IF YOU WOULD LIKE TO GET AN ACCOUNT, please write an
email to Administrator. User accounts are meant only to access repo
and report issues and/or generate pull requests.
This is a purpose-specific Git hosting for
BaseALT
projects. Thank you for your understanding!
Только зарегистрированные пользователи имеют доступ к сервису!
Для получения аккаунта, обратитесь к администратору.
commit f337a6a21e2fd67eadea471e93d05dd37baaa9be upstream.
Initialize cpu_mitigations to CPU_MITIGATIONS_OFF if the kernel is built
with CONFIG_SPECULATION_MITIGATIONS=n, as the help text quite clearly
states that disabling SPECULATION_MITIGATIONS is supposed to turn off all
mitigations by default.
│ If you say N, all mitigations will be disabled. You really
│ should know what you are doing to say so.
As is, the kernel still defaults to CPU_MITIGATIONS_AUTO, which results in
some mitigations being enabled in spite of SPECULATION_MITIGATIONS=n.
Fixes: f43b9876e857 ("x86/retbleed: Add fine grained Kconfig knobs")
Signed-off-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Reviewed-by: Daniel Sneddon <daniel.sneddon@linux.intel.com>
Cc: stable@vger.kernel.org
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Link: https://lore.kernel.org/r/20240409175108.1512861-2-seanjc@google.com
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 325f3fb551f8cd672dbbfc4cf58b14f9ee3fc9e8 upstream.
When unloading a module, its state is changing MODULE_STATE_LIVE ->
MODULE_STATE_GOING -> MODULE_STATE_UNFORMED. Each change will take
a time. `is_module_text_address()` and `__module_text_address()`
works with MODULE_STATE_LIVE and MODULE_STATE_GOING.
If we use `is_module_text_address()` and `__module_text_address()`
separately, there is a chance that the first one is succeeded but the
next one is failed because module->state becomes MODULE_STATE_UNFORMED
between those operations.
In `check_kprobe_address_safe()`, if the second `__module_text_address()`
is failed, that is ignored because it expected a kernel_text address.
But it may have failed simply because module->state has been changed
to MODULE_STATE_UNFORMED. In this case, arm_kprobe() will try to modify
non-exist module text address (use-after-free).
To fix this problem, we should not use separated `is_module_text_address()`
and `__module_text_address()`, but use only `__module_text_address()`
once and do `try_module_get(module)` which is only available with
MODULE_STATE_LIVE.
Link: https://lore.kernel.org/all/20240410015802.265220-1-zhengyejian1@huawei.com/
Fixes: 28f6c37a2910 ("kprobes: Forbid probing on trampoline and BPF code areas")
Cc: stable@vger.kernel.org
Signed-off-by: Zheng Yejian <zhengyejian1@huawei.com>
Signed-off-by: Masami Hiramatsu (Google) <mhiramat@kernel.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 3c89a068bfd0698a5478f4cf39493595ef757d5e upstream.
s2idle works like a regular suspend with freezing processes and freezing
devices. All CPUs except the control CPU go into idle. Once this is
completed the control CPU kicks all other CPUs out of idle, so that they
reenter the idle loop and then enter s2idle state. The control CPU then
issues an swait() on the suspend state and therefore enters the idle loop
as well.
Due to being kicked out of idle, the other CPUs leave their NOHZ states,
which means the tick is active and the corresponding hrtimer is programmed
to the next jiffie.
On entering s2idle the CPUs shut down their local clockevent device to
prevent wakeups. The last CPU which enters s2idle shuts down its local
clockevent and freezes timekeeping.
On resume, one of the CPUs receives the wakeup interrupt, unfreezes
timekeeping and its local clockevent and starts the resume process. At that
point all other CPUs are still in s2idle with their clockevents switched
off. They only resume when they are kicked by another CPU or after resuming
devices and then receiving a device interrupt.
That means there is no guarantee that all CPUs will wakeup directly on
resume. As a consequence there is no guarantee that timers which are queued
on those CPUs and should expire directly after resume, are handled. Also
timer list timers which are remotely queued to one of those CPUs after
resume will not result in a reprogramming IPI as the tick is
active. Queueing a hrtimer will also not result in a reprogramming IPI
because the first hrtimer event is already in the past.
The recent introduction of the timer pull model (7ee988770326 ("timers:
Implement the hierarchical pull model")) amplifies this problem, if the
current migrator is one of the non woken up CPUs. When a non pinned timer
list timer is queued and the queuing CPU goes idle, it relies on the still
suspended migrator CPU to expire the timer which will happen by chance.
The problem exists since commit 8d89835b0467 ("PM: suspend: Do not pause
cpuidle in the suspend-to-idle path"). There the cpuidle_pause() call which
in turn invoked a wakeup for all idle CPUs was moved to a later point in
the resume process. This might not be reached or reached very late because
it waits on a timer of a still suspended CPU.
Address this by kicking all CPUs out of idle after the control CPU returns
from swait() so that they resume their timers and restore consistent system
state.
Closes: https://bugzilla.kernel.org/show_bug.cgi?id=218641
Fixes: 8d89835b0467 ("PM: suspend: Do not pause cpuidle in the suspend-to-idle path")
Signed-off-by: Anna-Maria Behnsen <anna-maria@linutronix.de>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Tested-by: Mario Limonciello <mario.limonciello@amd.com>
Cc: 5.16+ <stable@kernel.org> # 5.16+
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Ulf Hansson <ulf.hansson@linaro.org>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit ffe3986fece696cf65e0ef99e74c75f848be8e30 upstream.
The "buffer_percent" logic that is used by the ring buffer splice code to
only wake up the tasks when there's no data after the buffer is filled to
the percentage of the "buffer_percent" file is dependent on three
variables that determine the amount of data that is in the ring buffer:
1) pages_read - incremented whenever a new sub-buffer is consumed
2) pages_lost - incremented every time a writer overwrites a sub-buffer
3) pages_touched - incremented when a write goes to a new sub-buffer
The percentage is the calculation of:
(pages_touched - (pages_lost + pages_read)) / nr_pages
Basically, the amount of data is the total number of sub-bufs that have been
touched, minus the number of sub-bufs lost and sub-bufs consumed. This is
divided by the total count to give the buffer percentage. When the
percentage is greater than the value in the "buffer_percent" file, it
wakes up splice readers waiting for that amount.
