-rc7-rt5 and affects a preempt-rt fork of 5.14 so this
is likely a bug that existed forever and only became visible when ARM
support was added to preempt-rt. The same problem does not occur on x86-64
and he also reported that converting sb->s_inode_wblist_lock to
raw_spinlock_t makes the problem disappear indicating that the RT spinlock
variant is the problem.

Which in turn means that RT mutexes on ARM64 and any other weakly ordered
architecture are affected by this independent of RT.

Will Deacon observed:

  "I'd be more inclined to be suspicious of the slowpath tbh, as we need to
   make sure that we have acquire semantics on all paths where the lock can
   be taken. Looking at the rtmutex code, this really isn't obvious to me
   -- for example, try_to_take_rt_mutex() appears to be able to return via
   the 'takeit' label without acquire semantics and it looks like we might
   be relying on the caller's subsequent _unlock_ of the wait_lock for
   ordering, but that will give us release semantics which aren't correct."

Sebastian Andrzej Siewior prototyped a fix that does work based on that
comment but it was a little bit overkill and added some fences that should
not be necessary.

The lock owner is updated with an IRQ-safe raw spinlock held, but the
spin_unlock does not provide acquire semantics which are needed when
acquiring a mutex.

Adds the necessary acquire semantics for lock owner updates in the slow path
acquisition and the waiter bit logic.

It successfully completed 10 iterations of the dbench workload while the
vanilla kernel fails on the first iteration.

[ bigeasy@linutronix.de: Initial prototype fix ]

Fixes: 700318d1d7b38 ("locking/rtmutex: Use acquire/release semantics")
Fixes: 23f78d4a03c5 ("[PATCH] pi-futex: rt mutex core")
Reported-by: Jan Kara <jack@suse.cz>
Signed-off-by: Mel Gorman <mgorman@techsingularity.net>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: stable@vger.kernel.org
Link: https://lore.kernel.org/r/20221202100223.6mevpbl7i6x5udfd@techsingularity.net
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2023-01-04 11:28:58 +01:00
Mathieu Desnoyers
09727bc32f futex: Fix futex_waitv() hrtimer debug object leak on kcalloc error
commit 94cd8fa09f5f1ebdd4e90964b08b7f2cc4b36c43 upstream.

In a scenario where kcalloc() fails to allocate memory, the futex_waitv
system call immediately returns -ENOMEM without invoking
destroy_hrtimer_on_stack(). When CONFIG_DEBUG_OBJECTS_TIMERS=y, this
results in leaking a timer debug object.

Fixes: bf69bad38cf6 ("futex: Implement sys_futex_waitv()")
Signed-off-by: Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Davidlohr Bueso <dave@stgolabs.net>
Cc: stable@vger.kernel.org
Cc: stable@vger.kernel.org # v5.16+
Link: https://lore.kernel.org/r/20221214222008.200393-1-mathieu.desnoyers@efficios.com
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2023-01-04 11:28:58 +01:00
Terry Junge
c86c5cf67f HID: plantronics: Additional PIDs for double volume key presses quirk
[ Upstream commit 3d57f36c89d8ba32b2c312f397a37fd1a2dc7cfc ]

I no longer work for Plantronics (aka Poly, aka HP) and do not have
access to the headsets in order to test. However, as noted by Maxim,
the other 32xx models that share the same base code set as the 3220
would need the same quirk. This patch adds the PIDs for the rest of
the Blackwire 32XX product family that require the quirk.

Plantronics Blackwire 3210 Series (047f:c055)
Plantronics Blackwire 3215 Series (047f:c057)
Plantronics Blackwire 3225 Series (047f:c058)

Quote from previous patch by Maxim Mikityanskiy
Plantronics Blackwire 3220 Series (047f:c056) sends HID reports twice
for each volume key press. This patch adds a quirk to hid-plantronics
for this product ID, which will ignore the second volume key press if
it happens within 5 ms from the last one that was handled.

The patch was tested on the mentioned model only, it shouldn't affect
other models, however, this quirk might be needed for them too.
Auto-repeat (when a key is held pressed) is not affected, because the
rate is about 3 times per second, which is far less frequent than once
in 5 ms.
End quote

Signed-off-by: Terry Junge <linuxhid@cosmicgizmosystems.com>
Signed-off-by: Jiri Kosina <jkosina@suse.cz>
Signed-off-by: Sasha Levin <sashal@kernel.org>
2023-01-04 11:28:58 +01:00
José Expósito
79f9b467b8 HID: multitouch: fix Asus ExpertBook P2 P2451FA trackpoint
[ Upstream commit 4eab1c2fe06c98a4dff258dd64800b6986c101e9 ]

The HID descriptor of this device contains two mouse collections, one
for mouse emulation and the other for the trackpoint.

Both collections get merged and, because the first one defines X and Y,
the movemenent events reported by the trackpoint collection are
ignored.

Set the MT_CLS_WIN_8_FORCE_MULTI_INPUT class for this device to be able
to receive its reports.

