IF YOU WOULD LIKE TO GET AN ACCOUNT, please write an
email to Administrator. User accounts are meant only to access repo
and report issues and/or generate pull requests.
This is a purpose-specific Git hosting for
BaseALT
projects. Thank you for your understanding!
Только зарегистрированные пользователи имеют доступ к сервису!
Для получения аккаунта, обратитесь к администратору.
[ Upstream commit 50564b651d01c19ce732819c5b3c3fd60707188e ]
When marking an extent buffer as dirty, at btrfs_mark_buffer_dirty(),
we check if its generation matches the running transaction and if not we
just print a warning. Such mismatch is an indicator that something really
went wrong and only printing a warning message (and stack trace) is not
enough to prevent a corruption. Allowing a transaction to commit with such
an extent buffer will trigger an error if we ever try to read it from disk
due to a generation mismatch with its parent generation.
So abort the current transaction with -EUCLEAN if we notice a generation
mismatch. For this we need to pass a transaction handle to
btrfs_mark_buffer_dirty() which is always available except in test code,
in which case we can pass NULL since it operates on dummy extent buffers
and all test roots have a single node/leaf (root node at level 0).
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Signed-off-by: Sasha Levin <sashal@kernel.org>
When creating a snapshot of a subvolume that was created in the current
transaction, we can end up not persisting a dirty extent buffer that is
referenced by the snapshot, resulting in IO errors due to checksum failures
when trying to read the extent buffer later from disk. A sequence of steps
that leads to this is the following:
1) At ioctl.c:create_subvol() we allocate an extent buffer, with logical
address 36007936, for the leaf/root of a new subvolume that has an ID
of 291. We mark the extent buffer as dirty, and at this point the
subvolume tree has a single node/leaf which is also its root (level 0);
2) We no longer commit the transaction used to create the subvolume at
create_subvol(). We used to, but that was recently removed in
commit 1b53e51a4a8f ("btrfs: don't commit transaction for every subvol
create");
3) The transaction used to create the subvolume has an ID of 33, so the
extent buffer 36007936 has a generation of 33;
4) Several updates happen to subvolume 291 during transaction 33, several
files created and its tree height changes from 0 to 1, so we end up with
a new root at level 1 and the extent buffer 36007936 is now a leaf of
that new root node, which is extent buffer 36048896.
The commit root remains as 36007936, since we are still at transaction
33;
5) Creation of a snapshot of subvolume 291, with an ID of 292, starts at
ioctl.c:create_snapshot(). This triggers a commit of transaction 33 and
we end up at transaction.c:create_pending_snapshot(), in the critical
section of a transaction commit.
There we COW the root of subvolume 291, which is extent buffer 36048896.
The COW operation returns extent buffer 36048896, since there's no need
to COW because the extent buffer was created in this transaction and it
was not written yet.
The we call btrfs_copy_root() against the root node 36048896. During
this operation we allocate a new extent buffer to turn into the root
node of the snapshot, copy the contents of the root node 36048896 into
this snapshot root extent buffer, set the owner to 292 (the ID of the
snapshot), etc, and then we call btrfs_inc_ref(). This will create a
delayed reference for each leaf pointed by the root node with a
reference root of 292 - this includes a reference for the leaf
36007936.
After that we set the bit BTRFS_ROOT_FORCE_COW in the root's state.
Then we call btrfs_insert_dir_item(), to create the directory entry in
in the tree of subvolume 291 that points to the snapshot. This ends up
needing to modify leaf 36007936 to insert the respective directory
items. Because the bit BTRFS_ROOT_FORCE_COW is set for the root's state,
we need to COW the leaf. We end up at btrfs_force_cow_block() and then
at update_ref_for_cow().
At update_ref_for_cow() we call btrfs_block_can_be_shared() which
returns false, despite the fact the leaf 36007936 is shared - the
subvolume's root and the snapshot's root point to that leaf. The
reason that it incorrectly returns false is because the commit root
of the subvolume is extent buffer 36007936 - it was the initial root
of the subvolume when we created it. So btrfs_block_can_be_shared()
which has the following logic:
int btrfs_block_can_be_shared(struct btrfs_root *root,
struct extent_buffer *buf)
{
if (test_bit(BTRFS_ROOT_SHAREABLE, &root->state) &&
buf != root->node && buf != root->commit_root &&
(btrfs_header_generation(buf) <=
btrfs_root_last_snapshot(&root->root_item) ||
btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC)))
return 1;
return 0;
}
Returns false (0) since 'buf' (extent buffer 36007936) matches the
root's commit root.
As a result, at update_ref_for_cow(), we don't check for the number
of references for extent buffer 36007936, we just assume it's not
shared and therefore that it has only 1 reference, so we set the local
variable 'refs' to 1.
