42937 Commits

Author SHA1 Message Date
Lu Jialin
372636debe crypto: pcrypt - Fix hungtask for PADATA_RESET
[ Upstream commit 8f4f68e788c3a7a696546291258bfa5fdb215523 ]

We found a hungtask bug in test_aead_vec_cfg as follows:

INFO: task cryptomgr_test:391009 blocked for more than 120 seconds.
"echo 0 > /proc/sys/kernel/hung_task_timeout_secs" disables this message.
Call trace:
 __switch_to+0x98/0xe0
 __schedule+0x6c4/0xf40
 schedule+0xd8/0x1b4
 schedule_timeout+0x474/0x560
 wait_for_common+0x368/0x4e0
 wait_for_completion+0x20/0x30
 wait_for_completion+0x20/0x30
 test_aead_vec_cfg+0xab4/0xd50
 test_aead+0x144/0x1f0
 alg_test_aead+0xd8/0x1e0
 alg_test+0x634/0x890
 cryptomgr_test+0x40/0x70
 kthread+0x1e0/0x220
 ret_from_fork+0x10/0x18
 Kernel panic - not syncing: hung_task: blocked tasks

For padata_do_parallel, when the return err is 0 or -EBUSY, it will call
wait_for_completion(&wait->completion) in test_aead_vec_cfg. In normal
case, aead_request_complete() will be called in pcrypt_aead_serial and the
return err is 0 for padata_do_parallel. But, when pinst->flags is
PADATA_RESET, the return err is -EBUSY for padata_do_parallel, and it
won't call aead_request_complete(). Therefore, test_aead_vec_cfg will
hung at wait_for_completion(&wait->completion), which will cause
hungtask.

The problem comes as following:
(padata_do_parallel)                 |
    rcu_read_lock_bh();              |
    err = -EINVAL;                   |   (padata_replace)
                                     |     pinst->flags |= PADATA_RESET;
    err = -EBUSY                     |
    if (pinst->flags & PADATA_RESET) |
        rcu_read_unlock_bh()         |
        return err

In order to resolve the problem, we replace the return err -EBUSY with
-EAGAIN, which means parallel_data is changing, and the caller should call
it again.

v3:
remove retry and just change the return err.
v2:
introduce padata_try_do_parallel() in pcrypt_aead_encrypt and
pcrypt_aead_decrypt to solve the hungtask.

Signed-off-by: Lu Jialin <lujialin4@huawei.com>
Signed-off-by: Guo Zihua <guozihua@huawei.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
Signed-off-by: Sasha Levin <sashal@kernel.org>
2023-11-28 17:19:42 +00:00
Philipp Stanner
0f403ebad9 kernel: watch_queue: copy user-array safely
[ Upstream commit ca0776571d3163bd03b3e8c9e3da936abfaecbf6 ]

Currently, there is no overflow-check with memdup_user().

Use the new function memdup_array_user() instead of memdup_user() for
duplicating the user-space array safely.

Suggested-by: David Airlie <airlied@redhat.com>
Signed-off-by: Philipp Stanner <pstanner@redhat.com>
Reviewed-by: Kees Cook <keescook@chromium.org>
Reviewed-by: Zack Rusin <zackr@vmware.com>
Signed-off-by: Dave Airlie <airlied@redhat.com>
Link: https://patchwork.freedesktop.org/patch/msgid/20230920123612.16914-5-pstanner@redhat.com
Signed-off-by: Sasha Levin <sashal@kernel.org>
2023-11-28 17:19:40 +00:00
Philipp Stanner
4fc857cc5c kernel: kexec: copy user-array safely
[ Upstream commit 569c8d82f95eb5993c84fb61a649a9c4ddd208b3 ]

Currently, there is no overflow-check with memdup_user().

Use the new function memdup_array_user() instead of memdup_user() for
duplicating the user-space array safely.

Suggested-by: David Airlie <airlied@redhat.com>
Signed-off-by: Philipp Stanner <pstanner@redhat.com>
Acked-by: Baoquan He <bhe@redhat.com>
Reviewed-by: Kees Cook <keescook@chromium.org>
Reviewed-by: Zack Rusin <zackr@vmware.com>
Signed-off-by: Dave Airlie <airlied@redhat.com>
Link: https://patchwork.freedesktop.org/patch/msgid/20230920123612.16914-4-pstanner@redhat.com
Signed-off-by: Sasha Levin <sashal@kernel.org>
2023-11-28 17:19:40 +00:00
Andrii Nakryiko
aa4dd55ade bpf: Ensure proper register state printing for cond jumps
[ Upstream commit 1a8a315f008a58f54fecb012b928aa6a494435b3 ]

Verifier emits relevant register state involved in any given instruction
next to it after `;` to the right, if possible. Or, worst case, on the
separate line repeating instruction index.

E.g., a nice and simple case would be:

  2: (d5) if r0 s<= 0x0 goto pc+1       ; R0_w=0

But if there is some intervening extra output (e.g., precision
backtracking log) involved, we are supposed to see the state after the
precision backtrack log:

  4: (75) if r0 s>= 0x0 goto pc+1
  mark_precise: frame0: last_idx 4 first_idx 0 subseq_idx -1
  mark_precise: frame0: regs=r0 stack= before 2: (d5) if r0 s<= 0x0 goto pc+1
  mark_precise: frame0: regs=r0 stack= before 1: (b7) r0 = 0
  6: R0_w=0

First off, note that in `6: R0_w=0` instruction index corresponds to the
next instruction, not to the conditional jump instruction itself, which
is wrong and we'll get to that.

But besides that, the above is a happy case that does work today. Yet,
if it so happens that precision backtracking had to traverse some of the
parent states, this `6: R0_w=0` state output would be missing.

This is due to a quirk of print_verifier_state() routine, which performs
mark_verifier_state_clean(env) at the end. This marks all registers as
"non-scratched", which means that subsequent logic to print *relevant*
registers (that is, "scratched ones") fails and doesn't see anything
relevant to print and skips the output altogether.

print_verifier_state() is used both to print instruction context, but
also to print an **entire** verifier state indiscriminately, e.g.,
during precision backtracking (and in a few other situations, like
during entering or exiting subprogram).  Which means if we have to print
entire parent state before getting to printing instruction context
state, instruction context is marked as clean and is omitted.

Long story short, this is definitely not intentional. So we fix this
behavior in this patch by teaching print_verifier_state() to clear
scratch state only if it was used to print instruction state, not the
parent/callback state. This is determined by print_all option, so if
it's not set, we don't clear scratch state. This fixes missing
instruction state for these cases.

As for the mismatched instruction index, we fix that by making sure we
call print_insn_state() early inside check_cond_jmp_op() before we
adjusted insn_idx based on jump branch taken logic. And with that we get
desired correct information:

  9: (16) if w4 == 0x1 goto pc+9
  mark_precise: frame0: last_idx 9 first_idx 9 subseq_idx -1
  mark_precise: frame0: parent state regs=r4 stack=: R2_w=1944 R4_rw=P1 R10=fp0
  mark_precise: frame0: last_idx 8 first_idx 0 subseq_idx 9
  mark_precise: frame0: regs=r4 stack= before 8: (66) if w4 s> 0x3 goto pc+5
  mark_precise: frame0: regs=r4 stack= before 7: (b7) r4 = 1
  9: R4=1

Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: John Fastabend <john.fastabend@gmail.com>
Acked-by: Eduard Zingerman <eddyz87@gmail.com>
Link: https://lore.kernel.org/bpf/20231011223728.3188086-6-andrii@kernel.org
Signed-off-by: Sasha Levin <sashal@kernel.org>
2023-11-28 17:19:38 +00:00
Kumar Kartikeya Dwivedi
821a7e4143 bpf: Detect IP == ksym.end as part of BPF program
[ Upstream commit 66d9111f3517f85ef2af0337ece02683ce0faf21 ]

Now that bpf_throw kfunc is the first such call instruction that has
noreturn semantics within the verifier, this also kicks in dead code
elimination in unprecedented ways. For one, any instruction following
a bpf_throw call will never be marked as seen. Moreover, if a callchain
ends up throwing, any instructions after the call instruction to the
eventually throwing subprog in callers will also never be marked as
seen.

The tempting way to fix this would be to emit extra 'int3' instructions
which bump the jited_len of a program, and ensure that during runtime
when a program throws, we can discover its boundaries even if the call
instruction to bpf_throw (or to subprogs that always throw) is emitted
as the final instruction in the program.

An example of such a program would be this:

do_something():
	...
	r0 = 0
	exit

foo():
	r1 = 0
	call bpf_throw
	r0 = 0
	exit

bar(cond):
	if r1 != 0 goto pc+2
	call do_something
	exit
	call foo
	r0 = 0  // Never seen by verifier
	exit	//

main(ctx):
	r1 = ...
	call bar
	r0 = 0
	exit

Here, if we do end up throwing, the stacktrace would be the following:

bpf_throw
foo
bar
main

In bar, the final instruction emitted will be the call to foo, as such,
the return address will be the subsequent instruction (which the JIT
emits as int3 on x86). This will end up lying outside the jited_len of
the program, thus, when unwinding, we will fail to discover the return
address as belonging to any program and end up in a panic due to the
unreliable stack unwinding of BPF programs that we never expect.

To remedy this case, make bpf_prog_ksym_find treat IP == ksym.end as
part of the BPF program, so that is_bpf_text_address returns true when
such a case occurs, and we are able to unwind reliably when the final
instruction ends up being a call instruction.

Signed-off-by: Kumar Kartikeya Dwivedi <memxor@gmail.com>
Link: https://lore.kernel.org/r/20230912233214.1518551-12-memxor@gmail.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
2023-11-28 17:19:37 +00:00
Frederic Weisbecker
be2355b776 workqueue: Provide one lock class key per work_on_cpu() callsite
[ Upstream commit 265f3ed077036f053981f5eea0b5b43e7c5b39ff ]

All callers of work_on_cpu() share the same lock class key for all the
functions queued. As a result the workqueue related locking scenario for
a function A may be spuriously accounted as an inversion against the
locking scenario of function B such as in the following model:

	long A(void *arg)
	{
		mutex_lock(&mutex);
		mutex_unlock(&mutex);
	}

	long B(void *arg)
	{
	}

	void launchA(void)
	{
		work_on_cpu(0, A, NULL);
	}

	void launchB(void)
	{
		mutex_lock(&mutex);
		work_on_cpu(1, B, NULL);
		mutex_unlock(&mutex);
	}

launchA and launchB running concurrently have no chance to deadlock.
However the above can be reported by lockdep as a possible locking
inversion because the works containing A() and B() are treated as
belonging to the same locking class.

