IF YOU WOULD LIKE TO GET AN ACCOUNT, please write an
email to Administrator. User accounts are meant only to access repo
and report issues and/or generate pull requests.
This is a purpose-specific Git hosting for
BaseALT
projects. Thank you for your understanding!
Только зарегистрированные пользователи имеют доступ к сервису!
Для получения аккаунта, обратитесь к администратору.
commit f6564fce256a3944aa1bc76cb3c40e792d97c1eb upstream.
Alexander Potapenko writes in [1]: "For every memory access in the code
instrumented by KMSAN we call kmsan_get_metadata() to obtain the metadata
for the memory being accessed. For virtual memory the metadata pointers
are stored in the corresponding `struct page`, therefore we need to call
virt_to_page() to get them.
According to the comment in arch/x86/include/asm/page.h,
virt_to_page(kaddr) returns a valid pointer iff virt_addr_valid(kaddr) is
true, so KMSAN needs to call virt_addr_valid() as well.
To avoid recursion, kmsan_get_metadata() must not call instrumented code,
therefore ./arch/x86/include/asm/kmsan.h forks parts of
arch/x86/mm/physaddr.c to check whether a virtual address is valid or not.
But the introduction of rcu_read_lock() to pfn_valid() added instrumented
RCU API calls to virt_to_page_or_null(), which is called by
kmsan_get_metadata(), so there is an infinite recursion now. I do not
think it is correct to stop that recursion by doing
kmsan_enter_runtime()/kmsan_exit_runtime() in kmsan_get_metadata(): that
would prevent instrumented functions called from within the runtime from
tracking the shadow values, which might introduce false positives."
Fix the issue by switching pfn_valid() to the _sched() variant of
rcu_read_lock/unlock(), which does not require calling into RCU. Given
the critical section in pfn_valid() is very small, this is a reasonable
trade-off (with preemptible RCU).
KMSAN further needs to be careful to suppress calls into the scheduler,
which would be another source of recursion. This can be done by wrapping
the call to pfn_valid() into preempt_disable/enable_no_resched(). The
downside is that this sacrifices breaking scheduling guarantees; however,
a kernel compiled with KMSAN has already given up any performance
guarantees due to being heavily instrumented.
Note, KMSAN code already disables tracing via Makefile, and since mmzone.h
is included, it is not necessary to use the notrace variant, which is
generally preferred in all other cases.
Link: https://lkml.kernel.org/r/20240115184430.2710652-1-glider@google.com [1]
Link: https://lkml.kernel.org/r/20240118110022.2538350-1-elver@google.com
Fixes: 5ec8e8ea8b77 ("mm/sparsemem: fix race in accessing memory_section->usage")
Signed-off-by: Marco Elver <elver@google.com>
Reported-by: Alexander Potapenko <glider@google.com>
Reported-by: syzbot+93a9e8a3dea8d6085e12@syzkaller.appspotmail.com
Reviewed-by: Alexander Potapenko <glider@google.com>
Tested-by: Alexander Potapenko <glider@google.com>
Cc: Charan Teja Kalla <quic_charante@quicinc.com>
Cc: Borislav Petkov (AMD) <bp@alien8.de>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Dmitry Vyukov <dvyukov@google.com>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
[ Upstream commit 64bac5ea17d527872121adddfee869c7a0618f8f ]
The prototype was hidden in an #ifdef on x86, which causes a warning:
kernel/irq_work.c:72:13: error: no previous prototype for 'arch_irq_work_raise' [-Werror=missing-prototypes]
Some architectures have a working prototype, while others don't.
Fix this by providing it in only one place that is always visible.
Reviewed-by: Alexander Gordeev <agordeev@linux.ibm.com>
Acked-by: Catalin Marinas <catalin.marinas@arm.com>
Acked-by: Palmer Dabbelt <palmer@rivosinc.com>
Acked-by: Guo Ren <guoren@kernel.org>
Signed-off-by: Arnd Bergmann <arnd@arndb.de>
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit 9f3b130048bfa2e44a8cfb1b616f826d9d5d8188 ]
Memory errors don't happen very often, especially fatal ones. However,
in large-scale scenarios such as data centers, that probability
increases with the amount of machines present.
When a fatal machine check happens, mce_panic() is called based on the
severity grading of that error. The page containing the error is not
marked as poison.
However, when kexec is enabled, tools like makedumpfile understand when
pages are marked as poison and do not touch them so as not to cause
a fatal machine check exception again while dumping the previous
kernel's memory.
Therefore, mark the page containing the error as poisoned so that the
kexec'ed kernel can avoid accessing the page.
[ bp: Rewrite commit message and comment. ]
Co-developed-by: Youquan Song <youquan.song@intel.com>
Signed-off-by: Youquan Song <youquan.song@intel.com>
Signed-off-by: Zhiquan Li <zhiquan1.li@intel.com>
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Reviewed-by: Naoya Horiguchi <naoya.horiguchi@nec.com>
Link: https://lore.kernel.org/r/20231014051754.3759099-1-zhiquan1.li@intel.com
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit 78a509fba9c9b1fcb77f95b7c6be30da3d24823a ]
When there are two racing NMIs on x86, the first NMI invokes NMI handler and
the 2nd NMI is latched until IRET is executed.
If panic on NMI and panic kexec are enabled, the first NMI triggers
panic and starts booting the next kernel via kexec. Note that the 2nd
NMI is still latched. During the early boot of the next kernel, once
an IRET is executed as a result of a page fault, then the 2nd NMI is
unlatched and invokes the NMI handler.
However, NMI handler is not set up at the early stage of boot, which
results in a boot failure.
Avoid such problems by setting up a NOP handler for early NMIs.
[ mingo: Refined the changelog. ]
Signed-off-by: Jun'ichi Nomura <junichi.nomura@nec.com>
Signed-off-by: Derek Barbosa <debarbos@redhat.com>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Cc: Kees Cook <keescook@chromium.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Paul E. McKenney <paulmck@kernel.org>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
commit 56062d60f117dccfb5281869e0ab61e090baf864 upstream.
Presently ia32 registers stored in ptregs are unconditionally cast to
unsigned int by the ia32 stub. They are then cast to long when passed to
__se_sys*, but will not be sign extended.
This takes the sign of the syscall argument into account in the ia32
stub. It still casts to unsigned int to avoid implementation specific
behavior. However then casts to int or unsigned int as necessary. So that
the following cast to long sign extends the value.
This fixes the io_pgetevents02 LTP test when compiled with -m32. Presently
the systemcall io_pgetevents_time64() unexpectedly accepts -1 for the
maximum number of events.
It doesn't appear other systemcalls with signed arguments are effected
because they all have compat variants defined and wired up.
Fixes: ebeb8c82ffaf ("syscalls/x86: Use 'struct pt_regs' based syscall calling for IA32_EMULATION and x32")
Suggested-by: Arnd Bergmann <arnd@arndb.de>
Signed-off-by: Richard Palethorpe <rpalethorpe@suse.com>
Signed-off-by: Nikolay Borisov <nik.borisov@suse.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Arnd Bergmann <arnd@arndb.de>
Cc: stable@vger.kernel.org
Link: https://lore.kernel.org/r/20240110130122.3836513-1-nik.borisov@suse.com
Link: https://lore.kernel.org/ltp/20210921130127.24131-1-rpalethorpe@suse.com/
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit cef9ecc8e938dd48a560f7dd9be1246359248d20 upstream.
Specs don't say anything about UIP being cleared within 10ms. They
only say that UIP won't occur for another 244uS. If a long NMI occurs
while UIP is still updating it might not be possible to get valid
data in 10ms.
This has been observed in the wild that around s2idle some calls can
take up to 480ms before UIP is clear.
Adjust callers from outside an interrupt context to wait for up to a
1s instead of 10ms.
Cc: <stable@vger.kernel.org> # 6.1.y
Fixes: ec5895c0f2d8 ("rtc: mc146818-lib: extract mc146818_avoid_UIP")
Reported-by: Carsten Hatger <xmb8dsv4@gmail.com>
Closes: https://bugzilla.kernel.org/show_bug.cgi?id=217626
Tested-by: Mateusz Jończyk <mat.jonczyk@o2.pl>
Reviewed-by: Mateusz Jończyk <mat.jonczyk@o2.pl>
Acked-by: Mateusz Jończyk <mat.jonczyk@o2.pl>
Signed-off-by: Mario Limonciello <mario.limonciello@amd.com>
Link: https://lore.kernel.org/r/20231128053653.101798-5-mario.limonciello@amd.com
Signed-off-by: Alexandre Belloni <alexandre.belloni@bootlin.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 120931db07b49252aba2073096b595482d71857c upstream.