It was observed that over time, the amount read from the splice was
constantly decreasing the longer the trace was running. That is, if one
asked for 60%, it would read over 60% when it first starts tracing, but
then it would be woken up at under 60% and would slowly decrease the
amount of data read after being woken up, where the amount becomes much
less than the buffer percent.
This was due to an accounting of the pages_touched incrementation. This
value is incremented whenever a writer transfers to a new sub-buffer. But
the place where it was incremented was incorrect. If a writer overflowed
the current sub-buffer it would go to the next one. If it gets preempted
by an interrupt at that time, and the interrupt performs a trace, it too
will end up going to the next sub-buffer. But only one should increment
the counter. Unfortunately, that was not the case.
Change the cmpxchg() that does the real switch of the tail-page into a
try_cmpxchg(), and on success, perform the increment of pages_touched. This
will only increment the counter once for when the writer moves to a new
sub-buffer, and not when there's a race and is incremented for when a
writer and its preempting writer both move to the same new sub-buffer.
Link: https://lore.kernel.org/linux-trace-kernel/20240409151309.0d0e5056@gandalf.local.home
Cc: stable@vger.kernel.org
Cc: Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
Fixes: 2c2b0a78b3739 ("ring-buffer: Add percentage of ring buffer full to wake up reader")
Acked-by: Masami Hiramatsu (Google) <mhiramat@kernel.org>
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
[ Upstream commit f1e30cb6369251c03f63c564006f96a54197dcc4 ]
In function ring_buffer_iter_empty(), cpu_buffer->commit_page is read
while other threads may change it. It may cause the time_stamp that read
in the next line come from a different page. Use READ_ONCE() to avoid
having to reason about compiler optimizations now and in future.
Link: https://lore.kernel.org/linux-trace-kernel/tencent_DFF7D3561A0686B5E8FC079150A02505180A@qq.com
Cc: Masami Hiramatsu <mhiramat@kernel.org>
Cc: Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
Signed-off-by: linke li <lilinke99@qq.com>
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit b9fa16949d18e06bdf728a560f5c8af56d2bdcaf ]
On TDX it is possible for the untrusted host to cause
set_memory_encrypted() or set_memory_decrypted() to fail such that an
error is returned and the resulting memory is shared. Callers need to
take care to handle these errors to avoid returning decrypted (shared)
memory to the page allocator, which could lead to functional or security
issues.
DMA could free decrypted/shared pages if dma_set_decrypted() fails. This
should be a rare case. Just leak the pages in this case instead of
freeing them.
Signed-off-by: Rick Edgecombe <rick.p.edgecombe@intel.com>
Signed-off-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit d988d9a9b9d180bfd5c1d353b3b176cb90d6861b ]
If the kernel crashes in a context where printk() calls always
defer printing (such as in NMI or inside a printk_safe section)
then the final panic messages will be deferred to irq_work. But
if irq_work is not available, the messages will not get printed
unless explicitly flushed. The result is that the final
"end Kernel panic" banner does not get printed.
Add one final flush after the last printk() call to make sure
the final panic messages make it out as well.
Signed-off-by: John Ogness <john.ogness@linutronix.de>
Reviewed-by: Petr Mladek <pmladek@suse.com>
Link: https://lore.kernel.org/r/20240207134103.1357162-14-john.ogness@linutronix.de
Signed-off-by: Petr Mladek <pmladek@suse.com>
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit 0ab7cdd00491b532591ef065be706301de7e448f ]
Currently @suppress_panic_printk is checked along with
non-matching @panic_cpu and current CPU. This works
because @suppress_panic_printk is only set when
panic_in_progress() is true.
Rather than relying on the @suppress_panic_printk semantics,
use the concise helper function other_cpu_in_progress(). The
helper function exists to avoid open coding such tests.
Signed-off-by: John Ogness <john.ogness@linutronix.de>
Reviewed-by: Petr Mladek <pmladek@suse.com>
Link: https://lore.kernel.org/r/20240207134103.1357162-7-john.ogness@linutronix.de
Signed-off-by: Petr Mladek <pmladek@suse.com>
Signed-off-by: Sasha Levin <sashal@kernel.org>
commit 1a80dbcb2dbaf6e4c216e62e30fa7d3daa8001ce upstream.
BPF link for some program types is passed as a "context" which can be
used by those BPF programs to look up additional information. E.g., for
multi-kprobes and multi-uprobes, link is used to fetch BPF cookie values.
Because of this runtime dependency, when bpf_link refcnt drops to zero
there could still be active BPF programs running accessing link data.
This patch adds generic support to defer bpf_link dealloc callback to
after RCU GP, if requested. This is done by exposing two different
deallocation callbacks, one synchronous and one deferred. If deferred
one is provided, bpf_link_free() will schedule dealloc_deferred()
callback to happen after RCU GP.
BPF is using two flavors of RCU: "classic" non-sleepable one and RCU
tasks trace one. The latter is used when sleepable BPF programs are
used. bpf_link_free() accommodates that by checking underlying BPF
program's sleepable flag, and goes either through normal RCU GP only for
non-sleepable, or through RCU tasks trace GP *and* then normal RCU GP
(taking into account rcu_trace_implies_rcu_gp() optimization), if BPF
program is sleepable.
We use this for multi-kprobe and multi-uprobe links, which dereference
link during program run. We also preventively switch raw_tp link to use
deferred dealloc callback, as upcoming changes in bpf-next tree expose
raw_tp link data (specifically, cookie value) to BPF program at runtime
as well.
Fixes: 0dcac2725406 ("bpf: Add multi kprobe link")
Fixes: 89ae89f53d20 ("bpf: Add multi uprobe link")
Reported-by: syzbot+981935d9485a560bfbcb@syzkaller.appspotmail.com
Reported-by: syzbot+2cb5a6c573e98db598cc@syzkaller.appspotmail.com
Reported-by: syzbot+62d8b26793e8a2bd0516@syzkaller.appspotmail.com
Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Acked-by: Jiri Olsa <jolsa@kernel.org>
Link: https://lore.kernel.org/r/20240328052426.3042617-2-andrii@kernel.org
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit e9c856cabefb71d47b2eeb197f72c9c88e9b45b0 upstream.