The following shows an existing example of such a spurious lockdep splat:

	 ======================================================
	 WARNING: possible circular locking dependency detected
	 6.6.0-rc1-00065-g934ebd6e5359 #35409 Not tainted
	 ------------------------------------------------------
	 kworker/0:1/9 is trying to acquire lock:
	 ffffffff9bc72f30 (cpu_hotplug_lock){++++}-{0:0}, at: _cpu_down+0x57/0x2b0

	 but task is already holding lock:
	 ffff9e3bc0057e60 ((work_completion)(&wfc.work)){+.+.}-{0:0}, at: process_scheduled_works+0x216/0x500

	 which lock already depends on the new lock.

	 the existing dependency chain (in reverse order) is:

	 -> #2 ((work_completion)(&wfc.work)){+.+.}-{0:0}:
			__flush_work+0x83/0x4e0
			work_on_cpu+0x97/0xc0
			rcu_nocb_cpu_offload+0x62/0xb0
			rcu_nocb_toggle+0xd0/0x1d0
			kthread+0xe6/0x120
			ret_from_fork+0x2f/0x40
			ret_from_fork_asm+0x1b/0x30

	 -> #1 (rcu_state.barrier_mutex){+.+.}-{3:3}:
			__mutex_lock+0x81/0xc80
			rcu_nocb_cpu_deoffload+0x38/0xb0
			rcu_nocb_toggle+0x144/0x1d0
			kthread+0xe6/0x120
			ret_from_fork+0x2f/0x40
			ret_from_fork_asm+0x1b/0x30

	 -> #0 (cpu_hotplug_lock){++++}-{0:0}:
			__lock_acquire+0x1538/0x2500
			lock_acquire+0xbf/0x2a0
			percpu_down_write+0x31/0x200
			_cpu_down+0x57/0x2b0
			__cpu_down_maps_locked+0x10/0x20
			work_for_cpu_fn+0x15/0x20
			process_scheduled_works+0x2a7/0x500
			worker_thread+0x173/0x330
			kthread+0xe6/0x120
			ret_from_fork+0x2f/0x40
			ret_from_fork_asm+0x1b/0x30

	 other info that might help us debug this:

	 Chain exists of:
	   cpu_hotplug_lock --> rcu_state.barrier_mutex --> (work_completion)(&wfc.work)

	  Possible unsafe locking scenario:

			CPU0                    CPU1
			----                    ----
	   lock((work_completion)(&wfc.work));
									lock(rcu_state.barrier_mutex);
									lock((work_completion)(&wfc.work));
	   lock(cpu_hotplug_lock);

	  *** DEADLOCK ***

	 2 locks held by kworker/0:1/9:
	  #0: ffff900481068b38 ((wq_completion)events){+.+.}-{0:0}, at: process_scheduled_works+0x212/0x500
	  #1: ffff9e3bc0057e60 ((work_completion)(&wfc.work)){+.+.}-{0:0}, at: process_scheduled_works+0x216/0x500

	 stack backtrace:
	 CPU: 0 PID: 9 Comm: kworker/0:1 Not tainted 6.6.0-rc1-00065-g934ebd6e5359 #35409
	 Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS rel-1.12.0-59-gc9ba5276e321-prebuilt.qemu.org 04/01/2014
	 Workqueue: events work_for_cpu_fn
	 Call Trace:
	 rcu-torture: rcu_torture_read_exit: Start of episode
	  <TASK>
	  dump_stack_lvl+0x4a/0x80
	  check_noncircular+0x132/0x150
	  __lock_acquire+0x1538/0x2500
	  lock_acquire+0xbf/0x2a0
	  ? _cpu_down+0x57/0x2b0
	  percpu_down_write+0x31/0x200
	  ? _cpu_down+0x57/0x2b0
	  _cpu_down+0x57/0x2b0
	  __cpu_down_maps_locked+0x10/0x20
	  work_for_cpu_fn+0x15/0x20
	  process_scheduled_works+0x2a7/0x500
	  worker_thread+0x173/0x330
	  ? __pfx_worker_thread+0x10/0x10
	  kthread+0xe6/0x120
	  ? __pfx_kthread+0x10/0x10
	  ret_from_fork+0x2f/0x40
	  ? __pfx_kthread+0x10/0x10
	  ret_from_fork_asm+0x1b/0x30
	  </TASK

Fix this with providing one lock class key per work_on_cpu() caller.

Reported-and-tested-by: Paul E. McKenney <paulmck@kernel.org>
Signed-off-by: Frederic Weisbecker <frederic@kernel.org>
Signed-off-by: Tejun Heo <tj@kernel.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
2023-11-28 17:19:36 +00:00
Ran Xiaokai
3073f6df78 cpu/hotplug: Don't offline the last non-isolated CPU
[ Upstream commit 38685e2a0476127db766f81b1c06019ddc4c9ffa ]

If a system has isolated CPUs via the "isolcpus=" command line parameter,
then an attempt to offline the last housekeeping CPU will result in a
WARN_ON() when rebuilding the scheduler domains and a subsequent panic due
to and unhandled empty CPU mas in partition_sched_domains_locked().

cpuset_hotplug_workfn()
  rebuild_sched_domains_locked()
    ndoms = generate_sched_domains(&doms, &attr);
      cpumask_and(doms[0], top_cpuset.effective_cpus, housekeeping_cpumask(HK_FLAG_DOMAIN));

Thus results in an empty CPU mask which triggers the warning and then the
subsequent crash:

WARNING: CPU: 4 PID: 80 at kernel/sched/topology.c:2366 build_sched_domains+0x120c/0x1408
Call trace:
 build_sched_domains+0x120c/0x1408
 partition_sched_domains_locked+0x234/0x880
 rebuild_sched_domains_locked+0x37c/0x798
 rebuild_sched_domains+0x30/0x58
 cpuset_hotplug_workfn+0x2a8/0x930

Unable to handle kernel paging request at virtual address fffe80027ab37080
 partition_sched_domains_locked+0x318/0x880
 rebuild_sched_domains_locked+0x37c/0x798

Aside of the resulting crash, it does not make any sense to offline the last
last housekeeping CPU.

Prevent this by masking out the non-housekeeping CPUs when selecting a
target CPU for initiating the CPU unplug operation via the work queue.

Suggested-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Ran Xiaokai <ran.xiaokai@zte.com.cn>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Link: https://lore.kernel.org/r/202310171709530660462@zte.com.cn
Signed-off-by: Sasha Levin <sashal@kernel.org>
2023-11-28 17:19:36 +00:00
Rik van Riel
f6cc3d85cb smp,csd: Throw an error if a CSD lock is stuck for too long
[ Upstream commit 94b3f0b5af2c7af69e3d6e0cdd9b0ea535f22186 ]

The CSD lock seems to get stuck in 2 "modes". When it gets stuck
temporarily, it usually gets released in a few seconds, and sometimes
up to one or two minutes.

If the CSD lock stays stuck for more than several minutes, it never
seems to get unstuck, and gradually more and more things in the system
end up also getting stuck.

In the latter case, we should just give up, so the system can dump out
a little more information about what went wrong, and, with panic_on_oops
and a kdump kernel loaded, dump a whole bunch more information about what
might have gone wrong.  In addition, there is an smp.panic_on_ipistall
kernel boot parameter that by default retains the old behavior, but when
set enables the panic after the CSD lock has been stuck for more than
the specified number of milliseconds, as in 300,000 for five minutes.

[ paulmck: Apply Imran Khan feedback. ]
[ paulmck: Apply Leonardo Bras feedback. ]

Link: https://lore.kernel.org/lkml/bc7cc8b0-f587-4451-8bcd-0daae627bcc7@paulmck-laptop/
Signed-off-by: Rik van Riel <riel@surriel.com>
Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
Reviewed-by: Imran Khan <imran.f.khan@oracle.com>
Reviewed-by: Leonardo Bras <leobras@redhat.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Valentin Schneider <vschneid@redhat.com>
Cc: Juergen Gross <jgross@suse.com>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: Randy Dunlap <rdunlap@infradead.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
2023-11-28 17:19:36 +00:00
Frederic Weisbecker
f62c43d64d srcu: Only accelerate on enqueue time
[ Upstream commit 8a77f38bcd28d3c22ab7dd8eff3f299d43c00411 ]

Acceleration in SRCU happens on enqueue time for each new callback. This
operation is expected not to fail and therefore any similar attempt
from other places shouldn't find any remaining callbacks to accelerate.

Moreover accelerations performed beyond enqueue time are error prone
because rcu_seq_snap() then may return the snapshot for a new grace
period that is not going to be started.

Remove these dangerous and needless accelerations and introduce instead
assertions reporting leaking unaccelerated callbacks beyond enqueue
time.

Co-developed-by: Yong He <alexyonghe@tencent.com>
Signed-off-by: Yong He <alexyonghe@tencent.com>
Co-developed-by: Joel Fernandes (Google) <joel@joelfernandes.org>
Signed-off-by: Joel Fernandes (Google) <joel@joelfernandes.org>
Co-developed-by: Neeraj upadhyay <Neeraj.Upadhyay@amd.com>
Signed-off-by: Neeraj upadhyay <Neeraj.Upadhyay@amd.com>
Reviewed-by: Like Xu <likexu@tencent.com>
Signed-off-by: Frederic Weisbecker <frederic@kernel.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
2023-11-28 17:19:36 +00:00
Denis Arefev
74f6aedbe6 srcu: Fix srcu_struct node grpmask overflow on 64-bit systems
[ Upstream commit d8d5b7bf6f2105883bbd91bbd4d5b67e4e3dff71 ]

The value of a bitwise expression 1 << (cpu - sdp->mynode->grplo)
is subject to overflow due to a failure to cast operands to a larger
data type before performing the bitwise operation.

The maximum result of this subtraction is defined by the RCU_FANOUT_LEAF
Kconfig option, which on 64-bit systems defaults to 16 (resulting in a
maximum shift of 15), but which can be set up as high as 64 (resulting
in a maximum shift of 63).  A value of 31 can result in sign extension,
resulting in 0xffffffff80000000 instead of the desired 0x80000000.
A value of 32 or greater triggers undefined behavior per the C standard.

This bug has not been known to cause issues because almost all kernels
take the default CONFIG_RCU_FANOUT_LEAF=16.  Furthermore, as long as a
given compiler gives a deterministic non-zero result for 1<<N for N>=32,
the code correctly invokes all SRCU callbacks, albeit wasting CPU time
along the way.

This commit therefore substitutes the correct 1UL for the buggy 1.

Found by Linux Verification Center (linuxtesting.org) with SVACE.

Signed-off-by: Denis Arefev <arefev@swemel.ru>
Reviewed-by: Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
Reviewed-by: Joel Fernandes (Google) <joel@joelfernandes.org>
Cc: David Laight <David.Laight@aculab.com>
Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
Signed-off-by: Frederic Weisbecker <frederic@kernel.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
2023-11-28 17:19:36 +00:00
Shuai Xue
2e905e608e perf/core: Bail out early if the request AUX area is out of bound
[ Upstream commit 54aee5f15b83437f23b2b2469bcf21bdd9823916 ]

When perf-record with a large AUX area, e.g 4GB, it fails with:

    #perf record -C 0 -m ,4G -e arm_spe_0// -- sleep 1
    failed to mmap with 12 (Cannot allocate memory)

and it reveals a WARNING with __alloc_pages():

	------------[ cut here ]------------
	WARNING: CPU: 44 PID: 17573 at mm/page_alloc.c:5568 __alloc_pages+0x1ec/0x248
	Call trace:
	 __alloc_pages+0x1ec/0x248
	 __kmalloc_large_node+0xc0/0x1f8
	 __kmalloc_node+0x134/0x1e8
	 rb_alloc_aux+0xe0/0x298
	 perf_mmap+0x440/0x660
	 mmap_region+0x308/0x8a8
	 do_mmap+0x3c0/0x528
	 vm_mmap_pgoff+0xf4/0x1b8
	 ksys_mmap_pgoff+0x18c/0x218
	 __arm64_sys_mmap+0x38/0x58
	 invoke_syscall+0x50/0x128
	 el0_svc_common.constprop.0+0x58/0x188
	 do_el0_svc+0x34/0x50
	 el0_svc+0x34/0x108
	 el0t_64_sync_handler+0xb8/0xc0
	 el0t_64_sync+0x1a4/0x1a8

'rb->aux_pages' allocated by kcalloc() is a pointer array which is used to
maintains AUX trace pages. The allocated page for this array is physically
contiguous (and virtually contiguous) with an order of 0..MAX_ORDER. If the
size of pointer array crosses the limitation set by MAX_ORDER, it reveals a
WARNING.