The UIP timeout is hardcoded to 10ms for all RTC reads, but in some
contexts this might not be enough time. Add a timeout parameter to
mc146818_get_time() and mc146818_get_time_callback().
If UIP timeout is configured by caller to be >=100 ms and a call
takes this long, log a warning.
Make all callers use 10ms to ensure no functional changes.
Cc: <stable@vger.kernel.org> # 6.1.y
Fixes: ec5895c0f2d8 ("rtc: mc146818-lib: extract mc146818_avoid_UIP")
Signed-off-by: Mario Limonciello <mario.limonciello@amd.com>
Tested-by: Mateusz Jończyk <mat.jonczyk@o2.pl>
Reviewed-by: Mateusz Jończyk <mat.jonczyk@o2.pl>
Acked-by: Mateusz Jończyk <mat.jonczyk@o2.pl>
Link: https://lore.kernel.org/r/20231128053653.101798-4-mario.limonciello@amd.com
Signed-off-by: Alexandre Belloni <alexandre.belloni@bootlin.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 1647b52757d59131fe30cf73fa36fac834d4367f upstream.
Stop all counters and release all perf events before refreshing the vPMU,
i.e. before reconfiguring the vPMU to respond to changes in the vCPU
model.
Clear need_cleanup in kvm_pmu_reset() as well so that KVM doesn't
prematurely stop counters, e.g. if KVM enters the guest and enables
counters before the vCPU is scheduled out.
Cc: stable@vger.kernel.org
Reviewed-by: Dapeng Mi <dapeng1.mi@linux.intel.com>
Link: https://lore.kernel.org/r/20231103230541.352265-3-seanjc@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit cbb359d81a2695bb5e63ec9de06fcbef28518891 upstream.
Move the common (or at least "ignored") aspects of resetting the vPMU to
common x86 code, along with the stop/release helpers that are no used only
by the common pmu.c.
There is no need to manually handle fixed counters as all_valid_pmc_idx
tracks both fixed and general purpose counters, and resetting the vPMU is
far from a hot path, i.e. the extra bit of overhead to the PMC from the
index is a non-issue.
Zero fixed_ctr_ctrl in common code even though it's Intel specific.
Ensuring it's zero doesn't harm AMD/SVM in any way, and stopping the fixed
counters via all_valid_pmc_idx, but not clearing the associated control
bits, would be odd/confusing.
Make the .reset() hook optional as SVM no longer needs vendor specific
handling.
Cc: stable@vger.kernel.org
Reviewed-by: Dapeng Mi <dapeng1.mi@linux.intel.com>
Link: https://lore.kernel.org/r/20231103230541.352265-2-seanjc@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 1c6d984f523f67ecfad1083bb04c55d91977bb15 upstream.
kvm_guest_cpu_offline() tries to disable kvmclock regardless if it is
present in the VM. It leads to write to a MSR that doesn't exist on some
configurations, namely in TDX guest:
unchecked MSR access error: WRMSR to 0x12 (tried to write 0x0000000000000000)
at rIP: 0xffffffff8110687c (kvmclock_disable+0x1c/0x30)
kvmclock enabling is gated by CLOCKSOURCE and CLOCKSOURCE2 KVM paravirt
features.
Do not disable kvmclock if it was not enabled.
Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Fixes: c02027b5742b ("x86/kvm: Disable kvmclock on all CPUs on shutdown")
Reviewed-by: Sean Christopherson <seanjc@google.com>
Reviewed-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: Wanpeng Li <wanpengli@tencent.com>
Cc: stable@vger.kernel.org
Message-Id: <20231205004510.27164-6-kirill.shutemov@linux.intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 070909e56a7d65fd0b4aad6e808966b7c634befe upstream.
Tomasz, Sebastian, and some Proxmox users reported problems initializing
ixgbe NICs.
I think the problem is that ECAM space described in the ACPI MCFG table is
not reserved via a PNP0C02 _CRS method as required by the PCI Firmware spec
(r3.3, sec 4.1.2), but it *is* included in the PNP0A03 host bridge _CRS as
part of the MMIO aperture.
If we allocate space for a PCI BAR, we're likely to allocate it from that
ECAM space, which obviously cannot work.
This could happen for any device, but in the ixgbe case it happens because
it's an SR-IOV device and the BIOS didn't allocate space for the VF BARs,
so Linux reallocated the bridge window leading to ixgbe and put it on top
of the ECAM space. From Tomasz' system:
PCI: MMCONFIG for domain 0000 [bus 00-ff] at [mem 0x80000000-0x8fffffff] (base 0x80000000)
PCI: MMCONFIG at [mem 0x80000000-0x8fffffff] not reserved in ACPI motherboard resources
pci_bus 0000:00: root bus resource [mem 0x80000000-0xfbffffff window]
pci 0000:00:01.1: PCI bridge to [bus 02-03]
pci 0000:00:01.1: bridge window [mem 0xfb900000-0xfbbfffff]
pci 0000:02:00.0: [8086:10fb] type 00 class 0x020000 # ixgbe
pci 0000:02:00.0: reg 0x10: [mem 0xfba80000-0xfbafffff 64bit]
pci 0000:02:00.0: VF(n) BAR0 space: [mem 0x00000000-0x000fffff 64bit] (contains BAR0 for 64 VFs)
pci 0000:02:00.0: BAR 7: no space for [mem size 0x00100000 64bit] # VF BAR 0
pci_bus 0000:00: No. 2 try to assign unassigned res
pci 0000:00:01.1: resource 14 [mem 0xfb900000-0xfbbfffff] released
pci 0000:00:01.1: BAR 14: assigned [mem 0x80000000-0x806fffff]
pci 0000:02:00.0: BAR 0: assigned [mem 0x80000000-0x8007ffff 64bit]
pci 0000:02:00.0: BAR 7: assigned [mem 0x80204000-0x80303fff 64bit] # VF BAR 0
Fixes: 07eab0901ede ("efi/x86: Remove EfiMemoryMappedIO from E820 map")
Fixes: fd3a8cff4d4a ("x86/pci: Treat EfiMemoryMappedIO as reservation of ECAM space")
Reported-by: Tomasz Pala <gotar@polanet.pl>
Link: https://bugzilla.kernel.org/show_bug.cgi?id=218050
Reported-by: Sebastian Manciulea <manciuleas@protonmail.com>
Link: https://bugzilla.kernel.org/show_bug.cgi?id=218107
Link: https://forum.proxmox.com/threads/proxmox-8-kernel-6-2-16-4-pve-ixgbe-driver-fails-to-load-due-to-pci-device-probing-failure.131203/
Link: https://lore.kernel.org/r/20231121183643.249006-2-helgaas@kernel.org
Tested-by: Tomasz Pala <gotar@polanet.pl>
Signed-off-by: Bjorn Helgaas <bhelgaas@google.com>
Cc: stable@vger.kernel.org # v6.2+
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit a484755ab2526ebdbe042397cdd6e427eb4b1a68 upstream.
Revert KVM's made-up consistency check on SVM's TLB control. The APM says
that unsupported encodings are reserved, but the APM doesn't state that
VMRUN checks for a supported encoding. Unless something is called out
in "Canonicalization and Consistency Checks" or listed as MBZ (Must Be
Zero), AMD behavior is typically to let software shoot itself in the foot.
This reverts commit 174a921b6975ef959dd82ee9e8844067a62e3ec1.
Fixes: 174a921b6975 ("nSVM: Check for reserved encodings of TLB_CONTROL in nested VMCB")
Reported-by: Stefan Sterz <s.sterz@proxmox.com>
Closes: https://lkml.kernel.org/r/b9915c9c-4cf6-051a-2d91-44cc6380f455%40proxmox.com
Cc: stable@vger.kernel.org
Reviewed-by: Maxim Levitsky <mlevitsk@redhat.com>
Link: https://lore.kernel.org/r/20231018194104.1896415-2-seanjc@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
[ Upstream commit 1692cf434ba13ee212495b5af795b6a07e986ce4 ]
Get logical socket id instead of physical id in discover_upi_topology()
to avoid out-of-bound access on 'upi = &type->topology[nid][idx];' line
that leads to NULL pointer dereference in upi_fill_topology()
Fixes: f680b6e6062e ("perf/x86/intel/uncore: Enable UPI topology discovery for Icelake Server")
Reported-by: Kyle Meyer <kyle.meyer@hpe.com>
Signed-off-by: Alexander Antonov <alexander.antonov@linux.intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Kan Liang <kan.liang@linux.intel.com>
Tested-by: Kyle Meyer <kyle.meyer@hpe.com>
Link: https://lore.kernel.org/r/20231127185246.2371939-2-alexander.antonov@linux.intel.com
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit edc8fc01f608108b0b7580cb2c29dfb5135e5f0e ]
intel_idle_irq() re-enables IRQs very early. As a result, an interrupt
may fire before mwait() is eventually called. If such an interrupt queues
a timer, it may go unnoticed until mwait returns and the idle loop
handles the tick re-evaluation. And monitoring TIF_NEED_RESCHED doesn't
help because a local timer enqueue doesn't set that flag.