Later on, in the final if-else statement at update_ref_for_cow():
static noinline int update_ref_for_cow(struct btrfs_trans_handle *trans,
struct btrfs_root *root,
struct extent_buffer *buf,
struct extent_buffer *cow,
int *last_ref)
{
(...)
if (refs > 1) {
(...)
} else {
(...)
btrfs_clear_buffer_dirty(trans, buf);
*last_ref = 1;
}
}
So we mark the extent buffer 36007936 as not dirty, and as a result
we don't write it to disk later in the transaction commit, despite the
fact that the snapshot's root points to it.
Attempting to access the leaf or dumping the tree for example shows
that the extent buffer was not written:
$ btrfs inspect-internal dump-tree -t 292 /dev/sdb
btrfs-progs v6.2.2
file tree key (292 ROOT_ITEM 33)
node 36110336 level 1 items 2 free space 119 generation 33 owner 292
node 36110336 flags 0x1(WRITTEN) backref revision 1
checksum stored a8103e3e
checksum calced a8103e3e
fs uuid 90c9a46f-ae9f-4626-9aff-0cbf3e2e3a79
chunk uuid e8c9c885-78f4-4d31-85fe-89e5f5fd4a07
key (256 INODE_ITEM 0) block 36007936 gen 33
key (257 EXTENT_DATA 0) block 36052992 gen 33
checksum verify failed on 36007936 wanted 0x00000000 found 0x86005f29
checksum verify failed on 36007936 wanted 0x00000000 found 0x86005f29
total bytes 107374182400
bytes used 38572032
uuid 90c9a46f-ae9f-4626-9aff-0cbf3e2e3a79
The respective on disk region is full of zeroes as the device was
trimmed at mkfs time.
Obviously 'btrfs check' also detects and complains about this:
$ btrfs check /dev/sdb
Opening filesystem to check...
Checking filesystem on /dev/sdb
UUID: 90c9a46f-ae9f-4626-9aff-0cbf3e2e3a79
generation: 33 (33)
[1/7] checking root items
[2/7] checking extents
checksum verify failed on 36007936 wanted 0x00000000 found 0x86005f29
checksum verify failed on 36007936 wanted 0x00000000 found 0x86005f29
checksum verify failed on 36007936 wanted 0x00000000 found 0x86005f29
bad tree block 36007936, bytenr mismatch, want=36007936, have=0
owner ref check failed [36007936 4096]
ERROR: errors found in extent allocation tree or chunk allocation
[3/7] checking free space tree
[4/7] checking fs roots
checksum verify failed on 36007936 wanted 0x00000000 found 0x86005f29
checksum verify failed on 36007936 wanted 0x00000000 found 0x86005f29
checksum verify failed on 36007936 wanted 0x00000000 found 0x86005f29
bad tree block 36007936, bytenr mismatch, want=36007936, have=0
The following tree block(s) is corrupted in tree 292:
tree block bytenr: 36110336, level: 1, node key: (256, 1, 0)
root 292 root dir 256 not found
ERROR: errors found in fs roots
found 38572032 bytes used, error(s) found
total csum bytes: 16048
total tree bytes: 1265664
total fs tree bytes: 1118208
total extent tree bytes: 65536
btree space waste bytes: 562598
file data blocks allocated: 65978368
referenced 36569088
Fix this by updating btrfs_block_can_be_shared() to consider that an
extent buffer may be shared if it matches the commit root and if its
generation matches the current transaction's generation.
This can be reproduced with the following script:
$ cat test.sh
#!/bin/bash
MNT=/mnt/sdi
DEV=/dev/sdi
# Use a filesystem with a 64K node size so that we have the same node
# size on every machine regardless of its page size (on x86_64 default
# node size is 16K due to the 4K page size, while on PPC it's 64K by
# default). This way we can make sure we are able to create a btree for
# the subvolume with a height of 2.
mkfs.btrfs -f -n 64K $DEV
mount $DEV $MNT
btrfs subvolume create $MNT/subvol
# Create a few empty files on the subvolume, this bumps its btree
# height to 2 (root node at level 1 and 2 leaves).
for ((i = 1; i <= 300; i++)); do
echo -n > $MNT/subvol/file_$i
done
btrfs subvolume snapshot -r $MNT/subvol $MNT/subvol/snap
umount $DEV
btrfs check $DEV
Running it on a 6.5 kernel (or any 6.6-rc kernel at the moment):
$ ./test.sh
Create subvolume '/mnt/sdi/subvol'
Create a readonly snapshot of '/mnt/sdi/subvol' in '/mnt/sdi/subvol/snap'
Opening filesystem to check...