So bail out early with -ENOMEM if the request AUX area is out of bound,
e.g.:

    #perf record -C 0 -m ,4G -e arm_spe_0// -- sleep 1
    failed to mmap with 12 (Cannot allocate memory)

Signed-off-by: Shuai Xue <xueshuai@linux.alibaba.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
2023-11-28 17:19:36 +00:00
John Stultz
304a2c4aad locking/ww_mutex/test: Fix potential workqueue corruption
[ Upstream commit bccdd808902f8c677317cec47c306e42b93b849e ]

In some cases running with the test-ww_mutex code, I was seeing
odd behavior where sometimes it seemed flush_workqueue was
returning before all the work threads were finished.

Often this would cause strange crashes as the mutexes would be
freed while they were being used.

Looking at the code, there is a lifetime problem as the
controlling thread that spawns the work allocates the
"struct stress" structures that are passed to the workqueue
threads. Then when the workqueue threads are finished,
they free the stress struct that was passed to them.

Unfortunately the workqueue work_struct node is in the stress
struct. Which means the work_struct is freed before the work
thread returns and while flush_workqueue is waiting.

It seems like a better idea to have the controlling thread
both allocate and free the stress structures, so that we can
be sure we don't corrupt the workqueue by freeing the structure
prematurely.

So this patch reworks the test to do so, and with this change
I no longer see the early flush_workqueue returns.

Signed-off-by: John Stultz <jstultz@google.com>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Link: https://lore.kernel.org/r/20230922043616.19282-3-jstultz@google.com
Signed-off-by: Sasha Levin <sashal@kernel.org>
2023-11-28 17:19:35 +00:00
Yujie Liu
dc43609d12 tracing/kprobes: Fix the order of argument descriptions
[ Upstream commit f032c53bea6d2057c14553832d846be2f151cfb2 ]

The order of descriptions should be consistent with the argument list of
the function, so "kretprobe" should be the second one.

int __kprobe_event_gen_cmd_start(struct dynevent_cmd *cmd, bool kretprobe,
                                 const char *name, const char *loc, ...)

Link: https://lore.kernel.org/all/20231031041305.3363712-1-yujie.liu@intel.com/

Fixes: 2a588dd1d5d6 ("tracing: Add kprobe event command generation functions")
Suggested-by: Mukesh Ojha <quic_mojha@quicinc.com>
Signed-off-by: Yujie Liu <yujie.liu@intel.com>
Reviewed-by: Mukesh Ojha <quic_mojha@quicinc.com>
Signed-off-by: Masami Hiramatsu (Google) <mhiramat@kernel.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
2023-11-20 11:59:38 +01:00
Andrea Righi
ada57fd312 module/decompress: use kvmalloc() consistently
[ Upstream commit 17fc8084aa8f9d5235f252fc3978db657dd77e92 ]

We consistently switched from kmalloc() to vmalloc() in module
decompression to prevent potential memory allocation failures with large
modules, however vmalloc() is not as memory-efficient and fast as
kmalloc().

Since we don't know in general the size of the workspace required by the
decompression algorithm, it is more reasonable to use kvmalloc()
consistently, also considering that we don't have special memory
requirements here.

Suggested-by: Linus Torvalds <torvalds@linux-foundation.org>
Tested-by: Andrea Righi <andrea.righi@canonical.com>
Signed-off-by: Andrea Righi <andrea.righi@canonical.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
2023-11-20 11:59:37 +01:00
Hou Tao
77bf9287c5 bpf: Check map->usercnt after timer->timer is assigned
[ Upstream commit fd381ce60a2d79cc967506208085336d3d268ae0 ]

When there are concurrent uref release and bpf timer init operations,
the following sequence diagram is possible. It will break the guarantee
provided by bpf_timer: bpf_timer will still be alive after userspace
application releases or unpins the map. It also will lead to kmemleak
for old kernel version which doesn't release bpf_timer when map is
released.

bpf program X:

bpf_timer_init()
  lock timer->lock
    read timer->timer as NULL
    read map->usercnt != 0

                process Y:

                close(map_fd)
                  // put last uref
                  bpf_map_put_uref()
                    atomic_dec_and_test(map->usercnt)
                      array_map_free_timers()
                        bpf_timer_cancel_and_free()
                          // just return
                          read timer->timer is NULL

    t = bpf_map_kmalloc_node()
    timer->timer = t
  unlock timer->lock

Fix the problem by checking map->usercnt after timer->timer is assigned,
so when there are concurrent uref release and bpf timer init, either
bpf_timer_cancel_and_free() from uref release reads a no-NULL timer
or the newly-added atomic64_read() returns a zero usercnt.

Because atomic_dec_and_test(map->usercnt) and READ_ONCE(timer->timer)
in bpf_timer_cancel_and_free() are not protected by a lock, so add
a memory barrier to guarantee the order between map->usercnt and
timer->timer. Also use WRITE_ONCE(timer->timer, x) to match the lockless
read of timer->timer in bpf_timer_cancel_and_free().

Reported-by: Hsin-Wei Hung <hsinweih@uci.edu>
Closes: https://lore.kernel.org/bpf/CABcoxUaT2k9hWsS1tNgXyoU3E-=PuOgMn737qK984fbFmfYixQ@mail.gmail.com
Fixes: b00628b1c7d5 ("bpf: Introduce bpf timers.")
Signed-off-by: Hou Tao <houtao1@huawei.com>
Link: https://lore.kernel.org/r/20231030063616.1653024-1-houtao@huaweicloud.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
2023-11-20 11:59:34 +01:00
Zheng Yejian
fe998f4c32 livepatch: Fix missing newline character in klp_resolve_symbols()
[ Upstream commit 67e18e132f0fd738f8c8cac3aa1420312073f795 ]

Without the newline character, the log may not be printed immediately
after the error occurs.

Fixes: ca376a937486 ("livepatch: Prevent module-specific KLP rela sections from referencing vmlinux symbols")
Signed-off-by: Zheng Yejian <zhengyejian1@huawei.com>
Reviewed-by: Petr Mladek <pmladek@suse.com>
Signed-off-by: Petr Mladek <pmladek@suse.com>
Link: https://lore.kernel.org/r/20230914072644.4098857-1-zhengyejian1@huawei.com
Signed-off-by: Sasha Levin <sashal@kernel.org>
2023-11-20 11:59:25 +01:00
WangJinchao
1734a79e95 padata: Fix refcnt handling in padata_free_shell()
[ Upstream commit 7ddc21e317b360c3444de3023bcc83b85fabae2f ]

In a high-load arm64 environment, the pcrypt_aead01 test in LTP can lead
to system UAF (Use-After-Free) issues. Due to the lengthy analysis of
the pcrypt_aead01 function call, I'll describe the problem scenario
using a simplified model:

Suppose there's a user of padata named `user_function` that adheres to
the padata requirement of calling `padata_free_shell` after `serial()`
has been invoked, as demonstrated in the following code:

```c
struct request {
    struct padata_priv padata;
    struct completion *done;
};

void parallel(struct padata_priv *padata) {
    do_something();
}

void serial(struct padata_priv *padata) {
    struct request *request = container_of(padata,
    				struct request,
				padata);
    complete(request->done);
}

void user_function() {
    DECLARE_COMPLETION(done)
    padata->parallel = parallel;
    padata->serial = serial;
    padata_do_parallel();
    wait_for_completion(&done);
    padata_free_shell();
}
```

In the corresponding padata.c file, there's the following code:

```c
static void padata_serial_worker(struct work_struct *serial_work) {
    ...
    cnt = 0;

    while (!list_empty(&local_list)) {
        ...
        padata->serial(padata);
        cnt++;
    }

    local_bh_enable();

    if (refcount_sub_and_test(cnt, &pd->refcnt))
        padata_free_pd(pd);
}
```

Because of the high system load and the accumulation of unexecuted
softirq at this moment, `local_bh_enable()` in padata takes longer
to execute than usual. Subsequently, when accessing `pd->refcnt`,
`pd` has already been released by `padata_free_shell()`, resulting
in a UAF issue with `pd->refcnt`.

The fix is straightforward: add `refcount_dec_and_test` before calling
`padata_free_pd` in `padata_free_shell`.

Fixes: 07928d9bfc81 ("padata: Remove broken queue flushing")

Signed-off-by: WangJinchao <wangjinchao@xfusion.com>
Acked-by: Daniel Jordan <daniel.m.jordan@oracle.com>
Acked-by: Daniel Jordan <daniel.m.jordan@oracle.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
Signed-off-by: Sasha Levin <sashal@kernel.org>
2023-11-20 11:59:23 +01:00
Andrea Righi
c2a311dc20 module/decompress: use vmalloc() for gzip decompression workspace
[ Upstream commit 3737df782c740b944912ed93420c57344b1cf864 ]

Use a similar approach as commit a419beac4a07 ("module/decompress: use
vmalloc() for zstd decompression workspace") and replace kmalloc() with
vmalloc() also for the gzip module decompression workspace.

In this case the workspace is represented by struct inflate_workspace
that can be fairly large for kmalloc() and it can potentially lead to
allocation errors on certain systems:

$ pahole inflate_workspace
struct inflate_workspace {
	struct inflate_state       inflate_state;        /*     0  9544 */
	/* --- cacheline 149 boundary (9536 bytes) was 8 bytes ago --- */
	unsigned char              working_window[32768]; /*  9544 32768 */

	/* size: 42312, cachelines: 662, members: 2 */
	/* last cacheline: 8 bytes */
};

Considering that there is no need to use continuous physical memory,
simply switch to vmalloc() to provide a more reliable in-kernel module
decompression.

Fixes: b1ae6dc41eaa ("module: add in-kernel support for decompressing")
Signed-off-by: Andrea Righi <andrea.righi@canonical.com>
Signed-off-by: Luis Chamberlain <mcgrof@kernel.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
2023-11-20 11:59:17 +01:00
Song Liu
6e6dffbb72 bpf: Fix unnecessary -EBUSY from htab_lock_bucket
[ Upstream commit d35381aa73f7e1e8b25f3ed5283287a64d9ddff5 ]

htab_lock_bucket uses the following logic to avoid recursion:

1. preempt_disable();
2. check percpu counter htab->map_locked[hash] for recursion;
   2.1. if map_lock[hash] is already taken, return -BUSY;
3. raw_spin_lock_irqsave();

However, if an IRQ hits between 2 and 3, BPF programs attached to the IRQ
logic will not able to access the same hash of the hashtab and get -EBUSY.

This -EBUSY is not really necessary. Fix it by disabling IRQ before
checking map_locked:

1. preempt_disable();
2. local_irq_save();
3. check percpu counter htab->map_locked[hash] for recursion;
   3.1. if map_lock[hash] is already taken, return -BUSY;
4. raw_spin_lock().

Similarly, use raw_spin_unlock() and local_irq_restore() in
htab_unlock_bucket().