This fix is similar to/based on commit 40d5bb87377a ("HID: multitouch:
enable multi-input as a quirk for some devices").

Link: https://gitlab.freedesktop.org/libinput/libinput/-/issues/825
Reported-by: Akito <the@akito.ooo>
Tested-by: Akito <the@akito.ooo>
Signed-off-by: José Expósito <jose.exposito89@gmail.com>
Signed-off-by: Jiri Kosina <jkosina@suse.cz>
Signed-off-by: Sasha Levin <sashal@kernel.org>
2023-01-04 11:28:58 +01:00
wuqiang
d465fa2a9a kprobes: kretprobe events missing on 2-core KVM guest
[ Upstream commit 3b7ddab8a19aefc768f345fd3782af35b4a68d9b ]

Default value of maxactive is set as num_possible_cpus() for nonpreemptable
systems. For a 2-core system, only 2 kretprobe instances would be allocated
in default, then these 2 instances for execve kretprobe are very likely to
be used up with a pipelined command.

Here's the testcase: a shell script was added to crontab, and the content
of the script is:

  #!/bin/sh
  do_something_magic `tr -dc a-z < /dev/urandom | head -c 10`

cron will trigger a series of program executions (4 times every hour). Then
events loss would be noticed normally after 3-4 hours of testings.

The issue is caused by a burst of series of execve requests. The best number
of kretprobe instances could be different case by case, and should be user's
duty to determine, but num_possible_cpus() as the default value is inadequate
especially for systems with small number of cpus.

This patch enables the logic for preemption as default, thus increases the
minimum of maxactive to 10 for nonpreemptable systems.

Link: https://lore.kernel.org/all/20221110081502.492289-1-wuqiang.matt@bytedance.com/

Signed-off-by: wuqiang <wuqiang.matt@bytedance.com>
Reviewed-by: Solar Designer <solar@openwall.com>
Acked-by: Masami Hiramatsu (Google) <mhiramat@kernel.org>
Signed-off-by: Masami Hiramatsu (Google) <mhiramat@kernel.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
2023-01-04 11:28:58 +01:00
Dai Ngo
650b69b17c NFSD: fix use-after-free in __nfs42_ssc_open()
[ Upstream commit 75333d48f92256a0dec91dbf07835e804fc411c0 ]

Problem caused by source's vfsmount being unmounted but remains
on the delayed unmount list. This happens when nfs42_ssc_open()
return errors.

Fixed by removing nfsd4_interssc_connect(), leave the vfsmount
for the laundromat to unmount when idle time expires.

We don't need to call nfs_do_sb_deactive when nfs42_ssc_open
return errors since the file was not opened so nfs_server->active
was not incremented. Same as in nfsd4_copy, if we fail to
launch nfsd4_do_async_copy thread then there's no need to
call nfs_do_sb_deactive

Reported-by: Xingyuan Mo <hdthky0@gmail.com>
Signed-off-by: Dai Ngo <dai.ngo@oracle.com>
Tested-by: Xingyuan Mo <hdthky0@gmail.com>
Signed-off-by: Chuck Lever <chuck.lever@oracle.com>
Signed-off-by: Sasha Levin <sashal@kernel.org>
2023-01-04 11:28:58 +01:00
Kees Cook
ba50fee6b4 rtc: msc313: Fix function prototype mismatch in msc313_rtc_probe()
[ Upstream commit 21b8a1dd56a163825e5749b303858fb902ebf198 ]

With clang's kernel control flow integrity (kCFI, CONFIG_CFI_CLANG),
indirect call targets are validated against the expected function
pointer prototype to make sure the call target is valid to help mitigate
ROP attacks. If they are not identical, there is a failure at run time,
which manifests as either a kernel panic or thread getting killed.

msc313_rtc_probe() was passing clk_disable_unprepare() directly, which
did not have matching prototypes for devm_add_action_or_reset()'s
callback argument. Refactor to use devm_clk_get_enabled() instead.

This was found as a result of Clang's new -Wcast-function-type-strict
flag, which is more sensitive than the simpler -Wcast-function-type,
which only checks for type width mismatches.

Reported-by: kernel test robot <lkp@intel.com>
Link: https://lore.kernel.org/lkml/202211041527.HD8TLSE1-lkp@intel.com
Suggested-by: Christophe JAILLET <christophe.jaillet@wanadoo.fr>
Cc: Daniel Palmer <daniel@thingy.jp>
Cc: Romain Perier <romain.perier@gmail.com>
Cc: Alessandro Zummo <a.zummo@towertech.it>
Cc: Alexandre Belloni <alexandre.belloni@bootlin.com>
Cc: linux-arm-kernel@lists.infradead.org
Cc: linux-rtc@vger.kernel.org
Signed-off-by: Kees Cook <keescook@chromium.org>
Reviewed-by: Daniel Palmer <daniel@thingy.jp>
Tested-by: Daniel Palmer <daniel@thingy.jp>
Link: https://lore.kernel.org/r/20221202184525.gonna.423-kees@kernel.org
Signed-off-by: Alexandre Belloni <alexandre.belloni@bootlin.com>
Signed-off-by: Sasha Levin <sashal@kernel.org>
2023-01-04 11:28:58 +01:00
Nathan Lynch
482d990a5d powerpc/rtas: avoid scheduling in rtas_os_term()
[ Upstream commit 6c606e57eecc37d6b36d732b1ff7e55b7dc32dd4 ]