The issue is mitigated by the fact that this idle handler is only invoked
for shallow C-states when, presumably, the next tick is supposed to be
close enough. There may still be rare cases though when the next tick
is far away and the selected C-state is shallow, resulting in a timer
getting ignored for a while.
Fix this with using sti_mwait() whose IRQ-reenablement only triggers
upon calling mwait(), dealing with the race while keeping the interrupt
latency within acceptable bounds.
Fixes: c227233ad64c (intel_idle: enable interrupts before C1 on Xeons)
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Frederic Weisbecker <frederic@kernel.org>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Acked-by: Rafael J. Wysocki <rafael@kernel.org>
Link: https://lkml.kernel.org/r/20231115151325.6262-3-frederic@kernel.org
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit 6175b407756b22e7fdc771181b7d832ebdedef5c ]
AMD systems generally allow MCA "simulation" where MCA registers can be
written with valid data and the full MCA handling flow can be tested by
software.
However, the platform on Scalable MCA systems, can prevent software from
writing data to the MCA registers. There is no architectural way to
determine this configuration. Therefore, the MCE injection module will
check for this behavior by writing and reading back a test status value.
This is done during module init, and the check can run on any CPU with
any valid MCA bank.
If MCA_STATUS writes are ignored by the platform, then there are no side
effects on the hardware state.
If the writes are not ignored, then the test status value will remain in
the hardware MCA_STATUS register. It is likely that the value will not
be overwritten by hardware or software, since the tested CPU and bank
are arbitrary. Therefore, the user may see a spurious, synthetic MCA
error reported whenever MCA is polled for this CPU.
Clear the test value immediately after writing it. It is very unlikely
that a valid MCA error is logged by hardware during the test. Errors
that cause an #MC won't be affected.
Fixes: 891e465a1bd8 ("x86/mce: Check whether writes to MCA_STATUS are getting ignored")
Signed-off-by: Yazen Ghannam <yazen.ghannam@amd.com>
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Link: https://lore.kernel.org/r/20231118193248.1296798-2-yazen.ghannam@amd.com
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit a24d61c609813963aacc9f6ec8343f4fcaac7243 ]
tl;dr: The num_digits() function has a theoretical overflow issue.
But it doesn't affect any actual in-tree users. Fix it by using
a larger type for one of the local variables.
Long version:
There is an overflow in variable m in function num_digits when val
is >= 1410065408 which leads to the digit calculation loop to
iterate more times than required. This results in either more
digits being counted or in some cases (for example where val is
1932683193) the value of m eventually overflows to zero and the
while loop spins forever).
Currently the function num_digits is currently only being used for
small values of val in the SMP boot stage for digit counting on the
number of cpus and NUMA nodes, so the overflow is never encountered.
However it is useful to fix the overflow issue in case the function
is used for other purposes in the future. (The issue was discovered
while investigating the digit counting performance in various
kernel helper functions rather than any real-world use-case).
The simplest fix is to make m a long long, the overhead in
multiplication speed for a long long is very minor for small values
of val less than 10000 on modern processors. The alternative
fix is to replace the multiplication with a constant division
by 10 loop (this compiles down to an multiplication and shift)
without needing to make m a long long, but this is slightly slower
than the fix in this commit when measured on a range of x86
processors).
[ dhansen: subject and changelog tweaks ]
Fixes: 646e29a1789a ("x86: Improve the printout of the SMP bootup CPU table")
Signed-off-by: Colin Ian King <colin.i.king@gmail.com>
Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com>
Link: https://lore.kernel.org/all/20231102174901.2590325-1-colin.i.king%40gmail.com
Signed-off-by: Sasha Levin <sashal@kernel.org>
No relevant upstream kernel due to refactoring in 6.7
Builtin/initrd microcode will not be used the ucode loader is disabled.
But currently, save_microcode_in_initrd is always performed and it
accesses MSR_IA32_UCODE_REV even if dis_ucode_ldr is true, and in
particular even if X86_FEATURE_HYPERVISOR is set; the TDX module does not
implement the MSR and the result is a call trace at boot for TDX guests.
Mainline Linux fixed this as part of a more complex rework of microcode
caching that went into 6.7 (see in particular commits dd5e3e3ca6,
"x86/microcode/intel: Simplify early loading"; and a7939f0167203,
"x86/microcode/amd: Cache builtin/initrd microcode early"). Do the bare
minimum in stable kernels, setting initrd_gone just like mainline Linux
does in mark_initrd_gone().
Note that save_microcode_in_initrd() is not in the microcode application
path, which runs with paging disabled on 32-bit systems, so it can (and
has to) use dis_ucode_ldr instead of check_loader_disabled_ap().
Cc: stable@vger.kernel.org # v6.6+
Cc: x86@kernel.org # v6.6+
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Acked-by: Borislav Petkov (AMD) <bp@alien8.de>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
[ Upstream commit a476aae3f1dc78a162a0d2e7945feea7d2b29401 ]
Commit 688eb8191b47 ("x86/csum: Improve performance of `csum_partial`")
ended up improving the code generation for the IP csum calculations, and
in particular special-casing the 40-byte case that is a hot case for
IPv6 headers.
It then had _another_ special case for the 64-byte unrolled loop, which
did two chains of 32-byte blocks, which allows modern CPU's to improve
performance by doing the chains in parallel thanks to renaming the carry
flag.
This just unifies the special cases and combines them into just one
single helper the 40-byte csum case, and replaces the 64-byte case by a
80-byte case that just does that single helper twice. It avoids having
all these different versions of inline assembly, and actually improved
performance further in my tests.
There was never anything magical about the 64-byte unrolled case, even
though it happens to be a common size (and typically is the cacheline
size).
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit 5d4acb62853abac1da2deebcb1c1c5b79219bf3b ]
The special case for odd aligned buffers is unnecessary and mostly
just adds overhead. Aligned buffers is the expectations, and even for
unaligned buffer, the only case that was helped is if the buffer was
1-byte from word aligned which is ~1/7 of the cases. Overall it seems
highly unlikely to be worth to extra branch.
It was left in the previous perf improvement patch because I was
erroneously comparing the exact output of `csum_partial(...)`, but
really we only need `csum_fold(csum_partial(...))` to match so its
safe to remove.
All csum kunit tests pass.
Signed-off-by: Noah Goldstein <goldstein.w.n@gmail.com>
Reviewed-by: Eric Dumazet <edumazet@google.com>
Reviewed-by: David Laight <david.laight@aculab.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit a4aebe936554dac6a91e5d091179c934f8325708 ]
Only the posix timer system calls use this (when the posix timer support
is disabled, which does not actually happen in any normal case), because
they had debug code to print out a warning about missing system calls.
Get rid of that special case, and just use the standard COND_SYSCALL
interface that creates weak system call stubs that return -ENOSYS for
when the system call does not exist.
This fixes a kCFI issue with the SYS_NI() hackery:
CFI failure at int80_emulation+0x67/0xb0 (target: sys_ni_posix_timers+0x0/0x70; expected type: 0xb02b34d9)
WARNING: CPU: 0 PID: 48 at int80_emulation+0x67/0xb0
Reported-by: kernel test robot <oliver.sang@intel.com>
Reviewed-by: Sami Tolvanen <samitolvanen@google.com>
Tested-by: Sami Tolvanen <samitolvanen@google.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Borislav Petkov <bp@alien8.de>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
commit 971079464001c6856186ca137778e534d983174a upstream.
When commit c59a1f106f5c ("KVM: x86/pmu: Add IA32_PEBS_ENABLE
MSR emulation for extended PEBS") switched the initialization of
cpuc->guest_switch_msrs to use compound literals, it screwed up
the boolean logic:
+ u64 pebs_mask = cpuc->pebs_enabled & x86_pmu.pebs_capable;
...