Fixes: 20b6cc34ea74 ("bpf: Avoid hashtab deadlock with map_locked")
Suggested-by: Tejun Heo <tj@kernel.org>
Signed-off-by: Song Liu <song@kernel.org>
Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Link: https://lore.kernel.org/bpf/7a9576222aa40b1c84ad3a9ba3e64011d1a04d41.camel@linux.ibm.com
Link: https://lore.kernel.org/bpf/20231012055741.3375999-1-song@kernel.org
Signed-off-by: Sasha Levin <sashal@kernel.org>
2023-11-20 11:59:03 +01:00
Yafang Shao
ba36bc0eda bpf: Fix missed rcu read lock in bpf_task_under_cgroup()
[ Upstream commit 29a7e00ffadddd8d68eff311de1bf12ae10687bb ]

When employed within a sleepable program not under RCU protection, the
use of 'bpf_task_under_cgroup()' may trigger a warning in the kernel log,
particularly when CONFIG_PROVE_RCU is enabled:

  [ 1259.662357] WARNING: suspicious RCU usage
  [ 1259.662358] 6.5.0+ #33 Not tainted
  [ 1259.662360] -----------------------------
  [ 1259.662361] include/linux/cgroup.h:423 suspicious rcu_dereference_check() usage!

Other info that might help to debug this:

  [ 1259.662366] rcu_scheduler_active = 2, debug_locks = 1
  [ 1259.662368] 1 lock held by trace/72954:
  [ 1259.662369]  #0: ffffffffb5e3eda0 (rcu_read_lock_trace){....}-{0:0}, at: __bpf_prog_enter_sleepable+0x0/0xb0

Stack backtrace:

  [ 1259.662385] CPU: 50 PID: 72954 Comm: trace Kdump: loaded Not tainted 6.5.0+ #33
  [ 1259.662391] Call Trace:
  [ 1259.662393]  <TASK>
  [ 1259.662395]  dump_stack_lvl+0x6e/0x90
  [ 1259.662401]  dump_stack+0x10/0x20
  [ 1259.662404]  lockdep_rcu_suspicious+0x163/0x1b0
  [ 1259.662412]  task_css_set.part.0+0x23/0x30
  [ 1259.662417]  bpf_task_under_cgroup+0xe7/0xf0
  [ 1259.662422]  bpf_prog_7fffba481a3bcf88_lsm_run+0x5c/0x93
  [ 1259.662431]  bpf_trampoline_6442505574+0x60/0x1000
  [ 1259.662439]  bpf_lsm_bpf+0x5/0x20
  [ 1259.662443]  ? security_bpf+0x32/0x50
  [ 1259.662452]  __sys_bpf+0xe6/0xdd0
  [ 1259.662463]  __x64_sys_bpf+0x1a/0x30
  [ 1259.662467]  do_syscall_64+0x38/0x90
  [ 1259.662472]  entry_SYSCALL_64_after_hwframe+0x6e/0xd8
  [ 1259.662479] RIP: 0033:0x7f487baf8e29
  [...]
  [ 1259.662504]  </TASK>

This issue can be reproduced by executing a straightforward program, as
demonstrated below:

SEC("lsm.s/bpf")
int BPF_PROG(lsm_run, int cmd, union bpf_attr *attr, unsigned int size)
{
        struct cgroup *cgrp = NULL;
        struct task_struct *task;
        int ret = 0;

        if (cmd != BPF_LINK_CREATE)
                return 0;

        // The cgroup2 should be mounted first
        cgrp = bpf_cgroup_from_id(1);
        if (!cgrp)
                goto out;
        task = bpf_get_current_task_btf();
        if (bpf_task_under_cgroup(task, cgrp))
                ret = -1;
        bpf_cgroup_release(cgrp);

out:
        return ret;
}

After running the program, if you subsequently execute another BPF program,
you will encounter the warning.

It's worth noting that task_under_cgroup_hierarchy() is also utilized by
bpf_current_task_under_cgroup(). However, bpf_current_task_under_cgroup()
doesn't exhibit this issue because it cannot be used in sleepable BPF
programs.

Fixes: b5ad4cdc46c7 ("bpf: Add bpf_task_under_cgroup() kfunc")
Signed-off-by: Yafang Shao <laoar.shao@gmail.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Stanislav Fomichev <sdf@google.com>
Cc: Feng Zhou <zhoufeng.zf@bytedance.com>
Cc: KP Singh <kpsingh@kernel.org>
Link: https://lore.kernel.org/bpf/20231007135945.4306-1-laoar.shao@gmail.com
Signed-off-by: Sasha Levin <sashal@kernel.org>
2023-11-20 11:59:01 +01:00
Kumar Kartikeya Dwivedi
99251305c2 bpf: Fix kfunc callback register type handling
[ Upstream commit 06d686f771ddc27a8554cd8f5b22e071040dc90e ]

The kfunc code to handle KF_ARG_PTR_TO_CALLBACK does not check the reg
type before using reg->subprogno. This can accidently permit invalid
pointers from being passed into callback helpers (e.g. silently from
different paths). Likewise, reg->subprogno from the per-register type
union may not be meaningful either. We need to reject any other type
except PTR_TO_FUNC.

Acked-by: Dave Marchevsky <davemarchevsky@fb.com>
Fixes: 5d92ddc3de1b ("bpf: Add callback validation to kfunc verifier logic")
Signed-off-by: Kumar Kartikeya Dwivedi <memxor@gmail.com>
Link: https://lore.kernel.org/r/20230912233214.1518551-14-memxor@gmail.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
2023-11-20 11:58:56 +01:00
Leon Hwang
8f873cc3f6 bpf, x64: Fix tailcall infinite loop
[ Upstream commit 2b5dcb31a19a2e0acd869b12c9db9b2d696ef544 ]

From commit ebf7d1f508a73871 ("bpf, x64: rework pro/epilogue and tailcall
handling in JIT"), the tailcall on x64 works better than before.

From commit e411901c0b775a3a ("bpf: allow for tailcalls in BPF subprograms
for x64 JIT"), tailcall is able to run in BPF subprograms on x64.

From commit 5b92a28aae4dd0f8 ("bpf: Support attaching tracing BPF program
to other BPF programs"), BPF program is able to trace other BPF programs.

How about combining them all together?

1. FENTRY/FEXIT on a BPF subprogram.
2. A tailcall runs in the BPF subprogram.
3. The tailcall calls the subprogram's caller.

As a result, a tailcall infinite loop comes up. And the loop would halt
the machine.

As we know, in tail call context, the tail_call_cnt propagates by stack
and rax register between BPF subprograms. So do in trampolines.

Fixes: ebf7d1f508a7 ("bpf, x64: rework pro/epilogue and tailcall handling in JIT")
Fixes: e411901c0b77 ("bpf: allow for tailcalls in BPF subprograms for x64 JIT")
Reviewed-by: Maciej Fijalkowski <maciej.fijalkowski@intel.com>
Signed-off-by: Leon Hwang <hffilwlqm@gmail.com>
Link: https://lore.kernel.org/r/20230912150442.2009-3-hffilwlqm@gmail.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
2023-11-20 11:58:55 +01:00
Chen Yu
daa5fa4535 genirq/matrix: Exclude managed interrupts in irq_matrix_allocated()
[ Upstream commit a0b0bad10587ae2948a7c36ca4ffc206007fbcf3 ]

When a CPU is about to be offlined, x86 validates that all active
interrupts which are targeted to this CPU can be migrated to the remaining
online CPUs. If not, the offline operation is aborted.

The validation uses irq_matrix_allocated() to retrieve the number of
vectors which are allocated on the outgoing CPU. The returned number of
allocated vectors includes also vectors which are associated to managed
interrupts.

That's overaccounting because managed interrupts are:

  - not migrated when the affinity mask of the interrupt targets only
    the outgoing CPU

  - migrated to another CPU, but in that case the vector is already
    pre-allocated on the potential target CPUs and must not be taken into
    account.

As a consequence the check whether the remaining online CPUs have enough
capacity for migrating the allocated vectors from the outgoing CPU might
fail incorrectly.

Let irq_matrix_allocated() return only the number of allocated non-managed
interrupts to make this validation check correct.

[ tglx: Amend changelog and fixup kernel-doc comment ]

Fixes: 2f75d9e1c905 ("genirq: Implement bitmap matrix allocator")
Reported-by: Wendy Wang <wendy.wang@intel.com>
Signed-off-by: Chen Yu <yu.c.chen@intel.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Link: https://lore.kernel.org/r/20231020072522.557846-1-yu.c.chen@intel.com
Signed-off-by: Sasha Levin <sashal@kernel.org>
2023-11-20 11:58:54 +01:00
Peter Zijlstra
b0ebeb5956 perf: Optimize perf_cgroup_switch()
[ Upstream commit f06cc667f79909e9175460b167c277b7c64d3df0 ]

Namhyung reported that bd2756811766 ("perf: Rewrite core context handling")
regresses context switch overhead when perf-cgroup is in use together
with 'slow' PMUs like uncore.

Specifically, perf_cgroup_switch()'s perf_ctx_disable() /
ctx_sched_out() etc.. all iterate the full list of active PMUs for
that CPU, even if they don't have cgroup events.

Previously there was cgrp_cpuctx_list which linked the relevant PMUs
together, but that got lost in the rework. Instead of re-instruducing
a similar list, let the perf_event_pmu_context iteration skip those
that do not have cgroup events. This avoids growing multiple versions
of the perf_event_pmu_context iteration.

Measured performance (on a slightly different patch):

Before)

  $ taskset -c 0 ./perf bench sched pipe -l 10000 -G AAA,BBB
  # Running 'sched/pipe' benchmark:
  # Executed 10000 pipe operations between two processes

       Total time: 0.901 [sec]

        90.128700 usecs/op
            11095 ops/sec

After)

  $ taskset -c 0 ./perf bench sched pipe -l 10000 -G AAA,BBB
  # Running 'sched/pipe' benchmark:
  # Executed 10000 pipe operations between two processes

       Total time: 0.065 [sec]

         6.560100 usecs/op
           152436 ops/sec

Fixes: bd2756811766 ("perf: Rewrite core context handling")
Reported-by: Namhyung Kim <namhyung@kernel.org>
Debugged-by: Namhyung Kim <namhyung@kernel.org>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/20231009210425.GC6307@noisy.programming.kicks-ass.net
Signed-off-by: Sasha Levin <sashal@kernel.org>
2023-11-20 11:58:53 +01:00
Frederic Weisbecker
516315314f srcu: Fix callbacks acceleration mishandling
[ Upstream commit 4a8e65b0c348e42107c64381e692e282900be361 ]

SRCU callbacks acceleration might fail if the preceding callbacks
advance also fails. This can happen when the following steps are met:

1) The RCU_WAIT_TAIL segment has callbacks (say for gp_num 8) and the
   RCU_NEXT_READY_TAIL also has callbacks (say for gp_num 12).

2) The grace period for RCU_WAIT_TAIL is observed as started but not yet
   completed so rcu_seq_current() returns 4 + SRCU_STATE_SCAN1 = 5.

3) This value is passed to rcu_segcblist_advance() which can't move
   any segment forward and fails.

4) srcu_gp_start_if_needed() still proceeds with callback acceleration.
   But then the call to rcu_seq_snap() observes the grace period for the
   RCU_WAIT_TAIL segment (gp_num 8) as completed and the subsequent one
   for the RCU_NEXT_READY_TAIL segment as started
   (ie: 8 + SRCU_STATE_SCAN1 = 9) so it returns a snapshot of the
   next grace period, which is 16.

5) The value of 16 is passed to rcu_segcblist_accelerate() but the
   freshly enqueued callback in RCU_NEXT_TAIL can't move to
   RCU_NEXT_READY_TAIL which already has callbacks for a previous grace
   period (gp_num = 12). So acceleration fails.

6) Note in all these steps, srcu_invoke_callbacks() hadn't had a chance
   to run srcu_invoke_callbacks().