It's unsafe to use rtas_busy_delay() to handle a busy status from
the ibm,os-term RTAS function in rtas_os_term():

Kernel panic - not syncing: Attempted to kill init! exitcode=0x0000000b
BUG: sleeping function called from invalid context at arch/powerpc/kernel/rtas.c:618
in_atomic(): 1, irqs_disabled(): 1, non_block: 0, pid: 1, name: swapper/0
preempt_count: 2, expected: 0
CPU: 7 PID: 1 Comm: swapper/0 Tainted: G      D            6.0.0-rc5-02182-gf8553a572277-dirty #9
Call Trace:
[c000000007b8f000] [c000000001337110] dump_stack_lvl+0xb4/0x110 (unreliable)
[c000000007b8f040] [c0000000002440e4] __might_resched+0x394/0x3c0
[c000000007b8f0e0] [c00000000004f680] rtas_busy_delay+0x120/0x1b0
[c000000007b8f100] [c000000000052d04] rtas_os_term+0xb8/0xf4
[c000000007b8f180] [c0000000001150fc] pseries_panic+0x50/0x68
[c000000007b8f1f0] [c000000000036354] ppc_panic_platform_handler+0x34/0x50
[c000000007b8f210] [c0000000002303c4] notifier_call_chain+0xd4/0x1c0
[c000000007b8f2b0] [c0000000002306cc] atomic_notifier_call_chain+0xac/0x1c0
[c000000007b8f2f0] [c0000000001d62b8] panic+0x228/0x4d0
[c000000007b8f390] [c0000000001e573c] do_exit+0x140c/0x1420
[c000000007b8f480] [c0000000001e586c] make_task_dead+0xdc/0x200

Use rtas_busy_delay_time() instead, which signals without side effects
whether to attempt the ibm,os-term RTAS call again.

Signed-off-by: Nathan Lynch <nathanl@linux.ibm.com>
Reviewed-by: Nicholas Piggin <npiggin@gmail.com>
Reviewed-by: Andrew Donnellan <ajd@linux.ibm.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/20221118150751.469393-5-nathanl@linux.ibm.com
Signed-off-by: Sasha Levin <sashal@kernel.org>
2023-01-04 11:28:58 +01:00
Nathan Lynch
464d10e8d7 powerpc/rtas: avoid device tree lookups in rtas_os_term()
[ Upstream commit ed2213bfb192ab51f09f12e9b49b5d482c6493f3 ]

rtas_os_term() is called during panic. Its behavior depends on a couple
of conditions in the /rtas node of the device tree, the traversal of
which entails locking and local IRQ state changes. If the kernel panics
while devtree_lock is held, rtas_os_term() as currently written could
hang.

Instead of discovering the relevant characteristics at panic time,
cache them in file-static variables at boot. Note the lookup for
"ibm,extended-os-term" is converted to of_property_read_bool() since it
is a boolean property, not an RTAS function token.

Signed-off-by: Nathan Lynch <nathanl@linux.ibm.com>
Reviewed-by: Nicholas Piggin <npiggin@gmail.com>
Reviewed-by: Andrew Donnellan <ajd@linux.ibm.com>
[mpe: Incorporate suggested change from Nick]
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/20221118150751.469393-4-nathanl@linux.ibm.com
Signed-off-by: Sasha Levin <sashal@kernel.org>
2023-01-04 11:28:57 +01:00
Ricardo Ribalda
85cc8a187f iommu/mediatek: Fix crash on isr after kexec()
[ Upstream commit 00ef8885a945c37551547d8ac8361cacd20c4e42 ]

If the system is rebooted via isr(), the IRQ handler might
be triggered before the domain is initialized. Resulting on
an invalid memory access error.

Fix:
[    0.500930] Unable to handle kernel read from unreadable memory at virtual address 0000000000000070
[    0.501166] Call trace:
[    0.501174]  report_iommu_fault+0x28/0xfc
[    0.501180]  mtk_iommu_isr+0x10c/0x1c0

Signed-off-by: Ricardo Ribalda <ribalda@chromium.org>
Reviewed-by: AngeloGioacchino Del Regno <angelogioacchino.delregno@collabora.com>
Reviewed-by: Robin Murphy <robin.murphy@arm.com>
Link: https://lore.kernel.org/r/20221125-mtk-iommu-v2-0-e168dff7d43e@chromium.org
[ joro: Fixed spelling in commit message ]
Signed-off-by: Joerg Roedel <jroedel@suse.de>
Signed-off-by: Sasha Levin <sashal@kernel.org>
2023-01-04 11:28:57 +01:00