There is no need to delay putting either path or task to deallocation
step. It can be done right after bpf_uprobe_unregister. Between release
and dealloc, there could be still some running BPF programs, but they
don't access either task or path, only data in link->uprobes, so it is
safe to do.
On the other hand, doing path_put() in dealloc callback makes this
dealloc sleepable because path_put() itself might sleep. Which is
problematic due to the need to call uprobe's dealloc through call_rcu(),
which is what is done in the next bug fix patch. So solve the problem by
releasing these resources early.
Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Link: https://lore.kernel.org/r/20240328052426.3042617-1-andrii@kernel.org
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
[ Upstream commit ecc6a2101840177e57c925c102d2d29f260d37c8 ]
This patch re-introduces protection against the size of access to stack
memory being negative; the access size can appear negative as a result
of overflowing its signed int representation. This should not actually
happen, as there are other protections along the way, but we should
protect against it anyway. One code path was missing such protections
(fixed in the previous patch in the series), causing out-of-bounds array
accesses in check_stack_range_initialized(). This patch causes the
verification of a program with such a non-sensical access size to fail.
This check used to exist in a more indirect way, but was inadvertendly
removed in a833a17aeac7.
Fixes: a833a17aeac7 ("bpf: Fix verification of indirect var-off stack access")
Reported-by: syzbot+33f4297b5f927648741a@syzkaller.appspotmail.com
Reported-by: syzbot+aafd0513053a1cbf52ef@syzkaller.appspotmail.com
Closes: https://lore.kernel.org/bpf/CAADnVQLORV5PT0iTAhRER+iLBTkByCYNBYyvBSgjN1T31K+gOw@mail.gmail.com/
Acked-by: Andrii Nakryiko <andrii@kernel.org>
Signed-off-by: Andrei Matei <andreimatei1@gmail.com>
Link: https://lore.kernel.org/r/20240327024245.318299-3-andreimatei1@gmail.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
commit d5aad4c2ca057e760a92a9a7d65bd38d72963f27 upstream.
Patch series "ARM: prctl: Reject PR_SET_MDWE where not supported".
I noticed after a recent kernel update that my ARM926 system started
segfaulting on any execve() after calling prctl(PR_SET_MDWE). After some
investigation it appears that ARMv5 is incapable of providing the
appropriate protections for MDWE, since any readable memory is also
implicitly executable.
The prctl_set_mdwe() function already had some special-case logic added
disabling it on PARISC (commit 793838138c15, "prctl: Disable
prctl(PR_SET_MDWE) on parisc"); this patch series (1) generalizes that
check to use an arch_*() function, and (2) adds a corresponding override
for ARM to disable MDWE on pre-ARMv6 CPUs.
With the series applied, prctl(PR_SET_MDWE) is rejected on ARMv5 and
subsequent execve() calls (as well as mmap(PROT_READ|PROT_WRITE)) can
succeed instead of unconditionally failing; on ARMv6 the prctl works as it
did previously.
[0] https://lore.kernel.org/all/2023112456-linked-nape-bf19@gregkh/
This patch (of 2):
There exist systems other than PARISC where MDWE may not be feasible to
support; rather than cluttering up the generic code with additional
arch-specific logic let's add a generic function for checking MDWE support
and allow each arch to override it as needed.
Link: https://lkml.kernel.org/r/20240227013546.15769-4-zev@bewilderbeest.net
Link: https://lkml.kernel.org/r/20240227013546.15769-5-zev@bewilderbeest.net
Signed-off-by: Zev Weiss <zev@bewilderbeest.net>
Acked-by: Helge Deller <deller@gmx.de> [parisc]
Cc: Borislav Petkov <bp@alien8.de>
Cc: David Hildenbrand <david@redhat.com>
Cc: Florent Revest <revest@chromium.org>
Cc: "James E.J. Bottomley" <James.Bottomley@HansenPartnership.com>
Cc: Josh Triplett <josh@joshtriplett.org>
Cc: Kees Cook <keescook@chromium.org>
Cc: Miguel Ojeda <ojeda@kernel.org>
Cc: Mike Rapoport (IBM) <rppt@kernel.org>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: Ondrej Mosnacek <omosnace@redhat.com>
Cc: Rick Edgecombe <rick.p.edgecombe@intel.com>
Cc: Russell King (Oracle) <linux@armlinux.org.uk>
Cc: Sam James <sam@gentoo.org>
Cc: Stefan Roesch <shr@devkernel.io>
Cc: Yang Shi <yang@os.amperecomputing.com>
Cc: Yin Fengwei <fengwei.yin@intel.com>
Cc: <stable@vger.kernel.org> [6.3+]
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
[ Upstream commit 51b30ecb73b481d5fac6ccf2ecb4a309c9ee3310 ]
Nicolin reports that swiotlb buffer allocations fail for an NVME device
behind an IOMMU using 64KiB pages. This is because we end up with a
minimum allocation alignment of 64KiB (for the IOMMU to map the buffer
safely) but a minimum DMA alignment mask corresponding to a 4KiB NVME
page (i.e. preserving the 4KiB page offset from the original allocation).
If the original address is not 4KiB-aligned, the allocation will fail
because swiotlb_search_pool_area() erroneously compares these unmasked
bits with the 64KiB-aligned candidate allocation.
Tweak swiotlb_search_pool_area() so that the DMA alignment mask is
reduced based on the required alignment of the allocation.
Fixes: 82612d66d51d ("iommu: Allow the dma-iommu api to use bounce buffers")
Link: https://lore.kernel.org/r/cover.1707851466.git.nicolinc@nvidia.com
Reported-by: Nicolin Chen <nicolinc@nvidia.com>
Signed-off-by: Will Deacon <will@kernel.org>
Reviewed-by: Michael Kelley <mhklinux@outlook.com>
Tested-by: Nicolin Chen <nicolinc@nvidia.com>
Tested-by: Michael Kelley <mhklinux@outlook.com>
Signed-off-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit cbf53074a528191df82b4dba1e3d21191102255e ]
core-api/dma-api-howto.rst states the following properties of
dma_alloc_coherent():
| The CPU virtual address and the DMA address are both guaranteed to
| be aligned to the smallest PAGE_SIZE order which is greater than or
| equal to the requested size.