- arr[0].guest = intel_ctrl & ~cpuc->intel_ctrl_host_mask;
- arr[0].guest &= ~(cpuc->pebs_enabled & x86_pmu.pebs_capable);
+ .guest = intel_ctrl & (~cpuc->intel_ctrl_host_mask | ~pebs_mask),
Before the patch, the value of arr[0].guest would have been intel_ctrl &
~cpuc->intel_ctrl_host_mask & ~pebs_mask. The intent is to always treat
PEBS events as host-only because, while the guest runs, there is no way
to tell the processor about the virtual address where to put PEBS records
intended for the host.
Unfortunately, the new expression can be expanded to
(intel_ctrl & ~cpuc->intel_ctrl_host_mask) | (intel_ctrl & ~pebs_mask)
which makes no sense; it includes any bit that isn't *both* marked as
exclude_guest and using PEBS. So, reinstate the old logic. Another
way to write it could be "intel_ctrl & ~(cpuc->intel_ctrl_host_mask |
pebs_mask)", presumably the intention of the author of the faulty.
However, I personally find the repeated application of A AND NOT B to
be a bit more readable.
This shows up as guest failures when running concurrent long-running
perf workloads on the host, and was reported to happen with rcutorture.
All guests on a given host would die simultaneously with something like an
instruction fault or a segmentation violation.
Reported-by: Paul E. McKenney <paulmck@kernel.org>
Analyzed-by: Sean Christopherson <seanjc@google.com>
Tested-by: Paul E. McKenney <paulmck@kernel.org>
Cc: stable@vger.kernel.org
Fixes: c59a1f106f5c ("KVM: x86/pmu: Add IA32_PEBS_ENABLE MSR emulation for extended PEBS")
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
[ Upstream commit c1ad12ee0efc07244be37f69311e6f7c4ac98e62 ]
The cleanup for the CONFIG_KEXEC Kconfig logic accidentally changed the
'depends on CRYPTO=y' dependency to a plain 'depends on CRYPTO', which
causes a link failure when all the crypto support is in a loadable module
and kexec_file support is built-in:
x86_64-linux-ld: vmlinux.o: in function `__x64_sys_kexec_file_load':
(.text+0x32e30a): undefined reference to `crypto_alloc_shash'
x86_64-linux-ld: (.text+0x32e58e): undefined reference to `crypto_shash_update'
x86_64-linux-ld: (.text+0x32e6ee): undefined reference to `crypto_shash_final'
Both s390 and x86 have this problem, while ppc64 and riscv have the
correct dependency already. On riscv, the dependency is only used for the
purgatory, not for the kexec_file code itself, which may be a bit
surprising as it means that with CONFIG_CRYPTO=m, it is possible to enable
KEXEC_FILE but then the purgatory code is silently left out.
Move this into the common Kconfig.kexec file in a way that is correct
everywhere, using the dependency on CRYPTO_SHA256=y only when the
purgatory code is available. This requires reversing the dependency
between ARCH_SUPPORTS_KEXEC_PURGATORY and KEXEC_FILE, but the effect
remains the same, other than making riscv behave like the other ones.
On s390, there is an additional dependency on CRYPTO_SHA256_S390, which
should technically not be required but gives better performance. Remove
this dependency here, noting that it was not present in the initial
Kconfig code but was brought in without an explanation in commit
71406883fd357 ("s390/kexec_file: Add kexec_file_load system call").
[arnd@arndb.de: fix riscv build]
Link: https://lkml.kernel.org/r/67ddd260-d424-4229-a815-e3fcfb864a77@app.fastmail.com
Link: https://lkml.kernel.org/r/20231023110308.1202042-1-arnd@kernel.org
Fixes: 6af5138083005 ("x86/kexec: refactor for kernel/Kconfig.kexec")
Signed-off-by: Arnd Bergmann <arnd@arndb.de>
Reviewed-by: Eric DeVolder <eric_devolder@yahoo.com>
Tested-by: Eric DeVolder <eric_devolder@yahoo.com>
Cc: Albert Ou <aou@eecs.berkeley.edu>
Cc: Alexander Gordeev <agordeev@linux.ibm.com>
Cc: Ard Biesheuvel <ardb@kernel.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Christian Borntraeger <borntraeger@linux.ibm.com>
Cc: Christophe Leroy <christophe.leroy@csgroup.eu>
Cc: Conor Dooley <conor@kernel.org>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: David S. Miller <davem@davemloft.net>
Cc: Heiko Carstens <hca@linux.ibm.com>
Cc: Herbert Xu <herbert@gondor.apana.org.au>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Nicholas Piggin <npiggin@gmail.com>
Cc: Palmer Dabbelt <palmer@dabbelt.com>
Cc: Paul Walmsley <paul.walmsley@sifive.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Sven Schnelle <svens@linux.ibm.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Vasily Gorbik <gor@linux.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
commit 69a7386c1ec25476a0c78ffeb59de08a2a08f495 upstream.
Chris reported that a Dell PowerEdge T340 system stopped to boot when upgrading
to a kernel which contains the parallel hotplug changes. Disabling parallel
hotplug on the kernel command line makes it boot again.
It turns out that the Dell BIOS has x2APIC enabled and the boot CPU comes up in
X2APIC mode, but the APs come up inconsistently in xAPIC mode.
Parallel hotplug requires that the upcoming CPU reads out its APIC ID from the
local APIC in order to map it to the Linux CPU number.
In this particular case the readout on the APs uses the MMIO mapped registers
because the BIOS failed to enable x2APIC mode. That readout results in a page
fault because the kernel does not have the APIC MMIO space mapped when X2APIC
mode was enabled by the BIOS on the boot CPU and the kernel switched to X2APIC
mode early. That page fault can't be handled on the upcoming CPU that early and
results in a silent boot failure.
If parallel hotplug is disabled the system boots because in that case the APIC
ID read is not required as the Linux CPU number is provided to the AP in the
smpboot control word. When the kernel uses x2APIC mode then the APs are
switched to x2APIC mode too slightly later in the bringup process, but there is
no reason to do it that late.
Cure the BIOS bogosity by checking in the parallel bootup path whether the
kernel uses x2APIC mode and if so switching over the APs to x2APIC mode before
the APIC ID readout.
Fixes: 0c7ffa32dbd6 ("x86/smpboot/64: Implement arch_cpuhp_init_parallel_bringup() and enable it")
Reported-by: Chris Lindee <chris.lindee@gmail.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Reviewed-by: Ashok Raj <ashok.raj@intel.com>
Tested-by: Chris Lindee <chris.lindee@gmail.com>
Cc: stable@vger.kernel.org
Link: https://lore.kernel.org/r/CA%2B2tU59853R49EaU_tyvOZuOTDdcU0RshGyydccp9R1NX9bEeQ@mail.gmail.com
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 2dc4196138055eb0340231aecac4d78c2ec2bea5 upstream.
apply_alternatives() treats alternatives with the ALT_FLAG_NOT flag set
special as it optimizes the existing NOPs in place.
Unfortunately, this happens with interrupts enabled and does not provide any
form of core synchronization.
So an interrupt hitting in the middle of the update and using the affected code
path will observe a half updated NOP and crash and burn. The following
3 NOP sequence was observed to expose this crash halfway reliably under QEMU
32bit:
0x90 0x90 0x90
which is replaced by the optimized 3 byte NOP:
0x8d 0x76 0x00
So an interrupt can observe:
1) 0x90 0x90 0x90 nop nop nop
2) 0x8d 0x90 0x90 undefined
3) 0x8d 0x76 0x90 lea -0x70(%esi),%esi
4) 0x8d 0x76 0x00 lea 0x0(%esi),%esi
Where only #1 and #4 are true NOPs. The same problem exists for 64bit obviously.
Disable interrupts around this NOP optimization and invoke sync_core()
before re-enabling them.
Fixes: 270a69c4485d ("x86/alternative: Support relocations in alternatives")
Reported-by: Paul Gortmaker <paul.gortmaker@windriver.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: stable@vger.kernel.org
Link: https://lore.kernel.org/r/ZT6narvE%2BLxX%2B7Be@windriver.com
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 3ea1704a92967834bf0e64ca1205db4680d04048 upstream.
text_poke_early() does:
local_irq_save(flags);
memcpy(addr, opcode, len);
local_irq_restore(flags);
sync_core();
That's not really correct because the synchronization should happen before
interrupts are re-enabled to ensure that a pending interrupt observes the
complete update of the opcodes.
It's not entirely clear whether the interrupt entry provides enough
serialization already, but moving the sync_core() invocation into interrupt
disabled region does no harm and is obviously correct.