Then some very bad outcome may happen if the following happens:

7) Some other CPU races and starts the grace period number 16 before the
   CPU handling previous steps had a chance. Therefore srcu_gp_start()
   isn't called on the latter sdp to fix the acceleration leak from
   previous steps with a new pair of call to advance/accelerate.

8) The grace period 16 completes and srcu_invoke_callbacks() is finally
   called. All the callbacks from previous grace periods (8 and 12) are
   correctly advanced and executed but callbacks in RCU_NEXT_READY_TAIL
   still remain. Then rcu_segcblist_accelerate() is called with a
   snaphot of 20.

9) Since nothing started the grace period number 20, callbacks stay
   unhandled.

This has been reported in real load:

	[3144162.608392] INFO: task kworker/136:12:252684 blocked for more
	than 122 seconds.
	[3144162.615986]       Tainted: G           O  K   5.4.203-1-tlinux4-0011.1 #1
	[3144162.623053] "echo 0 > /proc/sys/kernel/hung_task_timeout_secs"
	disables this message.
	[3144162.631162] kworker/136:12  D    0 252684      2 0x90004000
	[3144162.631189] Workqueue: kvm-irqfd-cleanup irqfd_shutdown [kvm]
	[3144162.631192] Call Trace:
	[3144162.631202]  __schedule+0x2ee/0x660
	[3144162.631206]  schedule+0x33/0xa0
	[3144162.631209]  schedule_timeout+0x1c4/0x340
	[3144162.631214]  ? update_load_avg+0x82/0x660
	[3144162.631217]  ? raw_spin_rq_lock_nested+0x1f/0x30
	[3144162.631218]  wait_for_completion+0x119/0x180
	[3144162.631220]  ? wake_up_q+0x80/0x80
	[3144162.631224]  __synchronize_srcu.part.19+0x81/0xb0
	[3144162.631226]  ? __bpf_trace_rcu_utilization+0x10/0x10
	[3144162.631227]  synchronize_srcu+0x5f/0xc0
	[3144162.631236]  irqfd_shutdown+0x3c/0xb0 [kvm]
	[3144162.631239]  ? __schedule+0x2f6/0x660
	[3144162.631243]  process_one_work+0x19a/0x3a0
	[3144162.631244]  worker_thread+0x37/0x3a0
	[3144162.631247]  kthread+0x117/0x140
	[3144162.631247]  ? process_one_work+0x3a0/0x3a0
	[3144162.631248]  ? __kthread_cancel_work+0x40/0x40
	[3144162.631250]  ret_from_fork+0x1f/0x30

Fix this with taking the snapshot for acceleration _before_ the read
of the current grace period number.

The only side effect of this solution is that callbacks advancing happen
then _after_ the full barrier in rcu_seq_snap(). This is not a problem
because that barrier only cares about:

1) Ordering accesses of the update side before call_srcu() so they don't
   bleed.
2) See all the accesses prior to the grace period of the current gp_num

The only things callbacks advancing need to be ordered against are
carried by snp locking.

Reported-by: Yong He <alexyonghe@tencent.com>
Co-developed-by:: Yong He <alexyonghe@tencent.com>
Signed-off-by: Yong He <alexyonghe@tencent.com>
Co-developed-by: Joel Fernandes (Google) <joel@joelfernandes.org>
Signed-off-by:  Joel Fernandes (Google) <joel@joelfernandes.org>
Co-developed-by: Neeraj upadhyay <Neeraj.Upadhyay@amd.com>
Signed-off-by: Neeraj upadhyay <Neeraj.Upadhyay@amd.com>
Link: http://lore.kernel.org/CANZk6aR+CqZaqmMWrC2eRRPY12qAZnDZLwLnHZbNi=xXMB401g@mail.gmail.com
Fixes: da915ad5cf25 ("srcu: Parallelize callback handling")
Signed-off-by: Frederic Weisbecker <frederic@kernel.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
2023-11-20 11:58:53 +01:00
Thomas Gleixner
60edbe8e7e cpu/SMT: Make SMT control more robust against enumeration failures
[ Upstream commit d91bdd96b55cc3ce98d883a60f133713821b80a6 ]

The SMT control mechanism got added as speculation attack vector
mitigation. The implemented logic relies on the primary thread mask to
be set up properly.

This turns out to be an issue with XEN/PV guests because their CPU hotplug
mechanics do not enumerate APICs and therefore the mask is never correctly
populated.

This went unnoticed so far because by chance XEN/PV ends up with
smp_num_siblings == 2. So smt_hotplug_control stays at its default value
CPU_SMT_ENABLED and the primary thread mask is never evaluated in the
context of CPU hotplug.

This stopped "working" with the upcoming overhaul of the topology
evaluation which legitimately provides a fake topology for XEN/PV. That
sets smp_num_siblings to 1, which causes the core CPU hot-plug core to
refuse to bring up the APs.

This happens because smt_hotplug_control is set to CPU_SMT_NOT_SUPPORTED
which causes cpu_smt_allowed() to evaluate the unpopulated primary thread
mask with the conclusion that all non-boot CPUs are not valid to be
plugged.

Make cpu_smt_allowed() more robust and take CPU_SMT_NOT_SUPPORTED and
CPU_SMT_NOT_IMPLEMENTED into account. Rename it to cpu_bootable() while at
it as that makes it more clear what the function is about.

The primary mask issue on x86 XEN/PV needs to be addressed separately as
there are users outside of the CPU hotplug code too.

Fixes: 05736e4ac13c ("cpu/hotplug: Provide knobs to control SMT")
Reported-by: Juergen Gross <jgross@suse.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Tested-by: Juergen Gross <jgross@suse.com>
Tested-by: Sohil Mehta <sohil.mehta@intel.com>
Tested-by: Michael Kelley <mikelley@microsoft.com>
Tested-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Tested-by: Zhang Rui <rui.zhang@intel.com>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lore.kernel.org/r/20230814085112.149440843@linutronix.de
Signed-off-by: Sasha Levin <sashal@kernel.org>
2023-11-20 11:58:53 +01:00
Waiman Long
d6e21bf76e cgroup/cpuset: Fix load balance state in update_partition_sd_lb()
[ Upstream commit 6fcdb0183bf024a70abccb0439321c25891c708d ]

Commit a86ce68078b2 ("cgroup/cpuset: Extract out CS_CPU_EXCLUSIVE
& CS_SCHED_LOAD_BALANCE handling") adds a new helper function
update_partition_sd_lb() to update the load balance state of the
cpuset. However the new load balance is determined by just looking at
whether the cpuset is a valid isolated partition root or not.  That is
not enough if the cpuset is not a valid partition root but its parent
is in the isolated state (load balance off). Update the function to
set the new state to be the same as its parent in this case like what
has been done in commit c8c926200c55 ("cgroup/cpuset: Inherit parent's
load balance state in v2").

Fixes: a86ce68078b2 ("cgroup/cpuset: Extract out CS_CPU_EXCLUSIVE & CS_SCHED_LOAD_BALANCE handling")
Signed-off-by: Waiman Long <longman@redhat.com>
Signed-off-by: Tejun Heo <tj@kernel.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
2023-11-20 11:58:53 +01:00
Ben Wolsieffer
d7bbdc9bf4 futex: Don't include process MM in futex key on no-MMU
[ Upstream commit c73801ae4f22b390228ebf471d55668e824198b6 ]

On no-MMU, all futexes are treated as private because there is no need
to map a virtual address to physical to match the futex across
processes. This doesn't quite work though, because private futexes
include the current process's mm_struct as part of their key. This makes
it impossible for one process to wake up a shared futex being waited on
in another process.

Fix this bug by excluding the mm_struct from the key. With
a single address space, the futex address is already a unique key.

Fixes: 784bdf3bb694 ("futex: Assume all mappings are private on !MMU systems")
Signed-off-by: Ben Wolsieffer <ben.wolsieffer@hefring.com>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Acked-by: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Darren Hart <dvhart@infradead.org>
Cc: Davidlohr Bueso <dave@stgolabs.net>
Cc: André Almeida <andrealmeid@igalia.com>
Link: https://lore.kernel.org/r/20231019204548.1236437-2-ben.wolsieffer@hefring.com
Signed-off-by: Sasha Levin <sashal@kernel.org>
2023-11-20 11:58:53 +01:00
Peter Zijlstra
d03b481743 sched: Fix stop_one_cpu_nowait() vs hotplug
[ Upstream commit f0498d2a54e7966ce23cd7c7ff42c64fa0059b07 ]

Kuyo reported sporadic failures on a sched_setaffinity() vs CPU
hotplug stress-test -- notably affine_move_task() remains stuck in
wait_for_completion(), leading to a hung-task detector warning.

Specifically, it was reported that stop_one_cpu_nowait(.fn =
migration_cpu_stop) returns false -- this stopper is responsible for
the matching complete().

The race scenario is:

	CPU0					CPU1

					// doing _cpu_down()

  __set_cpus_allowed_ptr()
    task_rq_lock();
					takedown_cpu()
					  stop_machine_cpuslocked(take_cpu_down..)

					<PREEMPT: cpu_stopper_thread()
					  MULTI_STOP_PREPARE
					  ...
    __set_cpus_allowed_ptr_locked()
      affine_move_task()
        task_rq_unlock();

  <PREEMPT: cpu_stopper_thread()\>
    ack_state()
					  MULTI_STOP_RUN
					    take_cpu_down()
					      __cpu_disable();
					      stop_machine_park();
						stopper->enabled = false;
					 />
   />
	stop_one_cpu_nowait(.fn = migration_cpu_stop);
          if (stopper->enabled) // false!!!

That is, by doing stop_one_cpu_nowait() after dropping rq-lock, the
stopper thread gets a chance to preempt and allows the cpu-down for
the target CPU to complete.

OTOH, since stop_one_cpu_nowait() / cpu_stop_queue_work() needs to
issue a wakeup, it must not be ran under the scheduler locks.

Solve this apparent contradiction by keeping preemption disabled over
the unlock + queue_stopper combination:

	preempt_disable();
	task_rq_unlock(...);
	if (!stop_pending)
	  stop_one_cpu_nowait(...)
	preempt_enable();

This respects the lock ordering contraints while still avoiding the
above race. That is, if we find the CPU is online under rq-lock, the
targeted stop_one_cpu_nowait() must succeed.

Apply this pattern to all similar stop_one_cpu_nowait() invocations.

Fixes: 6d337eab041d ("sched: Fix migrate_disable() vs set_cpus_allowed_ptr()")
Reported-by: "Kuyo Chang (張建文)" <Kuyo.Chang@mediatek.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Tested-by: "Kuyo Chang (張建文)" <Kuyo.Chang@mediatek.com>
Link: https://lkml.kernel.org/r/20231010200442.GA16515@noisy.programming.kicks-ass.net
Signed-off-by: Sasha Levin <sashal@kernel.org>
2023-11-20 11:58:52 +01:00
Qais Yousef
294e3c797d sched/uclamp: Ignore (util == 0) optimization in feec() when p_util_max = 0
[ Upstream commit 23c9519def98ee0fa97ea5871535e9b136f522fc ]

find_energy_efficient_cpu() bails out early if effective util of the
task is 0 as the delta at this point will be zero and there's nothing
for EAS to do. When uclamp is being used, this could lead to wrong
decisions when uclamp_max is set to 0. In this case the task is capped
to performance point 0, but it is actually running and consuming energy
and we can benefit from EAS energy calculations.

Rework the condition so that it bails out when both util and uclamp_min
are 0.

We can do that without needing to use uclamp_task_util(); remove it.