However, swiotlb_alloc() passes zero for the 'alloc_align_mask'
parameter of swiotlb_find_slots() and so this property is not upheld.
Instead, allocations larger than a page are aligned to PAGE_SIZE,
Calculate the mask corresponding to the page order suitable for holding
the allocation and pass that to swiotlb_find_slots().
Fixes: e81e99bacc9f ("swiotlb: Support aligned swiotlb buffers")
Signed-off-by: Will Deacon <will@kernel.org>
Reviewed-by: Michael Kelley <mhklinux@outlook.com>
Reviewed-by: Petr Tesarik <petr.tesarik1@huawei-partners.com>
Tested-by: Nicolin Chen <nicolinc@nvidia.com>
Tested-by: Michael Kelley <mhklinux@outlook.com>
Signed-off-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit 04867a7a33324c9c562ee7949dbcaab7aaad1fb4 ]
Commit bbb73a103fbb ("swiotlb: fix a braino in the alignment check fix"),
which was a fix for commit 0eee5ae10256 ("swiotlb: fix slot alignment
checks"), causes a functional regression with vsock in a virtual machine
using bouncing via a restricted DMA SWIOTLB pool.
When virtio allocates the virtqueues for the vsock device using
dma_alloc_coherent(), the SWIOTLB search can return page-unaligned
allocations if 'area->index' was left unaligned by a previous allocation
from the buffer:
# Final address in brackets is the SWIOTLB address returned to the caller
| virtio-pci 0000:00:07.0: orig_addr 0x0 alloc_size 0x2000, iotlb_align_mask 0x800 stride 0x2: got slot 1645-1649/7168 (0x98326800)
| virtio-pci 0000:00:07.0: orig_addr 0x0 alloc_size 0x2000, iotlb_align_mask 0x800 stride 0x2: got slot 1649-1653/7168 (0x98328800)
| virtio-pci 0000:00:07.0: orig_addr 0x0 alloc_size 0x2000, iotlb_align_mask 0x800 stride 0x2: got slot 1653-1657/7168 (0x9832a800)
This ends badly (typically buffer corruption and/or a hang) because
swiotlb_alloc() is expecting a page-aligned allocation and so blindly
returns a pointer to the 'struct page' corresponding to the allocation,
therefore double-allocating the first half (2KiB slot) of the 4KiB page.
Fix the problem by treating the allocation alignment separately to any
additional alignment requirements from the device, using the maximum
of the two as the stride to search the buffer slots and taking care
to ensure a minimum of page-alignment for buffers larger than a page.
This also resolves swiotlb allocation failures occuring due to the
inclusion of ~PAGE_MASK in 'iotlb_align_mask' for large allocations and
resulting in alignment requirements exceeding swiotlb_max_mapping_size().
Fixes: bbb73a103fbb ("swiotlb: fix a braino in the alignment check fix")
Fixes: 0eee5ae10256 ("swiotlb: fix slot alignment checks")
Signed-off-by: Will Deacon <will@kernel.org>
Reviewed-by: Michael Kelley <mhklinux@outlook.com>
Reviewed-by: Petr Tesarik <petr.tesarik1@huawei-partners.com>
Tested-by: Nicolin Chen <nicolinc@nvidia.com>
Tested-by: Michael Kelley <mhklinux@outlook.com>
Signed-off-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit fb13b11d53875e28e7fbf0c26b288e4ea676aa9f ]
When a probe is registered at the trace_sys_enter() tracepoint, and that
probe changes the system call number, the old system call still gets
executed. This worked correctly until commit b6ec41346103 ("core/entry:
Report syscall correctly for trace and audit"), which removed the
re-evaluation of the syscall number after the trace point.
Restore the original semantics by re-evaluating the system call number
after trace_sys_enter().
The performance impact of this re-evaluation is minimal because it only
takes place when a trace point is active, and compared to the actual trace
point overhead the read from a cache hot variable is negligible.
Fixes: b6ec41346103 ("core/entry: Report syscall correctly for trace and audit")
Signed-off-by: André Rösti <an.roesti@gmail.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Link: https://lore.kernel.org/r/20240311211704.7262-1-an.roesti@gmail.com
Signed-off-by: Sasha Levin <sashal@kernel.org>
commit e5d7c1916562f0e856eb3d6f569629fcd535fed2 upstream.
The .release() function does not get called until all readers of a file
descriptor are finished.
If a thread is blocked on reading a file descriptor in ring_buffer_wait(),
and another thread closes the file descriptor, it will not wake up the
other thread as ring_buffer_wake_waiters() is called by .release(), and
that will not get called until the .read() is finished.
The issue originally showed up in trace-cmd, but the readers are actually
other processes with their own file descriptors. So calling close() would wake
up the other tasks because they are blocked on another descriptor then the
one that was closed(). But there's other wake ups that solve that issue.
When a thread is blocked on a read, it can still hang even when another
thread closed its descriptor.
This is what the .flush() callback is for. Have the .flush() wake up the
readers.
Link: https://lore.kernel.org/linux-trace-kernel/20240308202432.107909457@goodmis.org
Cc: stable@vger.kernel.org
Cc: Masami Hiramatsu <mhiramat@kernel.org>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: linke li <lilinke99@qq.com>
Cc: Rabin Vincent <rabin@rab.in>
Fixes: f3ddb74ad0790 ("tracing: Wake up ring buffer waiters on closing of the file")
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 25125a4762835d62ba1e540c1351d447fc1f6c7c upstream.
The update_cpumask(), checks for newly requested cpumask by calling
validate_change(), which returns an error on passing an invalid set
of cpu(s). Independent of the error returned, update_cpumask() always
returns zero, suppressing the error and returning success to the user
on writing an invalid cpu range for a cpuset. Fix it by returning
retval instead, which is returned by validate_change().