Fixes: 6fffacb30349 ("x86/alternatives, jumplabel: Use text_poke_early() before mm_init()")
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: <stable@kernel.org>
Link: https://lore.kernel.org/r/ZT6narvE%2BLxX%2B7Be@windriver.com
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
[ Upstream commit 93cd0597649844a0fe7989839a3202735fb3ae67 ]
Xen only supports modern CPUs even when running a 32-bit kernel, and it now
requires a kernel built for a 64 byte (or larger) cache line:
In file included from <command-line>:
In function 'xen_vcpu_setup',
inlined from 'xen_vcpu_setup_restore' at arch/x86/xen/enlighten.c:111:3,
inlined from 'xen_vcpu_restore' at arch/x86/xen/enlighten.c:141:3:
include/linux/compiler_types.h:435:45: error: call to '__compiletime_assert_287' declared with attribute error: BUILD_BUG_ON failed: sizeof(*vcpup) > SMP_CACHE_BYTES
arch/x86/xen/enlighten.c:166:9: note: in expansion of macro 'BUILD_BUG_ON'
166 | BUILD_BUG_ON(sizeof(*vcpup) > SMP_CACHE_BYTES);
| ^~~~~~~~~~~~
Enforce the dependency with a whitelist of CPU configurations. In normal
distro kernels, CONFIG_X86_GENERIC is enabled, and this works fine. When this
is not set, still allow Xen to be built on kernels that target a 64-bit
capable CPU.
Fixes: db2832309a82 ("x86/xen: fix percpu vcpu_info allocation")
Signed-off-by: Arnd Bergmann <arnd@arndb.de>
Reviewed-by: Juergen Gross <jgross@suse.com>
Tested-by: Alyssa Ross <hi@alyssa.is>
Link: https://lore.kernel.org/r/20231204084722.3789473-1-arnd@kernel.org
Signed-off-by: Juergen Gross <jgross@suse.com>
Signed-off-by: Sasha Levin <sashal@kernel.org>
commit 4b7de801606e504e69689df71475d27e35336fb3 upstream.
Lee pointed out issue found by syscaller [0] hitting BUG in prog array
map poke update in prog_array_map_poke_run function due to error value
returned from bpf_arch_text_poke function.
There's race window where bpf_arch_text_poke can fail due to missing
bpf program kallsym symbols, which is accounted for with check for
-EINVAL in that BUG_ON call.
The problem is that in such case we won't update the tail call jump
and cause imbalance for the next tail call update check which will
fail with -EBUSY in bpf_arch_text_poke.
I'm hitting following race during the program load:
CPU 0 CPU 1
bpf_prog_load
bpf_check
do_misc_fixups
prog_array_map_poke_track
map_update_elem
bpf_fd_array_map_update_elem
prog_array_map_poke_run
bpf_arch_text_poke returns -EINVAL
bpf_prog_kallsyms_add
After bpf_arch_text_poke (CPU 1) fails to update the tail call jump, the next
poke update fails on expected jump instruction check in bpf_arch_text_poke
with -EBUSY and triggers the BUG_ON in prog_array_map_poke_run.
Similar race exists on the program unload.
Fixing this by moving the update to bpf_arch_poke_desc_update function which
makes sure we call __bpf_arch_text_poke that skips the bpf address check.
Each architecture has slightly different approach wrt looking up bpf address
in bpf_arch_text_poke, so instead of splitting the function or adding new
'checkip' argument in previous version, it seems best to move the whole
map_poke_run update as arch specific code.
[0] https://syzkaller.appspot.com/bug?extid=97a4fe20470e9bc30810
Fixes: ebf7d1f508a7 ("bpf, x64: rework pro/epilogue and tailcall handling in JIT")
Reported-by: syzbot+97a4fe20470e9bc30810@syzkaller.appspotmail.com
Signed-off-by: Jiri Olsa <jolsa@kernel.org>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Yonghong Song <yonghong.song@linux.dev>
Cc: Lee Jones <lee@kernel.org>
Cc: Maciej Fijalkowski <maciej.fijalkowski@intel.com>
Link: https://lore.kernel.org/bpf/20231206083041.1306660-2-jolsa@kernel.org
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit b8ec60e1186cdcfce41e7db4c827cb107e459002 upstream.
.discard.retpoline_safe sections do not have the SHF_ALLOC flag. These
sections referencing text sections' STT_SECTION symbols with PC-relative
relocations like R_386_PC32 [0] is conceptually not suitable. Newer
LLD will report warnings for REL relocations even for relocatable links [1]:
ld.lld: warning: vmlinux.a(drivers/i2c/busses/i2c-i801.o):(.discard.retpoline_safe+0x120): has non-ABS relocation R_386_PC32 against symbol ''
Switch to absolute relocations instead, which indicate link-time
addresses. In a relocatable link, these addresses are also output
section offsets, used by checks in tools/objtool/check.c. When linking
vmlinux, these .discard.* sections will be discarded, therefore it is
not a problem that R_X86_64_32 cannot represent a kernel address.
Alternatively, we could set the SHF_ALLOC flag for .discard.* sections,
but I think non-SHF_ALLOC for sections to be discarded makes more sense.
Note: if we decide to never support REL architectures (e.g. arm, i386),
we can utilize R_*_NONE relocations (.reloc ., BFD_RELOC_NONE, sym),
making .discard.* sections zero-sized. That said, the section content
waste is 4 bytes per entry, much smaller than sizeof(Elf{32,64}_Rel).
[0] commit 1c0c1faf5692 ("objtool: Use relative pointers for annotations")
[1] https://github.com/ClangBuiltLinux/linux/issues/1937
Signed-off-by: Fangrui Song <maskray@google.com>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Josh Poimboeuf <jpoimboe@redhat.com>
Link: https://lore.kernel.org/r/20230920001728.1439947-1-maskray@google.com
Cc: Nathan Chancellor <nathan@kernel.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
[ Upstream commit 7e8037b099c0bbe8f2109dc452dbcab8d400fc53 ]
A Gen2 VM doesn't support legacy PCI/PCIe, so both raw_pci_ops and
raw_pci_ext_ops are NULL, and pci_subsys_init() -> pcibios_init()
doesn't call pcibios_resource_survey() -> e820__reserve_resources_late();
as a result, any emulated persistent memory of E820_TYPE_PRAM (12) via
the kernel parameter memmap=nn[KMG]!ss is not added into iomem_resource
and hence can't be detected by register_e820_pmem().
Fix this by directly calling e820__reserve_resources_late() in
hv_pci_init(), which is called from arch_initcall(pci_arch_init).
It's ok to move a Gen2 VM's e820__reserve_resources_late() from
subsys_initcall(pci_subsys_init) to arch_initcall(pci_arch_init) because
the code in-between doesn't depend on the E820 resources.
e820__reserve_resources_late() depends on e820__reserve_resources(),
which has been called earlier from setup_arch().
For a Gen-2 VM, the new hv_pci_init() also adds any memory of
E820_TYPE_PMEM (7) into iomem_resource, and acpi_nfit_register_region() ->
acpi_nfit_insert_resource() -> region_intersects() returns
REGION_INTERSECTS, so the memory of E820_TYPE_PMEM won't get added twice.
Changed the local variable "int gen2vm" to "bool gen2vm".
Signed-off-by: Saurabh Sengar <ssengar@linux.microsoft.com>
Signed-off-by: Dexuan Cui <decui@microsoft.com>
Signed-off-by: Wei Liu <wei.liu@kernel.org>
Message-ID: <1699691867-9827-1-git-send-email-ssengar@linux.microsoft.com>
Signed-off-by: Sasha Levin <sashal@kernel.org>
commit 4cdf351d3630a640ab6a05721ef055b9df62277f upstream.
In general, activating long mode involves setting the EFER_LME bit in
the EFER register and then enabling the X86_CR0_PG bit in the CR0
register. At this point, the EFER_LMA bit will be set automatically by
hardware.
In the case of SVM/SEV guests where writes to CR0 are intercepted, it's
necessary for the host to set EFER_LMA on behalf of the guest since
hardware does not see the actual CR0 write.
In the case of SEV-ES guests where writes to CR0 are trapped instead of
intercepted, the hardware *does* see/record the write to CR0 before
exiting and passing the value on to the host, so as part of enabling
SEV-ES support commit f1c6366e3043 ("KVM: SVM: Add required changes to
support intercepts under SEV-ES") dropped special handling of the
EFER_LMA bit with the understanding that it would be set automatically.
However, since the guest never explicitly sets the EFER_LMA bit, the
host never becomes aware that it has been set. This becomes problematic
when userspace tries to get/set the EFER values via
KVM_GET_SREGS/KVM_SET_SREGS, since the EFER contents tracked by the host
will be missing the EFER_LMA bit, and when userspace attempts to pass
the EFER value back via KVM_SET_SREGS it will fail a sanity check that
asserts that EFER_LMA should always be set when X86_CR0_PG and EFER_LME
are set.