Fixes: d81304bc6193 ("sched/uclamp: Cater for uclamp in find_energy_efficient_cpu()'s early exit condition")
Signed-off-by: Qais Yousef (Google) <qyousef@layalina.io>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Reviewed-by: Vincent Guittot <vincent.guittot@linaro.org>
Reviewed-by: Dietmar Eggemann <dietmar.eggemann@arm.com>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lore.kernel.org/r/20230916232955.2099394-3-qyousef@layalina.io
Signed-off-by: Sasha Levin <sashal@kernel.org>
2023-11-20 11:58:52 +01:00
Qais Yousef
60bbc99f7d sched/uclamp: Set max_spare_cap_cpu even if max_spare_cap is 0
[ Upstream commit 6b00a40147653c8ea748e8f4396510f252763364 ]

When uclamp_max is being used, the util of the task could be higher than
the spare capacity of the CPU, but due to uclamp_max value we force-fit
it there.

The way the condition for checking for max_spare_cap in
find_energy_efficient_cpu() was constructed; it ignored any CPU that has
its spare_cap less than or _equal_ to max_spare_cap. Since we initialize
max_spare_cap to 0; this lead to never setting max_spare_cap_cpu and
hence ending up never performing compute_energy() for this cluster and
missing an opportunity for a better energy efficient placement to honour
uclamp_max setting.

	max_spare_cap = 0;
	cpu_cap = capacity_of(cpu) - cpu_util(p);  // 0 if cpu_util(p) is high

	...

	util_fits_cpu(...);		// will return true if uclamp_max forces it to fit

	...

	// this logic will fail to update max_spare_cap_cpu if cpu_cap is 0
	if (cpu_cap > max_spare_cap) {
		max_spare_cap = cpu_cap;
		max_spare_cap_cpu = cpu;
	}

prev_spare_cap suffers from a similar problem.

Fix the logic by converting the variables into long and treating -1
value as 'not populated' instead of 0 which is a viable and correct
spare capacity value. We need to be careful signed comparison is used
when comparing with cpu_cap in one of the conditions.

Fixes: 1d42509e475c ("sched/fair: Make EAS wakeup placement consider uclamp restrictions")
Signed-off-by: Qais Yousef (Google) <qyousef@layalina.io>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Reviewed-by: Vincent Guittot <vincent.guittot@linaro.org>
Reviewed-by: Dietmar Eggemann <dietmar.eggemann@arm.com>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lore.kernel.org/r/20230916232955.2099394-2-qyousef@layalina.io
Signed-off-by: Sasha Levin <sashal@kernel.org>
2023-11-20 11:58:52 +01:00
Chengming Zhou
f6df646b7e sched/fair: Fix cfs_rq_is_decayed() on !SMP
[ Upstream commit c0490bc9bb62d9376f3dd4ec28e03ca0fef97152 ]

We don't need to maintain per-queue leaf_cfs_rq_list on !SMP, since
it's used for cfs_rq load tracking & balancing on SMP.

But sched debug interface uses it to print per-cfs_rq stats.

This patch fixes the !SMP version of cfs_rq_is_decayed(), so the
per-queue leaf_cfs_rq_list is also maintained correctly on !SMP,
to fix the warning in assert_list_leaf_cfs_rq().

Fixes: 0a00a354644e ("sched/fair: Delete useless condition in tg_unthrottle_up()")
Reported-by: Leo Yu-Chi Liang <ycliang@andestech.com>
Signed-off-by: Chengming Zhou <zhouchengming@bytedance.com>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Tested-by: Leo Yu-Chi Liang <ycliang@andestech.com>
Reviewed-by: Vincent Guittot <vincent.guittot@linaro.org>
Closes: https://lore.kernel.org/all/ZN87UsqkWcFLDxea@swlinux02/
Link: https://lore.kernel.org/r/20230913132031.2242151-1-chengming.zhou@linux.dev
Signed-off-by: Sasha Levin <sashal@kernel.org>
2023-11-20 11:58:51 +01:00
Yury Norov
b633c05136 sched/topology: Fix sched_numa_find_nth_cpu() in CPU-less case
[ Upstream commit 617f2c38cb5ce60226042081c09e2ee3a90d03f8 ]

When the node provided by user is CPU-less, corresponding record in
sched_domains_numa_masks is not set. Trying to dereference it in the
following code leads to kernel crash.

To avoid it, start searching from the nearest node with CPUs.

Fixes: cd7f55359c90 ("sched: add sched_numa_find_nth_cpu()")
Reported-by: Yicong Yang <yangyicong@hisilicon.com>
Reported-by: Guenter Roeck <linux@roeck-us.net>
Signed-off-by: Yury Norov <yury.norov@gmail.com>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Reviewed-by: Yicong Yang <yangyicong@hisilicon.com>
Cc: Mel Gorman <mgorman@suse.de>
Link: https://lore.kernel.org/r/20230819141239.287290-4-yury.norov@gmail.com

Closes: https://lore.kernel.org/lkml/CAAH8bW8C5humYnfpW3y5ypwx0E-09A3QxFE1JFzR66v+mO4XfA@mail.gmail.com/T/
Closes: https://lore.kernel.org/lkml/ZMHSNQfv39HN068m@yury-ThinkPad/T/#mf6431cb0b7f6f05193c41adeee444bc95bf2b1c4
Signed-off-by: Sasha Levin <sashal@kernel.org>
2023-11-20 11:58:51 +01:00
Steven Rostedt (Google)
9034c87d61 tracing: Have trace_event_file have ref counters
commit bb32500fb9b78215e4ef6ee8b4345c5f5d7eafb4 upstream

The following can crash the kernel:

 # cd /sys/kernel/tracing
 # echo 'p:sched schedule' > kprobe_events
 # exec 5>>events/kprobes/sched/enable
 # > kprobe_events
 # exec 5>&-

The above commands:

 1. Change directory to the tracefs directory
 2. Create a kprobe event (doesn't matter what one)
 3. Open bash file descriptor 5 on the enable file of the kprobe event
 4. Delete the kprobe event (removes the files too)
 5. Close the bash file descriptor 5

The above causes a crash!

 BUG: kernel NULL pointer dereference, address: 0000000000000028
 #PF: supervisor read access in kernel mode
 #PF: error_code(0x0000) - not-present page
 PGD 0 P4D 0
 Oops: 0000 [#1] PREEMPT SMP PTI
 CPU: 6 PID: 877 Comm: bash Not tainted 6.5.0-rc4-test-00008-g2c6b6b1029d4-dirty #186
 Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS 1.16.2-debian-1.16.2-1 04/01/2014
 RIP: 0010:tracing_release_file_tr+0xc/0x50

What happens here is that the kprobe event creates a trace_event_file
"file" descriptor that represents the file in tracefs to the event. It
maintains state of the event (is it enabled for the given instance?).
Opening the "enable" file gets a reference to the event "file" descriptor
via the open file descriptor. When the kprobe event is deleted, the file is
also deleted from the tracefs system which also frees the event "file"
descriptor.

But as the tracefs file is still opened by user space, it will not be
totally removed until the final dput() is called on it. But this is not
true with the event "file" descriptor that is already freed. If the user
does a write to or simply closes the file descriptor it will reference the
event "file" descriptor that was just freed, causing a use-after-free bug.

To solve this, add a ref count to the event "file" descriptor as well as a
new flag called "FREED". The "file" will not be freed until the last
reference is released. But the FREE flag will be set when the event is
removed to prevent any more modifications to that event from happening,
even if there's still a reference to the event "file" descriptor.

Link: https://lore.kernel.org/linux-trace-kernel/20231031000031.1e705592@gandalf.local.home/
Link: https://lore.kernel.org/linux-trace-kernel/20231031122453.7a48b923@gandalf.local.home

Cc: stable@vger.kernel.org
Cc: Mark Rutland <mark.rutland@arm.com>
Fixes: f5ca233e2e66d ("tracing: Increase trace array ref count on enable and filter files")
Reported-by: Beau Belgrave <beaub@linux.microsoft.com>
Tested-by: Beau Belgrave <beaub@linux.microsoft.com>
Reviewed-by: Masami Hiramatsu (Google) <mhiramat@kernel.org>
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2023-11-08 11:56:21 +01:00
Linus Torvalds
4714de0332 Fix a potential NULL dereference bug.
Signed-off-by: Ingo Molnar <mingo@kernel.org>
 -----BEGIN PGP SIGNATURE-----
 
 iQJFBAABCgAvFiEEBpT5eoXrXCwVQwEKEnMQ0APhK1gFAmU839YRHG1pbmdvQGtl
 cm5lbC5vcmcACgkQEnMQ0APhK1isRg//S7E94bSvBE1uaclhehlro/V8t8qXiO2y
 RIvxCR16tornBWHYg49vVlZDGMVC5kf0O/6/b3p2VOwpZ+m9qp/4v5ImhYIhl1SI
 M2UFJ6pjy+ykbUR98WjuePXTNy6nEntJ8uYt+PxnGrApNG0DTnKbL03deimX/e2Z
 tOEYBh8iaHNx0AhuoWkLOXAbIFlwUeYVXZM1X5/3AS8AKcNYWzUkkyKWE4u6AY68
 E7uokwo+Z+rdSWIk+8mqALnf2IeIWl0ecyaA7P/wCf6ei3Yyys/H3N6qjwq0Yq2g
 gT2urQCBkPrYvkz3YS7i+P7hSe7cf6nPoTz+pN0oCEKT7cEenQTd+EtDnmpmPjxJ
 X7zTnag/l268cWudFS54DaZeUGOPx/AIG+k0RbN0w1XcDCg8DVTIB/MB0rTMeWPp
 y3lZMeU8ott+pHHjVUtDU7ERDWFf+EWpuPP8o9lq6oQV3W31l0XL3uL16mRvZtLB
 gWlR7DovFW+y6I9ISs3k18pQOKU8B4foyAbvlS5n4wmKZMn7ygryw3Tcg77mUZTK
 /xYdGQ5ZR6PDnqrn8uy0KeIIbtFkcxEKWanZzjjs49p820GvXvtOmLeirUqi8oc1
 c2mYqJH5T7U3KQUeG1JgytZuRpa/ph8GWw4LsS+4QLOAEXqU1x7dJYtvJMWj1bcx
 vpI9MHwKkck=
 =FjJZ
 -----END PGP SIGNATURE-----

Merge tag 'perf-urgent-2023-10-28' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip

Pull perf event fix from Ingo Molnar:
 "Fix a potential NULL dereference bug"

* tag 'perf-urgent-2023-10-28' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
  perf/core: Fix potential NULL deref
2023-10-28 08:10:47 -10:00
Linus Torvalds
51a7691038 Probes fixes for v6.6-rc7:
- tracing/kprobes: Fix kernel-doc warnings for the variable length
   arguments.
 