Fixes: 99fe36ba6fc1 ("cgroup/cpuset: Improve temporary cpumasks handling")
Signed-off-by: Kamalesh Babulal <kamalesh.babulal@oracle.com>
Reviewed-by: Waiman Long <longman@redhat.com>
Cc: stable@vger.kernel.org # v6.6+
Signed-off-by: Tejun Heo <tj@kernel.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 8318d6a6362f5903edb4c904a8dd447e59be4ad1 upstream.
Since we have set the WQ_NAME_LEN to 32, decrease the name of
events_freezable_power_efficient so that it does not trip the name length
warning when the workqueue is created.
Signed-off-by: Audra Mitchell <audra@redhat.com>
Signed-off-by: Tejun Heo <tj@kernel.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
[ Upstream commit 7af9ded0c2caac0a95f33df5cb04706b0f502588 ]
Convert ring_buffer_wait() over to wait_event_interruptible(). The default
condition is to execute the wait loop inside __wait_event() just once.
This does not change the ring_buffer_wait() prototype yet, but
restructures the code so that it can take a "cond" and "data" parameter
and will call wait_event_interruptible() with a helper function as the
condition.
The helper function (rb_wait_cond) takes the cond function and data
parameters. It will first check if the buffer hit the watermark defined by
the "full" parameter and then call the passed in condition parameter. If
either are true, it returns true.
If rb_wait_cond() does not return true, it will set the appropriate
"waiters_pending" flag and returns false.
Link: https://lore.kernel.org/linux-trace-kernel/CAHk-=wgsNgewHFxZAJiAQznwPMqEtQmi1waeS2O1v6L4c_Um5A@mail.gmail.com/
Link: https://lore.kernel.org/linux-trace-kernel/20240312121703.399598519@goodmis.org
Cc: stable@vger.kernel.org
Cc: Masami Hiramatsu <mhiramat@kernel.org>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: linke li <lilinke99@qq.com>
Cc: Rabin Vincent <rabin@rab.in>
Fixes: f3ddb74ad0790 ("tracing: Wake up ring buffer waiters on closing of the file")
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit 8145f1c35fa648da662078efab299c4467b85ad5 ]
If a reader of the ring buffer is doing a poll, and waiting for the ring
buffer to hit a specific watermark, there could be a case where it gets
into an infinite ping-pong loop.
The poll code has:
rbwork->full_waiters_pending = true;
if (!cpu_buffer->shortest_full ||
cpu_buffer->shortest_full > full)
cpu_buffer->shortest_full = full;
The writer will see full_waiters_pending and check if the ring buffer is
filled over the percentage of the shortest_full value. If it is, it calls
an irq_work to wake up all the waiters.
But the code could get into a circular loop:
CPU 0 CPU 1
----- -----
[ Poll ]
[ shortest_full = 0 ]
rbwork->full_waiters_pending = true;
if (rbwork->full_waiters_pending &&
[ buffer percent ] > shortest_full) {
rbwork->wakeup_full = true;
[ queue_irqwork ]
cpu_buffer->shortest_full = full;
[ IRQ work ]
if (rbwork->wakeup_full) {
cpu_buffer->shortest_full = 0;
wakeup poll waiters;
[woken]
if ([ buffer percent ] > full)
break;
rbwork->full_waiters_pending = true;
if (rbwork->full_waiters_pending &&
[ buffer percent ] > shortest_full) {
rbwork->wakeup_full = true;
[ queue_irqwork ]
cpu_buffer->shortest_full = full;
[ IRQ work ]
if (rbwork->wakeup_full) {
cpu_buffer->shortest_full = 0;
wakeup poll waiters;
[woken]
[ Wash, rinse, repeat! ]
In the poll, the shortest_full needs to be set before the
full_pending_waiters, as once that is set, the writer will compare the
current shortest_full (which is incorrect) to decide to call the irq_work,
which will reset the shortest_full (expecting the readers to update it).
Also move the setting of full_waiters_pending after the check if the ring
buffer has the required percentage filled. There's no reason to tell the
writer to wake up waiters if there are no waiters.
Link: https://lore.kernel.org/linux-trace-kernel/20240312131952.630922155@goodmis.org
Cc: stable@vger.kernel.org
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Fixes: 42fb0a1e84ff5 ("tracing/ring-buffer: Have polling block on watermark")
Reviewed-by: Masami Hiramatsu (Google) <mhiramat@kernel.org>
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit 68282dd930ea38b068ce2c109d12405f40df3f93 ]
The "shortest_full" variable is used to keep track of the waiter that is
waiting for the smallest amount on the ring buffer before being woken up.
When a tasks waits on the ring buffer, it passes in a "full" value that is
a percentage. 0 means wake up on any data. 1-100 means wake up from 1% to
100% full buffer.
As all waiters are on the same wait queue, the wake up happens for the
waiter with the smallest percentage.
The problem is that the smallest_full on the cpu_buffer that stores the
smallest amount doesn't get reset when all the waiters are woken up. It
does get reset when the ring buffer is reset (echo > /sys/kernel/tracing/trace).
This means that tasks may be woken up more often then when they want to
be. Instead, have the shortest_full field get reset just before waking up
all the tasks. If the tasks wait again, they will update the shortest_full
before sleeping.
Also add locking around setting of shortest_full in the poll logic, and
change "work" to "rbwork" to match the variable name for rb_irq_work
structures that are used in other places.
Link: https://lore.kernel.org/linux-trace-kernel/20240308202431.948914369@goodmis.org
Cc: stable@vger.kernel.org
Cc: Masami Hiramatsu <mhiramat@kernel.org>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: linke li <lilinke99@qq.com>
Cc: Rabin Vincent <rabin@rab.in>
Fixes: 2c2b0a78b3739 ("ring-buffer: Add percentage of ring buffer full to wake up reader")
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
Stable-dep-of: 8145f1c35fa6 ("ring-buffer: Fix full_waiters_pending in poll")
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit 761d9473e27f0c8782895013a3e7b52a37c8bcfc ]
The rb_watermark_hit() checks if the amount of data in the ring buffer is
above the percentage level passed in by the "full" variable. If it is, it
returns true.
But it also sets the "shortest_full" field of the cpu_buffer that informs
writers that it needs to call the irq_work if the amount of data on the
ring buffer is above the requested amount.
The rb_watermark_hit() always sets the shortest_full even if the amount in
the ring buffer is what it wants. As it is not going to wait, because it
has what it wants, there's no reason to set shortest_full.