Fix this by always inferring the value of EFER_LMA based on X86_CR0_PG
and EFER_LME, regardless of whether or not SEV-ES is enabled.
Fixes: f1c6366e3043 ("KVM: SVM: Add required changes to support intercepts under SEV-ES")
Reported-by: Peter Gonda <pgonda@google.com>
Cc: stable@vger.kernel.org
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20210507165947.2502412-2-seanjc@google.com>
[A two year old patch that was revived after we noticed the failure in
KVM_SET_SREGS and a similar patch was posted by Michael Roth. This is
Sean's patch, but with Michael's more complete commit message. - Paolo]
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 9b8493dc43044376716d789d07699f17d538a7c4 upstream.
Commit in Fixes added an AMD-specific microcode callback. However, it
didn't check the CPU vendor the kernel runs on explicitly.
The only reason the Zenbleed check in it didn't run on other x86 vendors
hardware was pure coincidental luck:
if (!cpu_has_amd_erratum(c, amd_zenbleed))
return;
gives true on other vendors because they don't have those families and
models.
However, with the removal of the cpu_has_amd_erratum() in
05f5f73936fa ("x86/CPU/AMD: Drop now unused CPU erratum checking function")
that coincidental condition is gone, leading to the zenbleed check
getting executed on other vendors too.
Add the explicit vendor check for the whole callback as it should've
been done in the first place.
Fixes: 522b1d69219d ("x86/cpu/amd: Add a Zenbleed fix")
Cc: <stable@kernel.org>
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Link: https://lore.kernel.org/r/20231201184226.16749-1-bp@alien8.de
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
[ Upstream commit 27d25348d42161837be08fc63b04a2559d2e781c ]
A write-access violation page fault kernel crash was observed while running
cpuhotplug LTP testcases on SEV-ES enabled systems. The crash was
observed during hotplug, after the CPU was offlined and the process
was migrated to different CPU. setup_ghcb() is called again which
tries to update ghcb_version in sev_es_negotiate_protocol(). Ideally this
is a read_only variable which is initialised during booting.
Trying to write it results in a pagefault:
BUG: unable to handle page fault for address: ffffffffba556e70
#PF: supervisor write access in kernel mode
#PF: error_code(0x0003) - permissions violation
[ ...]
Call Trace:
<TASK>
? __die_body.cold+0x1a/0x1f
? __die+0x2a/0x35
? page_fault_oops+0x10c/0x270
? setup_ghcb+0x71/0x100
? __x86_return_thunk+0x5/0x6
? search_exception_tables+0x60/0x70
? __x86_return_thunk+0x5/0x6
? fixup_exception+0x27/0x320
? kernelmode_fixup_or_oops+0xa2/0x120
? __bad_area_nosemaphore+0x16a/0x1b0
? kernel_exc_vmm_communication+0x60/0xb0
? bad_area_nosemaphore+0x16/0x20
? do_kern_addr_fault+0x7a/0x90
? exc_page_fault+0xbd/0x160
? asm_exc_page_fault+0x27/0x30
? setup_ghcb+0x71/0x100
? setup_ghcb+0xe/0x100
cpu_init_exception_handling+0x1b9/0x1f0
The fix is to call sev_es_negotiate_protocol() only in the BSP boot phase,
and it only needs to be done once in any case.
[ mingo: Refined the changelog. ]
Fixes: 95d33bfaa3e1 ("x86/sev: Register GHCB memory when SEV-SNP is active")
Suggested-by: Tom Lendacky <thomas.lendacky@amd.com>
Co-developed-by: Bo Gan <bo.gan@broadcom.com>
Signed-off-by: Bo Gan <bo.gan@broadcom.com>
Signed-off-by: Ashwin Dayanand Kamat <ashwin.kamat@broadcom.com>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Acked-by: Tom Lendacky <thomas.lendacky@amd.com>
Link: https://lore.kernel.org/r/1701254429-18250-1-git-send-email-kashwindayan@vmware.com
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ upstream commit f4116bfc44621882556bbf70f5284fbf429a5cf6 ]
32-bit emulation was disabled on TDX to prevent a possible attack by
a VMM injecting an interrupt on vector 0x80.
Now that int80_emulation() has a check for external interrupts the
limitation can be lifted.
To distinguish software interrupts from external ones, int80_emulation()
checks the APIC ISR bit relevant to the 0x80 vector. For
software interrupts, this bit will be 0.
On TDX, the VAPIC state (including ISR) is protected and cannot be
manipulated by the VMM. The ISR bit is set by the microcode flow during
the handling of posted interrupts.
[ dhansen: more changelog tweaks ]
Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Borislav Petkov (AMD) <bp@alien8.de>
Cc: <stable@vger.kernel.org> # v6.0+
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
[ upstream commit 55617fb991df535f953589586468612351575704 ]
The INT 0x80 instruction is used for 32-bit x86 Linux syscalls. The
kernel expects to receive a software interrupt as a result of the INT
0x80 instruction. However, an external interrupt on the same vector
also triggers the same codepath.
An external interrupt on vector 0x80 will currently be interpreted as a
32-bit system call, and assuming that it was a user context.
Panic on external interrupts on the vector.
To distinguish software interrupts from external ones, the kernel checks
the APIC ISR bit relevant to the 0x80 vector. For software interrupts,
this bit will be 0.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com>
Reviewed-by: Borislav Petkov (AMD) <bp@alien8.de>
Cc: <stable@vger.kernel.org> # v6.0+
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
[ upstream commit be5341eb0d43b1e754799498bd2e8756cc167a41 ]
There is no real reason to have a separate ASM entry point implementation
for the legacy INT 0x80 syscall emulation on 64-bit.
IDTENTRY provides all the functionality needed with the only difference
that it does not:
- save the syscall number (AX) into pt_regs::orig_ax
- set pt_regs::ax to -ENOSYS
Both can be done safely in the C code of an IDTENTRY before invoking any of
the syscall related functions which depend on this convention.
Aside of ASM code reduction this prepares for detecting and handling a
local APIC injected vector 0x80.
[ kirill.shutemov: More verbose comments ]
Suggested-by: Linus Torvalds <torvalds@linuxfoundation.org>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com>
Reviewed-by: Borislav Petkov (AMD) <bp@alien8.de>
Cc: <stable@vger.kernel.org> # v6.0+
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
[ upstream commit b82a8dbd3d2f4563156f7150c6f2ecab6e960b30 ]
The INT 0x80 instruction is used for 32-bit x86 Linux syscalls. The
kernel expects to receive a software interrupt as a result of the INT
0x80 instruction. However, an external interrupt on the same vector
triggers the same handler.
The kernel interprets an external interrupt on vector 0x80 as a 32-bit
system call that came from userspace.
A VMM can inject external interrupts on any arbitrary vector at any
time. This remains true even for TDX and SEV guests where the VMM is
untrusted.
Put together, this allows an untrusted VMM to trigger int80 syscall
handling at any given point. The content of the guest register file at
that moment defines what syscall is triggered and its arguments. It
opens the guest OS to manipulation from the VMM side.
Disable 32-bit emulation by default for TDX and SEV. User can override
it with the ia32_emulation=y command line option.
[ dhansen: reword the changelog ]
Reported-by: Supraja Sridhara <supraja.sridhara@inf.ethz.ch>
Reported-by: Benedict Schlüter <benedict.schlueter@inf.ethz.ch>
Reported-by: Mark Kuhne <mark.kuhne@inf.ethz.ch>
Reported-by: Andrin Bertschi <andrin.bertschi@inf.ethz.ch>
Reported-by: Shweta Shinde <shweta.shinde@inf.ethz.ch>
Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Borislav Petkov (AMD) <bp@alien8.de>
Cc: <stable@vger.kernel.org> # 6.0+: 1da5c9b x86: Introduce ia32_enabled()
Cc: <stable@vger.kernel.org> # 6.0+
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
[ upstream commit 1da5c9bc119d3a749b519596b93f9b2667e93c4a ]
IA32 support on 64bit kernels depends on whether CONFIG_IA32_EMULATION
is selected or not. As it is a compile time option it doesn't
provide the flexibility to have distributions set their own policy for
IA32 support and give the user the flexibility to override it.
As a first step introduce ia32_enabled() which abstracts whether IA32
compat is turned on or off. Upcoming patches will implement
the ability to set IA32 compat state at boot time.