Checking filesystem on /dev/sdi
UUID: bbdde2ff-7d02-45ca-8a73-3c36f23755a1
[1/7] checking root items
[2/7] checking extents
parent transid verify failed on 30539776 wanted 7 found 5
parent transid verify failed on 30539776 wanted 7 found 5
parent transid verify failed on 30539776 wanted 7 found 5
Ignoring transid failure
owner ref check failed [30539776 65536]
ERROR: errors found in extent allocation tree or chunk allocation
[3/7] checking free space tree
[4/7] checking fs roots
parent transid verify failed on 30539776 wanted 7 found 5
Ignoring transid failure
Wrong key of child node/leaf, wanted: (256, 1, 0), have: (2, 132, 0)
Wrong generation of child node/leaf, wanted: 5, have: 7
root 257 root dir 256 not found
ERROR: errors found in fs roots
found 917504 bytes used, error(s) found
total csum bytes: 0
total tree bytes: 851968
total fs tree bytes: 393216
total extent tree bytes: 65536
btree space waste bytes: 736550
file data blocks allocated: 0
referenced 0
A test case for fstests will follow soon.
Fixes: 1b53e51a4a8f ("btrfs: don't commit transaction for every subvol create")
CC: stable@vger.kernel.org # 6.5+
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
The v0 extent item has been deprecated for a long time, and we don't have
any report from the community either.
So it's time to remove the v0 extent specific error handling, and just
treat them as regular extent tree corruption.
This patch would remove the btrfs_print_v0_err() helper, and enhance the
involved error handling to treat them just as any extent tree
corruption. No reports regarding v0 extents have been seen since the
graceful handling was added in 2018.
This involves:
- btrfs_backref_add_tree_node()
This change is a little tricky, the new code is changed to only handle
BTRFS_TREE_BLOCK_REF_KEY and BTRFS_SHARED_BLOCK_REF_KEY.
But this is safe, as we have rejected any unknown inline refs through
btrfs_get_extent_inline_ref_type().
For keyed backrefs, we're safe to skip anything we don't know (that's
if it can pass tree-checker in the first place).
- btrfs_lookup_extent_info()
- lookup_inline_extent_backref()
- run_delayed_extent_op()
- __btrfs_free_extent()
- add_tree_block()
Regular error handling of unexpected extent tree item, and abort
transaction (if we have a trans handle).
- remove_extent_data_ref()
It's pretty much the same as the regular rejection of unknown backref
key.
But for this particular case, we can also remove a BUG_ON().
- extent_data_ref_count()
We can remove the BTRFS_EXTENT_REF_V0_KEY BUG_ON(), as it would be
rejected by the only caller.
- btrfs_print_leaf()
Remove the handling for BTRFS_EXTENT_REF_V0_KEY.
Signed-off-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
One of the CI runs triggered the following panic
assertion failed: PagePrivate(page) && page->private, in fs/btrfs/subpage.c:229
------------[ cut here ]------------
kernel BUG at fs/btrfs/subpage.c:229!
Internal error: Oops - BUG: 00000000f2000800 [#1] SMP
CPU: 0 PID: 923660 Comm: btrfs Not tainted 6.5.0-rc3+ #1
pstate: 61400005 (nZCv daif +PAN -UAO -TCO +DIT -SSBS BTYPE=--)
pc : btrfs_subpage_assert+0xbc/0xf0
lr : btrfs_subpage_assert+0xbc/0xf0
sp : ffff800093213720
x29: ffff800093213720 x28: ffff8000932138b4 x27: 000000000c280000
x26: 00000001b5d00000 x25: 000000000c281000 x24: 000000000c281fff
x23: 0000000000001000 x22: 0000000000000000 x21: ffffff42b95bf880
x20: ffff42b9528e0000 x19: 0000000000001000 x18: ffffffffffffffff
x17: 667274622f736620 x16: 6e69202c65746176 x15: 0000000000000028
x14: 0000000000000003 x13: 00000000002672d7 x12: 0000000000000000
x11: ffffcd3f0ccd9204 x10: ffffcd3f0554ae50 x9 : ffffcd3f0379528c
x8 : ffff800093213428 x7 : 0000000000000000 x6 : ffffcd3f091771e8
x5 : ffff42b97f333948 x4 : 0000000000000000 x3 : 0000000000000000
x2 : 0000000000000000 x1 : ffff42b9556cde80 x0 : 000000000000004f
Call trace:
btrfs_subpage_assert+0xbc/0xf0
btrfs_subpage_set_dirty+0x38/0xa0
btrfs_page_set_dirty+0x58/0x88
relocate_one_page+0x204/0x5f0
relocate_file_extent_cluster+0x11c/0x180
relocate_data_extent+0xd0/0xf8
relocate_block_group+0x3d0/0x4e8
btrfs_relocate_block_group+0x2d8/0x490
btrfs_relocate_chunk+0x54/0x1a8
btrfs_balance+0x7f4/0x1150
btrfs_ioctl+0x10f0/0x20b8
__arm64_sys_ioctl+0x120/0x11d8
invoke_syscall.constprop.0+0x80/0xd8
do_el0_svc+0x6c/0x158
el0_svc+0x50/0x1b0
el0t_64_sync_handler+0x120/0x130
el0t_64_sync+0x194/0x198
Code: 91098021 b0007fa0 91346000 97e9c6d2 (d4210000)
This is the same problem outlined in 17b17fcd6d44 ("btrfs:
set_page_extent_mapped after read_folio in btrfs_cont_expand") , and the
fix is the same. I originally looked for the same pattern elsewhere in
our code, but mistakenly skipped over this code because I saw the page
cache readahead before we set_page_extent_mapped, not realizing that
this was only in the !page case, that we can still end up with a
!uptodate page and then do the btrfs_read_folio further down.