Link: https://lore.kernel.org/linux-trace-kernel/20240312115641.6aa8ba08@gandalf.local.home
Cc: stable@vger.kernel.org
Cc: Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
Fixes: 42fb0a1e84ff5 ("tracing/ring-buffer: Have polling block on watermark")
Reviewed-by: Masami Hiramatsu (Google) <mhiramat@kernel.org>
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit b3594573681b53316ec0365332681a30463edfd6 ]
A task can wait on a ring buffer for when it fills up to a specific
watermark. The writer will check the minimum watermark that waiters are
waiting for and if the ring buffer is past that, it will wake up all the
waiters.
The waiters are in a wait loop, and will first check if a signal is
pending and then check if the ring buffer is at the desired level where it
should break out of the loop.
If a file that uses a ring buffer closes, and there's threads waiting on
the ring buffer, it needs to wake up those threads. To do this, a
"wait_index" was used.
Before entering the wait loop, the waiter will read the wait_index. On
wakeup, it will check if the wait_index is different than when it entered
the loop, and will exit the loop if it is. The waker will only need to
update the wait_index before waking up the waiters.
This had a couple of bugs. One trivial one and one broken by design.
The trivial bug was that the waiter checked the wait_index after the
schedule() call. It had to be checked between the prepare_to_wait() and
the schedule() which it was not.
The main bug is that the first check to set the default wait_index will
always be outside the prepare_to_wait() and the schedule(). That's because
the ring_buffer_wait() doesn't have enough context to know if it should
break out of the loop.
The loop itself is not needed, because all the callers to the
ring_buffer_wait() also has their own loop, as the callers have a better
sense of what the context is to decide whether to break out of the loop
or not.
Just have the ring_buffer_wait() block once, and if it gets woken up, exit
the function and let the callers decide what to do next.
Link: https://lore.kernel.org/all/CAHk-=whs5MdtNjzFkTyaUy=vHi=qwWgPi0JgTe6OYUYMNSRZfg@mail.gmail.com/
Link: https://lore.kernel.org/linux-trace-kernel/20240308202431.792933613@goodmis.org
Cc: stable@vger.kernel.org
Cc: Masami Hiramatsu <mhiramat@kernel.org>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: linke li <lilinke99@qq.com>
Cc: Rabin Vincent <rabin@rab.in>
Fixes: e30f53aad2202 ("tracing: Do not busy wait in buffer splice")
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
Stable-dep-of: 761d9473e27f ("ring-buffer: Do not set shortest_full when full target is hit")
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit 801410b26a0e8b8a16f7915b2b55c9528b69ca87 ]
During the handoff from earlycon to the real console driver, we have
two separate drivers operating on the same device concurrently. In the
case of the 8250 driver these concurrent accesses cause problems due
to the driver's use of banked registers, controlled by LCR.DLAB. It is
possible for the setup(), config_port(), pm() and set_mctrl() callbacks
to set DLAB, which can cause the earlycon code that intends to access
TX to instead access DLL, leading to missed output and corruption on
the serial line due to unintended modifications to the baud rate.
In particular, for setup() we have:
univ8250_console_setup()
-> serial8250_console_setup()
-> uart_set_options()
-> serial8250_set_termios()
-> serial8250_do_set_termios()
-> serial8250_do_set_divisor()
For config_port() we have:
serial8250_config_port()
-> autoconfig()
For pm() we have:
serial8250_pm()
-> serial8250_do_pm()
-> serial8250_set_sleep()
For set_mctrl() we have (for some devices):
serial8250_set_mctrl()
-> omap8250_set_mctrl()
-> __omap8250_set_mctrl()
To avoid such problems, let's make it so that the console is locked
during pre-registration calls to these callbacks, which will prevent
the earlycon driver from running concurrently.
Remove the partial solution to this problem in the 8250 driver
that locked the console only during autoconfig_irq(), as this would
result in a deadlock with the new approach. The console continues
to be locked during autoconfig_irq() because it can only be called
through uart_configure_port().
Although this patch introduces more locking than strictly necessary
(and in particular it also locks during the call to rs485_config()
which is not affected by this issue as far as I can tell), it follows
the principle that it is the responsibility of the generic console
code to manage the earlycon handoff by ensuring that earlycon and real
console driver code cannot run concurrently, and not the individual
drivers.
Signed-off-by: Peter Collingbourne <pcc@google.com>
Reviewed-by: John Ogness <john.ogness@linutronix.de>
Link: https://linux-review.googlesource.com/id/I7cf8124dcebf8618e6b2ee543fa5b25532de55d8
Fixes: 1da177e4c3f4 ("Linux-2.6.12-rc2")
Cc: stable@vger.kernel.org
Link: https://lore.kernel.org/r/20240304214350.501253-1-pcc@google.com
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit 9bc4ffd32ef8943f5c5a42c9637cfd04771d021b ]
psci_init_system_suspend() invokes suspend_set_ops() very early during
bootup even before kernel command line for mem_sleep_default is setup.
This leads to kernel command line mem_sleep_default=s2idle not working
as mem_sleep_current gets changed to deep via suspend_set_ops() and never
changes back to s2idle.
Set mem_sleep_current along with mem_sleep_default during kernel command
line setup as default suspend mode.
Fixes: faf7ec4a92c0 ("drivers: firmware: psci: add system suspend support")
CC: stable@vger.kernel.org # 5.4+
Signed-off-by: Maulik Shah <quic_mkshah@quicinc.com>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit f2d5dcb48f7ba9e3ff249d58fc1fa963d374e66a ]
ilog2() rounds down, so for example when PowerPC 85xx sets CONFIG_NR_CPUS
to 24, we will only allocate 4 bits to store the number of CPUs instead of
5. Use bits_per() instead, which rounds up. Found by code inspection.
The effect of this would probably be a misaccounting when doing NUMA
balancing, so to a user, it would only be a performance penalty. The
effects may be more wide-spread; it's hard to tell.