Signed-off-by: Nikolay Borisov <nik.borisov@suse.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Link: https://lore.kernel.org/r/20230623111409.3047467-2-nik.borisov@suse.com
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
[ Upstream commit db2832309a82b9acc4b8cc33a1831d36507ec13e ]
Today the percpu struct vcpu_info is allocated via DEFINE_PER_CPU(),
meaning that it could cross a page boundary. In this case registering
it with the hypervisor will fail, resulting in a panic().
This can easily be fixed by using DEFINE_PER_CPU_ALIGNED() instead,
as struct vcpu_info is guaranteed to have a size of 64 bytes, matching
the cache line size of x86 64-bit processors (Xen doesn't support
32-bit processors).
Fixes: 5ead97c84fa7 ("xen: Core Xen implementation")
Signed-off-by: Juergen Gross <jgross@suse.com>
Reviewed-by: Boris Ostrovsky <boris.ostrovsky@oracle.con>
Link: https://lore.kernel.org/r/20231124074852.25161-1-jgross@suse.com
Signed-off-by: Juergen Gross <jgross@suse.com>
Signed-off-by: Sasha Levin <sashal@kernel.org>
commit bfa993b355d33a438a746523e7129391c8664e8a upstream.
The Processor capability bits notify ACPI of the OS capabilities, and
so ACPI can adjust the return of other Processor methods taking the OS
capabilities into account.
When Linux is running as a Xen dom0, the hypervisor is the entity
in charge of processor power management, and hence Xen needs to make
sure the capabilities reported by _OSC/_PDC match the capabilities of
the driver in Xen.
Introduce a small helper to sanitize the buffer when running as Xen
dom0.
When Xen supports HWP, this serves as the equivalent of commit
a21211672c9a ("ACPI / processor: Request native thermal interrupt
handling via _OSC") to avoid SMM crashes. Xen will set bit
ACPI_PROC_CAP_COLLAB_PROC_PERF (bit 12) in the capability bits and the
_OSC/_PDC call will apply it.
[ jandryuk: Mention Xen HWP's need. Support _OSC & _PDC ]
Signed-off-by: Roger Pau Monné <roger.pau@citrix.com>
Cc: stable@vger.kernel.org
Signed-off-by: Jason Andryuk <jandryuk@gmail.com>
Reviewed-by: Michal Wilczynski <michal.wilczynski@intel.com>
Reviewed-by: Juergen Gross <jgross@suse.com>
Link: https://lore.kernel.org/r/20231108212517.72279-1-jandryuk@gmail.com
Signed-off-by: Juergen Gross <jgross@suse.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 9cfec6d097c607e36199cf0cfbb8cf5acbd8e9b2 upstream.
When running android emulator (which is based on QEMU 2.12) on
certain Intel hosts with kernel version 6.3-rc1 or above, guest
will freeze after loading a snapshot. This is almost 100%
reproducible. By default, the android emulator will use snapshot
to speed up the next launching of the same android guest. So
this breaks the android emulator badly.
I tested QEMU 8.0.4 from Debian 12 with an Ubuntu 22.04 guest by
running command "loadvm" after "savevm". The same issue is
observed. At the same time, none of our AMD platforms is impacted.
More experiments show that loading the KVM module with
"enable_apicv=false" can workaround it.
The issue started to show up after commit 8e6ed96cdd50 ("KVM: x86:
fire timer when it is migrated and expired, and in oneshot mode").
However, as is pointed out by Sean Christopherson, it is introduced
by commit 967235d32032 ("KVM: vmx: clear pending interrupts on
KVM_SET_LAPIC"). commit 8e6ed96cdd50 ("KVM: x86: fire timer when
it is migrated and expired, and in oneshot mode") just makes it
easier to hit the issue.
Having both commits, the oneshot lapic timer gets fired immediately
inside the KVM_SET_LAPIC call when loading the snapshot. On Intel
platforms with APIC virtualization and posted interrupt processing,
this eventually leads to setting the corresponding PIR bit. However,
the whole PIR bits get cleared later in the same KVM_SET_LAPIC call
by apicv_post_state_restore. This leads to timer interrupt lost.
The fix is to move vmx_apicv_post_state_restore to the beginning of
the KVM_SET_LAPIC call and rename to vmx_apicv_pre_state_restore.
What vmx_apicv_post_state_restore does is actually clearing any
former apicv state and this behavior is more suitable to carry out
in the beginning.
Fixes: 967235d32032 ("KVM: vmx: clear pending interrupts on KVM_SET_LAPIC")
Cc: stable@vger.kernel.org
Suggested-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: Haitao Shan <hshan@google.com>
Link: https://lore.kernel.org/r/20230913000215.478387-1-hshan@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 629d3698f6958ee6f8131ea324af794f973b12ac upstream.
When IPI virtualization is enabled, a WARN is triggered if bit12 of ICR
MSR is set after APIC-write VM-exit. The reason is kvm_apic_send_ipi()
thinks the APIC_ICR_BUSY bit should be cleared because KVM has no delay,
but kvm_apic_write_nodecode() doesn't clear the APIC_ICR_BUSY bit.
Under the x2APIC section, regarding ICR, the SDM says:
It remains readable only to aid in debugging; however, software should
not assume the value returned by reading the ICR is the last written
value.
I.e. the guest is allowed to set bit 12. However, the SDM also gives KVM
free reign to do whatever it wants with the bit, so long as KVM's behavior
doesn't confuse userspace or break KVM's ABI.
Clear bit 12 so that it reads back as '0'. This approach is safer than
"do nothing" and is consistent with the case where IPI virtualization is
disabled or not supported, i.e.,
handle_fastpath_set_x2apic_icr_irqoff() -> kvm_x2apic_icr_write()
Opportunistically replace the TODO with a comment calling out that eating
the write is likely faster than a conditional branch around the busy bit.
Link: https://lore.kernel.org/all/ZPj6iF0Q7iynn62p@google.com/
Fixes: 5413bcba7ed5 ("KVM: x86: Add support for vICR APIC-write VM-Exits in x2APIC mode")
Cc: stable@vger.kernel.org
Signed-off-by: Tao Su <tao1.su@linux.intel.com>
Tested-by: Yi Lai <yi1.lai@intel.com>
Reviewed-by: Chao Gao <chao.gao@intel.com>
Link: https://lore.kernel.org/r/20230914055504.151365-1-tao1.su@linux.intel.com
[sean: tweak changelog, replace TODO with comment, drop local "val"]
Signed-off-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 2770d4722036d6bd24bcb78e9cd7f6e572077d03 upstream.
Hyper-V enabled Windows Server 2022 KVM VM cannot be started on Zen1 Ryzen
since it crashes at boot with SYSTEM_THREAD_EXCEPTION_NOT_HANDLED +
STATUS_PRIVILEGED_INSTRUCTION (in other words, because of an unexpected #GP
in the guest kernel).
This is because Windows tries to set bit 8 in MSR_AMD64_TW_CFG and can't
handle receiving a #GP when doing so.
Give this MSR the same treatment that commit 2e32b7190641
("x86, kvm: Add MSR_AMD64_BU_CFG2 to the list of ignored MSRs") gave
MSR_AMD64_BU_CFG2 under justification that this MSR is baremetal-relevant
only.
Although apparently it was then needed for Linux guests, not Windows as in
this case.
With this change, the aforementioned guest setup is able to finish booting
successfully.
This issue can be reproduced either on a Summit Ridge Ryzen (with
just "-cpu host") or on a Naples EPYC (with "-cpu host,stepping=1" since
EPYC is ordinarily stepping 2).
Alternatively, userspace could solve the problem by using MSR filters, but
forcing every userspace to define a filter isn't very friendly and doesn't
add much, if any, value. The only potential hiccup is if one of these
"baremetal-only" MSRs ever requires actual emulation and/or has F/M/S
specific behavior. But if that happens, then KVM can still punt *that*
handling to userspace since userspace MSR filters "win" over KVM's default
handling.
Signed-off-by: Maciej S. Szmigiero <maciej.szmigiero@oracle.com>
Cc: stable@vger.kernel.org
Link: https://lore.kernel.org/r/1ce85d9c7c9e9632393816cf19c902e0a3f411f1.1697731406.git.maciej.szmigiero@oracle.com
[sean: call out MSR filtering alternative]
Signed-off-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit d6800af51c76b6dae20e6023bbdc9b3da3ab5121 upstream.
Don't apply the stimer's counter side effects when modifying its
value from user-space, as this may trigger spurious interrupts.
For example:
- The stimer is configured in auto-enable mode.
- The stimer's count is set and the timer enabled.
- The stimer expires, an interrupt is injected.
- The VM is live migrated.
- The stimer config and count are deserialized, auto-enable is ON, the
stimer is re-enabled.