 - tracing/kprobes: Fix to count the symbols in modules even if the
   module name is not specified so that user can probe the symbols in
   the modules without module name.
 -----BEGIN PGP SIGNATURE-----
 
 iQFPBAABCgA5FiEEh7BulGwFlgAOi5DV2/sHvwUrPxsFAmU82MUbHG1hc2FtaS5o
 aXJhbWF0c3VAZ21haWwuY29tAAoJENv7B78FKz8bMZ0H+wZHWVUsmqGLGNCt3gfi
 m2EJX83VMwY8PzpwZ5ezrx4ibAcUyo7Dhh8OniGgEazC3BNeggoUu/HwpirS22gI
 Tx0EMlgLOJQykauiUe6FPem0IbrlbQMI1gLplx6cVd8lgIYZQfMIM5gI0kuCywT3
 Ka9sCgp6y3UKQNtHKFwtPRLYFTF3Afyy2C01wdsa800SEqeOAeTD9+8yz7ZnuFt+
 bNgu6vJGFfJHkEkvYCwFFqZ1eIfXON6lUFpijNpCGvMN2h1XArLexSk8JRBf6j2+
 8+1FrRQsTXRk3G6v9uQABeK7z5W2F8gufmSFyBlXajbZp2HT6j4s2S86u5lP9P9J
 l1U=
 =etyx
 -----END PGP SIGNATURE-----

Merge tag 'probes-fixes-v6.6-rc7' of git://git.kernel.org/pub/scm/linux/kernel/git/trace/linux-trace

Pull probes fixes from Masami Hiramatsu:

 - tracing/kprobes: Fix kernel-doc warnings for the variable length
   arguments

 - tracing/kprobes: Fix to count the symbols in modules even if the
   module name is not specified so that user can probe the symbols in
   the modules without module name

* tag 'probes-fixes-v6.6-rc7' of git://git.kernel.org/pub/scm/linux/kernel/git/trace/linux-trace:
  tracing/kprobes: Fix symbol counting logic by looking at modules as well
  tracing/kprobes: Fix the description of variable length arguments
2023-10-28 08:04:56 -10:00
Andrii Nakryiko
926fe783c8 tracing/kprobes: Fix symbol counting logic by looking at modules as well
Recent changes to count number of matching symbols when creating
a kprobe event failed to take into account kernel modules. As such, it
breaks kprobes on kernel module symbols, by assuming there is no match.

Fix this my calling module_kallsyms_on_each_symbol() in addition to
kallsyms_on_each_match_symbol() to perform a proper counting.

Link: https://lore.kernel.org/all/20231027233126.2073148-1-andrii@kernel.org/

Cc: Francis Laniel <flaniel@linux.microsoft.com>
Cc: stable@vger.kernel.org
Cc: Masami Hiramatsu <mhiramat@kernel.org>
Cc: Steven Rostedt <rostedt@goodmis.org>
Fixes: b022f0c7e404 ("tracing/kprobes: Return EADDRNOTAVAIL when func matches several symbols")
Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Acked-by: Song Liu <song@kernel.org>
Signed-off-by: Masami Hiramatsu (Google) <mhiramat@kernel.org>
2023-10-28 09:50:42 +09:00
Yujie Liu
e0f831836c tracing/kprobes: Fix the description of variable length arguments
Fix the following kernel-doc warnings:

kernel/trace/trace_kprobe.c:1029: warning: Excess function parameter 'args' description in '__kprobe_event_gen_cmd_start'
kernel/trace/trace_kprobe.c:1097: warning: Excess function parameter 'args' description in '__kprobe_event_add_fields'

Refer to the usage of variable length arguments elsewhere in the kernel
code, "@..." is the proper way to express it in the description.

Link: https://lore.kernel.org/all/20231027041315.2613166-1-yujie.liu@intel.com/

Fixes: 2a588dd1d5d6 ("tracing: Add kprobe event command generation functions")
Reported-by: kernel test robot <lkp@intel.com>
Closes: https://lore.kernel.org/oe-kbuild-all/202310190437.paI6LYJF-lkp@intel.com/
Signed-off-by: Yujie Liu <yujie.liu@intel.com>
Reviewed-by: Mukesh Ojha <quic_mojha@quicinc.com>
Acked-by: Masami Hiramatsu (Google) <mhiramat@kernel.org>
Signed-off-by: Masami Hiramatsu (Google) <mhiramat@kernel.org>
2023-10-27 22:20:28 +09:00
Petr Tesarik
d5090484b0 swiotlb: do not try to allocate a TLB bigger than MAX_ORDER pages
When allocating a new pool at runtime, reduce the number of slabs so
that the allocation order is at most MAX_ORDER.  This avoids a kernel
warning in __alloc_pages().

The warning is relatively benign, because the pool size is subsequently
reduced when allocation fails, but it is silly to start with a request
that is known to fail, especially since this is the default behavior if
the kernel is built with CONFIG_SWIOTLB_DYNAMIC=y and booted without any
swiotlb= parameter.

Reported-by: Ben Greear <greearb@candelatech.com>
Closes: https://lore.kernel.org/netdev/4f173dd2-324a-0240-ff8d-abf5c191be18@candelatech.com/
Fixes: 1aaa736815eb ("swiotlb: allocate a new memory pool when existing pools are full")
Signed-off-by: Petr Tesarik <petr.tesarik1@huawei-partners.com>
Signed-off-by: Christoph Hellwig <hch@lst.de>
2023-10-25 16:26:20 +02:00
Peter Zijlstra
a71ef31485 perf/core: Fix potential NULL deref
Smatch is awesome.

Fixes: 32671e3799ca ("perf: Disallow mis-matched inherited group reads")
Reported-by: Dan Carpenter <dan.carpenter@linaro.org>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2023-10-24 12:15:12 +02:00
Linus Torvalds
45d3291c52 Fix a recently introduced use-after-free bug.
Signed-off-by: Ingo Molnar <mingo@kernel.org>
 -----BEGIN PGP SIGNATURE-----
 
 iQJFBAABCgAvFiEEBpT5eoXrXCwVQwEKEnMQ0APhK1gFAmUz7ZgRHG1pbmdvQGtl
 cm5lbC5vcmcACgkQEnMQ0APhK1ikdg/9E9WIoxGMimkA7IdG6izFvEpqXDbC1nci
 qrm7b3eJMO9dbihCTtiNV5bpe35GhlQZER2honE3oyxOuglPZ3iUckCu5aa82/C1
 iHltu9zGvk1JVaFeMWereGduwVitG19hxiVU4t0nMJkIoJltab3uJPHchyWfpdNO
 n2x6f+FJ+28IKg3mlyuAWCRztW0tpBIk9nkGErKozszXAQQyYZVe/3sEo1ZYiLNT
 7RFjJK2KyWcvi78SN0Ins6Cqh6x3k1ZA60O4rmYswAcGr584IJ22NPnI0VBYbIC0
 QehMZBOAqyji1tQJIHJFAx3Yx4cPxo8jS2n7CaxvZsBGhE+AkKfNzFyRWTXaY51V
 eTesPkWqr9SjK1GKdpY2a9q8Mo7e6maQPgKPREo4TMzXgN9abZhJKVeRnUGCZlHx
 jTa9h1FzFlN2OSaG4P48iTyaN0udYq11tPQAs7DRJoSUteaPDGK8X1JrXGqar00k
 sfmKcN0CkwXlhtniGq1BWy/B32UgelBj9U0on7TnS5omKByUrar+sProJO0EuWNi
 VAuHJRsDL7Jt2TGNmCXAWQK6ZB8yDNnZZH8I0evkBn0MVD4GVXd0J6Uu1TA1dSRP
 wdgxK0hZQLt9gCbtlELHJ+uJw+HEJ/Qkq/LSWNYGNg0b5OnrgV055VQfMlSKVGDw
 tibMZCmnKMM=
 =IKgN
 -----END PGP SIGNATURE-----

Merge tag 'sched-urgent-2023-10-21' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip

Pull scheduler fix from Ingo Molnar:
 "Fix a recently introduced use-after-free bug"

* tag 'sched-urgent-2023-10-21' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
  sched/eevdf: Fix heap corruption more
2023-10-21 11:19:07 -07:00
Linus Torvalds
94be133fb2 Fix group event semantics.
Signed-off-by: Ingo Molnar <mingo@kernel.org>
 -----BEGIN PGP SIGNATURE-----
 
 iQJFBAABCgAvFiEEBpT5eoXrXCwVQwEKEnMQ0APhK1gFAmUz7FURHG1pbmdvQGtl
 cm5lbC5vcmcACgkQEnMQ0APhK1hUMA/+IrkxzylYcir2z1Jv1PKNvCDuPdvz8yMS
 k0p5FMimGMSN+IPS8XwAEvG9YdFxyjQNbFfFvx0wp1PMPb5+NQYT6rTbOzziwpBn
 8EIx/Ebjt1HraaAhGholF5c4UVzmAPzNJO/x2VX5mtqJY8EekbGWtUVuXsVyO1hA
 E/0C4FWVQ6Y0ig60naZnm2b/Z1nCbIBw9fmIXqrnkdSrQnFb4uRW6owu1JGI0x1H
 a7i7X7GgUytoZR4z4PLkR+UwtCc/Hza6S/8zkEVUiYUAp1JbzKQn6+3vA58xoOtU
 zuoJimWA3ofntwiTAtL2qHRSLoPPRqPZRuBceYa5TtZjLHqe8dKgcj2YaqleTFqZ
 3NelYg1QMKjs35k2M+vAU5I5fZSU/cgyMK2Z4MFKm+XleDO575vffOSDXgyIs272
 7iCLx7VNmT8ubijhFjNCi0xz6HBk/wml41XlzgLg2rzcVmwVjXqp+IfTP7QF4UW8
 wmIWV/JZE4DOIuJp/dwQDicVEkr5XxUd39tlyGWD0GqXEQJDIe9Cb8cW+nBesIT7
 j2lwHaxxxQB9AhJE3jfK7fBn/+LxqNAsPt6SEvdf1BqHWMSGmdTT3NKw3gwquqru
 3OO6utMWPgJ/mGa7exbl/9gB4wIiCVTH1dsDRMBcnxgDg0e3d8UM/PdRys18q7YU
 g4zAKSFkzCw=
 =xyU0
 -----END PGP SIGNATURE-----

Merge tag 'perf-urgent-2023-10-21' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip

Pull perf events fix from Ingo Molnar:
 "Fix group event semantics"

* tag 'perf-urgent-2023-10-21' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
  perf: Disallow mis-matched inherited group reads
2023-10-21 11:09:29 -07:00
Linus Torvalds
023cc83605 Probes fixes for v6.6-rc6.2:
- kprobe-events: Fix kprobe events to reject if the attached symbol
   is not unique name because it may not the function which the user
   want to attach to. (User can attach a probe to such symbol using
   the nearest unique symbol + offset.)
 
 - selftest: Add a testcase to ensure the kprobe event rejects non
   unique symbol correctly.
 -----BEGIN PGP SIGNATURE-----
 
 iQFPBAABCgA5FiEEh7BulGwFlgAOi5DV2/sHvwUrPxsFAmUzdQobHG1hc2FtaS5o
 aXJhbWF0c3VAZ21haWwuY29tAAoJENv7B78FKz8bMNAH/inFWv8e+rMm8F5Po6ZI
 CmBxuZbxy2l+KfYDjXqSHu7TLKngVd6Bhdb5H2K7fgdwiZxrS0i6qvdppo+Cxgop
 Yod06peDTM80IKavioCcOJOwLPGXXpZkMlK5fdC48HN6vrf9km4vws5ZAagfc1ng
 YhnYm1HHeXcIYwtLkE2dCr6HkwkaOebWTLdZ8c70d1OPw0L9rzxH+edjhKCq8uIw
 6WUg9ERxJYPUuCkQxOxVJrTdzNMRXsgf28FHc0LyYRm8kDpECT2BP6e/Y+TBbsX5
 2pN5cUY5qfI6t3Pc1HDs2KX8ui2QCmj0mCvT0VixhdjThdHpRf0VjIFFAANf3LNO
 XVA=
 =O1Aa
 -----END PGP SIGNATURE-----

Merge tag 'probes-fixes-v6.6-rc6.2' of git://git.kernel.org/pub/scm/linux/kernel/git/trace/linux-trace

Pull probes fixes from Masami Hiramatsu:

 - kprobe-events: Fix kprobe events to reject if the attached symbol is
   not unique name because it may not the function which the user want
   to attach to. (User can attach a probe to such symbol using the
   nearest unique symbol + offset.)