Link: https://lkml.kernel.org/r/20231010145549.1244748-1-willy@infradead.org
Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org>
Fixes: 90572890d202 ("mm: numa: Change page last {nid,pid} into {cpu,pid}")
Reviewed-by: Rik van Riel <riel@surriel.com>
Acked-by: Mel Gorman <mgorman@techsingularity.net>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit 00bf63122459e87193ee7f1bc6161c83a525569f ]
When there are heavy load, cpumap kernel threads can be busy polling
packets from redirect queues and block out RCU tasks from reaching
quiescent states. It is insufficient to just call cond_resched() in such
context. Periodically raise a consolidated RCU QS before cond_resched
fixes the problem.
Fixes: 6710e1126934 ("bpf: introduce new bpf cpu map type BPF_MAP_TYPE_CPUMAP")
Reviewed-by: Jesper Dangaard Brouer <hawk@kernel.org>
Signed-off-by: Yan Zhai <yan@cloudflare.com>
Acked-by: Paul E. McKenney <paulmck@kernel.org>
Acked-by: Jesper Dangaard Brouer <hawk@kernel.org>
Link: https://lore.kernel.org/r/c17b9f1517e19d813da3ede5ed33ee18496bb5d8.1710877680.git.yan@cloudflare.com
Signed-off-by: Jakub Kicinski <kuba@kernel.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit 8f8cd6c0a43ed637e620bbe45a8d0e0c2f4d5130 ]
The synchronization here is to ensure the ordering of freeing of a module
init so that it happens before W+X checking. It is worth noting it is not
that the freeing was not happening, it is just that our sanity checkers
raced against the permission checkers which assume init memory is already
gone.
Commit 1a7b7d922081 ("modules: Use vmalloc special flag") moved calling
do_free_init() into a global workqueue instead of relying on it being
called through call_rcu(..., do_free_init), which used to allowed us call
do_free_init() asynchronously after the end of a subsequent grace period.
The move to a global workqueue broke the gaurantees for code which needed
to be sure the do_free_init() would complete with rcu_barrier(). To fix
this callers which used to rely on rcu_barrier() must now instead use
flush_work(&init_free_wq).
Without this fix, we still could encounter false positive reports in W+X
checking since the rcu_barrier() here can not ensure the ordering now.
Even worse, the rcu_barrier() can introduce significant delay. Eric
Chanudet reported that the rcu_barrier introduces ~0.1s delay on a
PREEMPT_RT kernel.
[ 0.291444] Freeing unused kernel memory: 5568K
[ 0.402442] Run /sbin/init as init process
With this fix, the above delay can be eliminated.
Link: https://lkml.kernel.org/r/20240227023546.2490667-1-changbin.du@huawei.com
Fixes: 1a7b7d922081 ("modules: Use vmalloc special flag")
Signed-off-by: Changbin Du <changbin.du@huawei.com>
Tested-by: Eric Chanudet <echanude@redhat.com>
Acked-by: Luis Chamberlain <mcgrof@kernel.org>
Cc: Xiaoyi Su <suxiaoyi@huawei.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit d6170e4aaf86424c24ce06e355b4573daa891b17 ]
On some architectures like ARM64, PMD_SIZE can be really large in some
configurations. Like with CONFIG_ARM64_64K_PAGES=y the PMD_SIZE is
512MB.
Use 2MB * num_possible_nodes() as the size for allocations done through
the prog pack allocator. On most architectures, PMD_SIZE will be equal
to 2MB in case of 4KB pages and will be greater than 2MB for bigger page
sizes.
Fixes: ea2babac63d4 ("bpf: Simplify bpf_prog_pack_[size|mask]")
Reported-by: "kernelci.org bot" <bot@kernelci.org>
Closes: https://lore.kernel.org/all/7e216c88-77ee-47b8-becc-a0f780868d3c@sirena.org.uk/
Reported-by: kernel test robot <lkp@intel.com>
Closes: https://lore.kernel.org/oe-kbuild-all/202403092219.dhgcuz2G-lkp@intel.com/
Suggested-by: Song Liu <song@kernel.org>
Signed-off-by: Puranjay Mohan <puranjay12@gmail.com>
Message-ID: <20240311122722.86232-1-puranjay12@gmail.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit 7a4b21250bf79eef26543d35bd390448646c536b ]
The stackmap code relies on roundup_pow_of_two() to compute the number
of hash buckets, and contains an overflow check by checking if the
resulting value is 0. However, on 32-bit arches, the roundup code itself
can overflow by doing a 32-bit left-shift of an unsigned long value,
which is undefined behaviour, so it is not guaranteed to truncate
neatly. This was triggered by syzbot on the DEVMAP_HASH type, which
contains the same check, copied from the hashtab code.
The commit in the fixes tag actually attempted to fix this, but the fix
did not account for the UB, so the fix only works on CPUs where an
overflow does result in a neat truncation to zero, which is not
guaranteed. Checking the value before rounding does not have this
problem.
Fixes: 6183f4d3a0a2 ("bpf: Check for integer overflow when using roundup_pow_of_two()")
Signed-off-by: Toke Høiland-Jørgensen <toke@redhat.com>
Reviewed-by: Bui Quang Minh <minhquangbui99@gmail.com>
Message-ID: <20240307120340.99577-4-toke@redhat.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit 6787d916c2cf9850c97a0a3f73e08c43e7d973b1 ]
The hashtab code relies on roundup_pow_of_two() to compute the number of
hash buckets, and contains an overflow check by checking if the
resulting value is 0. However, on 32-bit arches, the roundup code itself
can overflow by doing a 32-bit left-shift of an unsigned long value,
which is undefined behaviour, so it is not guaranteed to truncate
neatly. This was triggered by syzbot on the DEVMAP_HASH type, which
contains the same check, copied from the hashtab code. So apply the same
fix to hashtab, by moving the overflow check to before the roundup.
Fixes: daaf427c6ab3 ("bpf: fix arraymap NULL deref and missing overflow and zero size checks")
Signed-off-by: Toke Høiland-Jørgensen <toke@redhat.com>
Message-ID: <20240307120340.99577-3-toke@redhat.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit 281d464a34f540de166cee74b723e97ac2515ec3 ]
The devmap code allocates a number hash buckets equal to the next power
of two of the max_entries value provided when creating the map. When
rounding up to the next power of two, the 32-bit variable storing the
number of buckets can overflow, and the code checks for overflow by
checking if the truncated 32-bit value is equal to 0. However, on 32-bit
arches the rounding up itself can overflow mid-way through, because it
ends up doing a left-shift of 32 bits on an unsigned long value. If the
size of an unsigned long is four bytes, this is undefined behaviour, so
there is no guarantee that we'll end up with a nice and tidy 0-value at
the end.