- The stimer expires right away, and injects an unwarranted interrupt.
Cc: stable@vger.kernel.org
Fixes: 1f4b34f825e8 ("kvm/x86: Hyper-V SynIC timers")
Signed-off-by: Nicolas Saenz Julienne <nsaenz@amazon.com>
Reviewed-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Link: https://lore.kernel.org/r/20231017155101.40677-1-nsaenz@amazon.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit ee545b94d39a00c93dc98b1dbcbcf731d2eadeb4 upstream.
Hygon processors with a model ID > 3 have CPUID leaf 0xB correctly
populated and don't need the fixed package ID shift workaround. The fixup
is also incorrect when running in a guest.
Fixes: e0ceeae708ce ("x86/CPU/hygon: Fix phys_proc_id calculation logic for multi-die processors")
Signed-off-by: Pu Wen <puwen@hygon.cn>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: <stable@vger.kernel.org>
Link: https://lore.kernel.org/r/tencent_594804A808BD93A4EBF50A994F228E3A7F07@qq.com
Link: https://lore.kernel.org/r/20230814085112.089607918@linutronix.de
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit b56ebe7c896dc78b5865ec2c4b1dae3c93537517 upstream.
commit ef8dd01538ea ("genirq/msi: Make interrupt allocation less
convoluted"), reworked the code so that the x86 specific quirk for affinity
setting of non-maskable PCI/MSI interrupts is not longer activated if
necessary.
This could be solved by restoring the original logic in the core MSI code,
but after a deeper analysis it turned out that the quirk flag is not
required at all.
The quirk is only required when the PCI/MSI device cannot mask the MSI
interrupts, which in turn also prevents reservation mode from being enabled
for the affected interrupt.
This allows ot remove the NOMASK quirk bit completely as msi_set_affinity()
can instead check whether reservation mode is enabled for the interrupt,
which gives exactly the same answer.
Even in the momentary non-existing case that the reservation mode would be
not set for a maskable MSI interrupt this would not cause any harm as it
just would cause msi_set_affinity() to go needlessly through the
functionaly equivalent slow path, which works perfectly fine with maskable
interrupts as well.
Rework msi_set_affinity() to query the reservation mode and remove all
NOMASK quirk logic from the core code.
[ tglx: Massaged changelog ]
Fixes: ef8dd01538ea ("genirq/msi: Make interrupt allocation less convoluted")
Suggested-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Koichiro Den <den@valinux.co.jp>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: stable@vger.kernel.org
Link: https://lore.kernel.org/r/20231026032036.2462428-1-den@valinux.co.jp
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 7d08f21f8c6307cb05cabb8d86e90ff6ccba57e9 upstream.
Iain reports that USB devices can't be used to wake a Lenovo Z13 from
suspend. This occurs because on some AMD platforms, even though the Root
Ports advertise PME_Support for D3hot and D3cold, wakeup events from
devices on a USB4 controller don't result in wakeup interrupts from the
Root Port when amd-pmc has put the platform in a hardware sleep state.
If amd-pmc will be involved in the suspend, remove D3hot and D3cold from
the PME_Support mask of Root Ports above USB4 controllers so we avoid those
states if we need wakeups.
Restore D3 support at resume so that it can be used by runtime suspend.
This affects both AMD Rembrandt and Phoenix SoCs.
"pm_suspend_target_state == PM_SUSPEND_ON" means we're doing runtime
suspend, and amd-pmc will not be involved. In that case PMEs work as
advertised in D3hot/D3cold, so we don't need to do anything.
Note that amd-pmc is technically optional, and there's no need for this
quirk if it's not present, but we assume it's always present because power
consumption is so high without it.
Fixes: 9d26d3a8f1b0 ("PCI: Put PCIe ports into D3 during suspend")
Link: https://lore.kernel.org/r/20231004144959.158840-1-mario.limonciello@amd.com
Reported-by: Iain Lane <iain@orangesquash.org.uk>
Closes: https://forums.lenovo.com/t5/Ubuntu/Z13-can-t-resume-from-suspend-with-external-USB-keyboard/m-p/5217121
Signed-off-by: Mario Limonciello <mario.limonciello@amd.com>
[bhelgaas: commit log, move to arch/x86/pci/fixup.c, add #includes]
Signed-off-by: Bjorn Helgaas <bhelgaas@google.com>
Cc: stable@vger.kernel.org
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 1c43c0f1f84aa59dfc98ce66f0a67b2922aa7f9d upstream.
x86 optimized crypto modules are built as modules rather than build-in and
they are not loaded when the crypto API is initialized, resulting in the
generic builtin module (sha1-generic) being used instead.
It was discovered when creating a sha1/sha256 checksum of a 2Gb file by
using kcapi-tools because it would take significantly longer than creating
a sha512 checksum of the same file. trace-cmd showed that for sha1/256 the
generic module was used, whereas for sha512 the optimized module was used
instead.
Add module aliases() for these x86 optimized crypto modules based on CPU
feature bits so udev gets a chance to load them later in the boot
process. This resulted in ~3x decrease in the real-time execution of
kcapi-dsg.
Fix is inspired from commit
aa031b8f702e ("crypto: x86/sha512 - load based on CPU features")
where a similar fix was done for sha512.
Cc: stable@vger.kernel.org # 5.15+
Suggested-by: Dimitri John Ledkov <dimitri.ledkov@canonical.com>
Suggested-by: Julian Andres Klode <julian.klode@canonical.com>
Signed-off-by: Roxana Nicolescu <roxana.nicolescu@canonical.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 31255e072b2e91f97645d792d25b2db744186dd1 upstream.
When a signal is being delivered, the kernel needs to make accesses to
userspace. These accesses could encounter an access error, in which case
the signal delivery itself will trigger a segfault. Usually this would
result in the kernel killing the process. But in the case of a SEGV signal
handler being configured, the failure of the first signal delivery will
result in *another* signal getting delivered. The second signal may
succeed if another thread has resolved the issue that triggered the
segfault (i.e. a well timed mprotect()/mmap()), or the second signal is
being delivered to another stack (i.e. an alt stack).
On x86, in the non-shadow stack case, all the accesses to userspace are
done before changes to the registers (in pt_regs). The operation is
aborted when an access error occurs, so although there may be writes done
for the first signal, control flow changes for the signal (regs->ip,
regs->sp, etc) are not committed until all the accesses have already
completed successfully. This means that the second signal will be
delivered as if it happened at the time of the first signal. It will
effectively replace the first aborted signal, overwriting the half-written
frame of the aborted signal. So on sigreturn from the second signal,
control flow will resume happily from the point of control flow where the
original signal was delivered.
The problem is, when shadow stack is active, the shadow stack SSP
register/MSR is updated *before* some of the userspace accesses. This
means if the earlier accesses succeed and the later ones fail, the second
signal will not be delivered at the same spot on the shadow stack as the
first one. So on sigreturn from the second signal, the SSP will be
pointing to the wrong location on the shadow stack (off by a frame).
Pengfei privately reported that while using a shadow stack enabled glibc,
the “signal06” test in the LTP test-suite hung. It turns out it is
testing the above described double signal scenario. When this test was
compiled with shadow stack, the first signal pushed a shadow stack
sigframe, then the second pushed another. When the second signal was
handled, the SSP was at the first shadow stack signal frame instead of
the original location. The test then got stuck as the #CP from the twice
incremented SSP was incorrect and generated segfaults in a loop.
Fix this by adjusting the SSP register only after any userspace accesses,
such that there can be no failures after the SSP is adjusted. Do this by
moving the shadow stack sigframe push logic to happen after all other
userspace accesses.
Note, sigreturn (as opposed to the signal delivery dealt with in this
patch) has ordering behavior that could lead to similar failures. The
ordering issues there extend beyond shadow stack to include the alt stack
restoration. Fixing that would require cross-arch changes, and the
ordering today does not cause any known test or apps breakages. So leave
it as is, for now.
[ dhansen: minor changelog/subject tweak ]
Fixes: 05e36022c054 ("x86/shstk: Handle signals for shadow stack")
Reported-by: Pengfei Xu <pengfei.xu@intel.com>
Signed-off-by: Rick Edgecombe <rick.p.edgecombe@intel.com>
Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com>
Tested-by: Pengfei Xu <pengfei.xu@intel.com>
Cc:stable@vger.kernel.org
Link: https://lore.kernel.org/all/20231107182251.91276-1-rick.p.edgecombe%40intel.com
Link: https://github.com/linux-test-project/ltp/blob/master/testcases/kernel/syscalls/signal/signal06.c
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>