 - selftest: Add a testcase to ensure the kprobe event rejects non
   unique symbol correctly.

* tag 'probes-fixes-v6.6-rc6.2' of git://git.kernel.org/pub/scm/linux/kernel/git/trace/linux-trace:
  selftests/ftrace: Add new test case which checks non unique symbol
  tracing/kprobes: Return EADDRNOTAVAIL when func matches several symbols
2023-10-21 11:00:36 -07:00
Francis Laniel
b022f0c7e4 tracing/kprobes: Return EADDRNOTAVAIL when func matches several symbols
When a kprobe is attached to a function that's name is not unique (is
static and shares the name with other functions in the kernel), the
kprobe is attached to the first function it finds. This is a bug as the
function that it is attaching to is not necessarily the one that the
user wants to attach to.

Instead of blindly picking a function to attach to what is ambiguous,
error with EADDRNOTAVAIL to let the user know that this function is not
unique, and that the user must use another unique function with an
address offset to get to the function they want to attach to.

Link: https://lore.kernel.org/all/20231020104250.9537-2-flaniel@linux.microsoft.com/

Cc: stable@vger.kernel.org
Fixes: 413d37d1eb69 ("tracing: Add kprobe-based event tracer")
Suggested-by: Masami Hiramatsu <mhiramat@kernel.org>
Signed-off-by: Francis Laniel <flaniel@linux.microsoft.com>
Link: https://lore.kernel.org/lkml/20230819101105.b0c104ae4494a7d1f2eea742@kernel.org/
Acked-by: Masami Hiramatsu (Google) <mhiramat@kernel.org>
Signed-off-by: Masami Hiramatsu (Google) <mhiramat@kernel.org>
2023-10-20 22:10:41 +09:00
Linus Torvalds
ea1cc20cd4 v6.6-rc7.vfs.fixes
-----BEGIN PGP SIGNATURE-----
 
 iHUEABYKAB0WIQRAhzRXHqcMeLMyaSiRxhvAZXjcogUCZTD6IQAKCRCRxhvAZXjc
 opXLAQC9X+ECnGUAOy/kvOrEBkBb7G4BuZ8XsrnL976riVNp0gEA85LaJV9Ow7Xk
 51k/1ujhYkglQbCsa0zo+mI4ueE3wAQ=
 =Dqrj
 -----END PGP SIGNATURE-----

Merge tag 'v6.6-rc7.vfs.fixes' of git://git.kernel.org/pub/scm/linux/kernel/git/vfs/vfs

Pull vfs fix from Christian Brauner:
 "An openat() call from io_uring triggering an audit call can apparently
  cause the refcount of struct filename to be incremented from multiple
  threads concurrently during async execution, triggering a refcount
  underflow and hitting a BUG_ON(). That bug has been lurking around
  since at least v5.16 apparently.

  Switch to an atomic counter to fix that. The underflow check is
  downgraded from a BUG_ON() to a WARN_ON_ONCE() but we could easily
  remove that check altogether tbh"

* tag 'v6.6-rc7.vfs.fixes' of git://git.kernel.org/pub/scm/linux/kernel/git/vfs/vfs:
  audit,io_uring: io_uring openat triggers audit reference count underflow
2023-10-19 09:37:41 -07:00
Peter Zijlstra
32671e3799 perf: Disallow mis-matched inherited group reads
Because group consistency is non-atomic between parent (filedesc) and children
(inherited) events, it is possible for PERF_FORMAT_GROUP read() to try and sum
non-matching counter groups -- with non-sensical results.

Add group_generation to distinguish the case where a parent group removes and
adds an event and thus has the same number, but a different configuration of
events as inherited groups.

This became a problem when commit fa8c269353d5 ("perf/core: Invert
perf_read_group() loops") flipped the order of child_list and sibling_list.
Previously it would iterate the group (sibling_list) first, and for each
sibling traverse the child_list. In this order, only the group composition of
the parent is relevant. By flipping the order the group composition of the
child (inherited) events becomes an issue and the mis-match in group
composition becomes evident.

That said; even prior to this commit, while reading of a group that is not
equally inherited was not broken, it still made no sense.

(Ab)use ECHILD as error return to indicate issues with child process group
composition.

Fixes: fa8c269353d5 ("perf/core: Invert perf_read_group() loops")
Reported-by: Budimir Markovic <markovicbudimir@gmail.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/20231018115654.GK33217@noisy.programming.kicks-ass.net
2023-10-19 10:09:42 +02:00
Peter Zijlstra
d2929762cc sched/eevdf: Fix heap corruption more
Because someone is a flaming idiot... and forgot we have current as
se->on_rq but not actually in the tree itself, and walking rb_parent()
on an entry not in the tree is 'funky' and KASAN complains.

Fixes: 8dafa9d0eb1a ("sched/eevdf: Fix min_deadline heap integrity")
Reported-by: 0599jiangyc@gmail.com
Reported-by: Dmitry Safonov <0x7f454c46@gmail.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Tested-by: Dmitry Safonov <0x7f454c46@gmail.com>
Link: https://bugzilla.kernel.org/show_bug.cgi?id=218020
Link: https://lkml.kernel.org/r/CAJwJo6ZGXO07%3DQvW4fgQfbsDzQPs9xj5sAQ1zp%3DmAyPMNbHYww%40mail.gmail.com
2023-10-18 10:22:13 +02:00
Masami Hiramatsu (Google)
700b2b4397 fprobe: Fix to ensure the number of active retprobes is not zero
The number of active retprobes can be zero but it is not acceptable,
so return EINVAL error if detected.

Link: https://lore.kernel.org/all/169750018550.186853.11198884812017796410.stgit@devnote2/

Reported-by: wuqiang.matt <wuqiang.matt@bytedance.com>
Closes: https://lore.kernel.org/all/20231016222103.cb9f426edc60220eabd8aa6a@kernel.org/
Fixes: 5b0ab78998e3 ("fprobe: Add exit_handler support")
Signed-off-by: Masami Hiramatsu (Google) <mhiramat@kernel.org>
2023-10-17 10:22:42 +09:00
Linus Torvalds
42578c7bf6 Two EEVDF fixes.
Signed-off-by: Ingo Molnar <mingo@kernel.org>
 -----BEGIN PGP SIGNATURE-----
 
 iQJFBAABCgAvFiEEBpT5eoXrXCwVQwEKEnMQ0APhK1gFAmUrDzARHG1pbmdvQGtl
 cm5lbC5vcmcACgkQEnMQ0APhK1hJuQ//cumay4Bv4IK6NoVgLSECYmXNTWuK/83y
 siHkiuyoH39Ikm8HNSJKJVcWv2KNiCFJPBtQ/aEVzIMrBDtPZnYDmU9DNTpB1e8b
 BN+72jiZ4RSsySyG0Nkr6XC6eAeNpvhW1BgcjjoTIodvycGiaTrHopEvQX/BefWa
 OCZZYElBsPTtK30IlUKN0TUxTEZuWdVaIihbmu9fAVa5gYvlCtOmFwwSC54SQjDG
 uusKyxiLrkvR+zXzLyRYiXYIb147/OnXRWAiVmM7jfk/SnUFq9IeWU08iDNYU++d
 K5cw/vedBP3mwo0sgybrRDqyxFrdpbU2o08cX2yj2FTIJDf2zW+KQGoyQyqcrnEk
 1coYnMu3+OdZBNfq6OY6mwwk2aRsJwR3BhOmMBpTPN9NYWKrsq0UWBISk/X+8iJU
 KoL7wSSrODQa973ElSvc4s5beyNVxYykjO7cLZGsFFuOIxDLS8PTXGL4C+jlizk3
 vbuINtVtKNf5Zl0sjukEWZhCcp/bftakyRfTMCsRFqoQGpLlc++TRVuQt5uvxis4
 u7flazmP4JfQyTsmN4QKxOnBy1AJA5LlEnv4yrII5dPj4Smf/1TPUo7j6Mbfu0Ai
 pvpkG5SjjTjfL94qABSz88O4bBzZFHDlZ4MhJuyWkN5PFBi2xtfAf7sSrVOQnIb1
 IvjOLAlTJlQ=
 =Raax
 -----END PGP SIGNATURE-----

Merge tag 'sched-urgent-2023-10-14' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip

Pull scheduler fixes from Ingo Molnar:
 "Two EEVDF fixes"

* tag 'sched-urgent-2023-10-14' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
  sched/eevdf: Fix pick_eevdf()
  sched/eevdf: Fix min_deadline heap integrity
2023-10-14 15:21:34 -07:00
Dan Clash
03adc61eda
audit,io_uring: io_uring openat triggers audit reference count underflow
An io_uring openat operation can update an audit reference count
from multiple threads resulting in the call trace below.

A call to io_uring_submit() with a single openat op with a flag of
IOSQE_ASYNC results in the following reference count updates.

These first part of the system call performs two increments that do not race.

do_syscall_64()
  __do_sys_io_uring_enter()
    io_submit_sqes()
      io_openat_prep()
        __io_openat_prep()
          getname()
            getname_flags()       /* update 1 (increment) */
              __audit_getname()   /* update 2 (increment) */

The openat op is queued to an io_uring worker thread which starts the
opportunity for a race.  The system call exit performs one decrement.

do_syscall_64()
  syscall_exit_to_user_mode()
    syscall_exit_to_user_mode_prepare()
      __audit_syscall_exit()
        audit_reset_context()
           putname()              /* update 3 (decrement) */

The io_uring worker thread performs one increment and two decrements.
These updates can race with the system call decrement.

io_wqe_worker()
  io_worker_handle_work()
    io_wq_submit_work()
      io_issue_sqe()
        io_openat()
          io_openat2()
            do_filp_open()
              path_openat()
                __audit_inode()   /* update 4 (increment) */
            putname()             /* update 5 (decrement) */
        __audit_uring_exit()
          audit_reset_context()
            putname()             /* update 6 (decrement) */

The fix is to change the refcnt member of struct audit_names
from int to atomic_t.

kernel BUG at fs/namei.c:262!
Call Trace:
...
 ? putname+0x68/0x70
 audit_reset_context.part.0.constprop.0+0xe1/0x300
 __audit_uring_exit+0xda/0x1c0
 io_issue_sqe+0x1f3/0x450
 ? lock_timer_base+0x3b/0xd0
 io_wq_submit_work+0x8d/0x2b0
 ? __try_to_del_timer_sync+0x67/0xa0
 io_worker_handle_work+0x17c/0x2b0
 io_wqe_worker+0x10a/0x350

Cc: stable@vger.kernel.org
Link: https://lore.kernel.org/lkml/MW2PR2101MB1033FFF044A258F84AEAA584F1C9A@MW2PR2101MB1033.namprd21.prod.outlook.com/
Fixes: 5bd2182d58e9 ("audit,io_uring,io-wq: add some basic audit support to io_uring")
Signed-off-by: Dan Clash <daclash@linux.microsoft.com>
Link: https://lore.kernel.org/r/20231012215518.GA4048@linuxonhyperv3.guj3yctzbm1etfxqx2vob5hsef.xx.internal.cloudapp.net
Reviewed-by: Jens Axboe <axboe@kernel.dk>
Signed-off-by: Christian Brauner <brauner@kernel.org>
2023-10-13 18:34:46 +02:00