Syzbot managed to turn this into a crash on arm32 by creating a
DEVMAP_HASH with max_entries > 0x80000000 and then trying to update it.
Fix this by moving the overflow check to before the rounding up
operation.
Fixes: 6f9d451ab1a3 ("xdp: Add devmap_hash map type for looking up devices by hashed index")
Link: https://lore.kernel.org/r/000000000000ed666a0611af6818@google.com
Reported-and-tested-by: syzbot+8cd36f6b65f3cafd400a@syzkaller.appspotmail.com
Signed-off-by: Toke Høiland-Jørgensen <toke@redhat.com>
Message-ID: <20240307120340.99577-2-toke@redhat.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit 178c54666f9c4d2f49f2ea661d0c11b52f0ed190 ]
Currently tracing is supposed not to allow for bpf_spin_{lock,unlock}()
helper calls. This is to prevent deadlock for the following cases:
- there is a prog (prog-A) calling bpf_spin_{lock,unlock}().
- there is a tracing program (prog-B), e.g., fentry, attached
to bpf_spin_lock() and/or bpf_spin_unlock().
- prog-B calls bpf_spin_{lock,unlock}().
For such a case, when prog-A calls bpf_spin_{lock,unlock}(),
a deadlock will happen.
The related source codes are below in kernel/bpf/helpers.c:
notrace BPF_CALL_1(bpf_spin_lock, struct bpf_spin_lock *, lock)
notrace BPF_CALL_1(bpf_spin_unlock, struct bpf_spin_lock *, lock)
notrace is supposed to prevent fentry prog from attaching to
bpf_spin_{lock,unlock}().
But actually this is not the case and fentry prog can successfully
attached to bpf_spin_lock(). Siddharth Chintamaneni reported
the issue in [1]. The following is the macro definition for
above BPF_CALL_1:
#define BPF_CALL_x(x, name, ...) \
static __always_inline \
u64 ____##name(__BPF_MAP(x, __BPF_DECL_ARGS, __BPF_V, __VA_ARGS__)); \
typedef u64 (*btf_##name)(__BPF_MAP(x, __BPF_DECL_ARGS, __BPF_V, __VA_ARGS__)); \
u64 name(__BPF_REG(x, __BPF_DECL_REGS, __BPF_N, __VA_ARGS__)); \
u64 name(__BPF_REG(x, __BPF_DECL_REGS, __BPF_N, __VA_ARGS__)) \
{ \
return ((btf_##name)____##name)(__BPF_MAP(x,__BPF_CAST,__BPF_N,__VA_ARGS__));\
} \
static __always_inline \
u64 ____##name(__BPF_MAP(x, __BPF_DECL_ARGS, __BPF_V, __VA_ARGS__))
#define BPF_CALL_1(name, ...) BPF_CALL_x(1, name, __VA_ARGS__)
The notrace attribute is actually applied to the static always_inline function
____bpf_spin_{lock,unlock}(). The actual callback function
bpf_spin_{lock,unlock}() is not marked with notrace, hence
allowing fentry prog to attach to two helpers, and this
may cause the above mentioned deadlock. Siddharth Chintamaneni
actually has a reproducer in [2].
To fix the issue, a new macro NOTRACE_BPF_CALL_1 is introduced which
will add notrace attribute to the original function instead of
the hidden always_inline function and this fixed the problem.
[1] https://lore.kernel.org/bpf/CAE5sdEigPnoGrzN8WU7Tx-h-iFuMZgW06qp0KHWtpvoXxf1OAQ@mail.gmail.com/
[2] https://lore.kernel.org/bpf/CAE5sdEg6yUc_Jz50AnUXEEUh6O73yQ1Z6NV2srJnef0ZrQkZew@mail.gmail.com/
Fixes: d83525ca62cf ("bpf: introduce bpf_spin_lock")
Signed-off-by: Yonghong Song <yonghong.song@linux.dev>
Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Acked-by: Jiri Olsa <jolsa@kernel.org>
Link: https://lore.kernel.org/bpf/20240207070102.335167-1-yonghong.song@linux.dev
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit d04d5882cd678b898a9d7c5aee6afbe9e6e77fcd ]
The commit d51507098ff91 ("printk: disable optimistic spin
during panic") added checks to avoid becoming a console waiter
if a panic is in progress.
However, the transition to panic can occur while there is
already a waiter. The current owner should not pass the lock to
the waiter because it might get stopped or blocked anytime.
Also the panic context might pass the console lock owner to an
already stopped waiter by mistake. It might happen when
console_flush_on_panic() ignores the current lock owner, for
example:
CPU0 CPU1
---- ----
console_lock_spinning_enable()
console_trylock_spinning()
[CPU1 now console waiter]
NMI: panic()
panic_other_cpus_shutdown()
[stopped as console waiter]
console_flush_on_panic()
console_lock_spinning_enable()
[print 1 record]
console_lock_spinning_disable_and_check()
[handover to stopped CPU1]
This results in panic() not flushing the panic messages.
Fix these problems by disabling all spinning operations
completely during panic().
Another advantage is that it prevents possible deadlocks caused
by "console_owner_lock". The panic() context does not need to
take it any longer. The lockless checks are safe because the
functions become NOPs when they see the panic in progress. All
operations manipulating the state are still synchronized by the
lock even when non-panic CPUs would notice the panic
synchronously.
The current owner might stay spinning. But non-panic() CPUs
would get stopped anyway and the panic context will never start
spinning.
Fixes: dbdda842fe96 ("printk: Add console owner and waiter logic to load balance console writes")
Signed-off-by: John Ogness <john.ogness@linutronix.de>
Link: https://lore.kernel.org/r/20240207134103.1357162-12-john.ogness@linutronix.de
Signed-off-by: Petr Mladek <pmladek@suse.com>
Signed-off-by: Sasha Levin <sashal@kernel.org>