The fix here is the same as the above mentioned patch, move the
set_page_extent_mapped call to after the btrfs_read_folio() block to
make sure that we have the subpage blocksize stuff setup properly before
using the page.
CC: stable@vger.kernel.org # 6.1+
Reviewed-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Currently find_first_extent_bit() returns a 0 if it found a range in the
given io tree and 1 if it didn't find any. There's no need to return any
errors, so make the return value a boolean and invert the logic to make
more sense: return true if it found a range and false if it didn't find
any range.
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
[BUG]
Syzbot reported a crash that an ASSERT() got triggered inside
prepare_to_merge().
[CAUSE]
The root cause of the triggered ASSERT() is we can have a race between
quota tree creation and relocation.
This leads us to create a duplicated quota tree in the
btrfs_read_fs_root() path, and since it's treated as fs tree, it would
have ROOT_SHAREABLE flag, causing us to create a reloc tree for it.
The bug itself is fixed by a dedicated patch for it, but this already
taught us the ASSERT() is not something straightforward for
developers.
[ENHANCEMENT]
Instead of using an ASSERT(), let's handle it gracefully and output
extra info about the mismatch reloc roots to help debug.
Also with the above ASSERT() removed, we can trigger ASSERT(0)s inside
merge_reloc_roots() later.
Also replace those ASSERT(0)s with WARN_ON()s.
CC: stable@vger.kernel.org # 5.15+
Reported-by: syzbot+ae97a827ae1c3336bbb4@syzkaller.appspotmail.com
Reviewed-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Both callers of btrfs_reloc_clone_csums allocate the ordered_extent that
btrfs_reloc_clone_csums operates on. Switch them to use
btrfs_alloc_ordered_extent instead of btrfs_add_ordered_extent and
pass the ordered_extent to btrfs_reloc_clone_csums instead of doing an
extra lookup.
Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
btrfs_ordered_sum::bytendr stores a logical address. Make that clear by
renaming it to ->logical.
Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Now that all extent state bit helpers effectively take the GFP_NOFS mask
(and GFP_NOWAIT is encoded in the bits) we can remove the parameter.
This reduces stack consumption in many functions and simplifies a lot of
code.
Net effect on module on a release build:
text data bss dec hex filename
1250432 20985 16088 1287505 13a551 pre/btrfs.ko
1247074 20985 16088 1284147 139833 post/btrfs.ko
DELTA: -3358
Signed-off-by: David Sterba <dsterba@suse.com>
This helper calls set_extent_bit with two more parameters set to default
values, but otherwise it's purpose is not clear.
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
[PROBLEM]
When relocation fails (mostly due to checksum mismatch), we only got
very cryptic error messages like:
BTRFS info (device dm-4): relocating block group 13631488 flags data
BTRFS warning (device dm-4): csum failed root -9 ino 257 off 0 csum 0x373e1ae3 expected csum 0x98757625 mirror 1
BTRFS error (device dm-4): bdev /dev/mapper/test-scratch1 errs: wr 0, rd 0, flush 0, corrupt 1, gen 0
BTRFS info (device dm-4): balance: ended with status: -5
The end user has to decipher the above messages and use various tools to
locate the affected files and find a way to fix the problem (mostly
deleting the file). This is not an easy work even for experienced
developer, not to mention the end users.
[SCRUB IS DOING BETTER]
By contrast, scrub is providing much better error messages:
BTRFS error (device dm-4): unable to fixup (regular) error at logical 13631488 on dev /dev/mapper/test-scratch1 physical 13631488
BTRFS warning (device dm-4): checksum error at logical 13631488 on dev /dev/mapper/test-scratch1, physical 13631488, root 5, inode 257, offset 0, length 4096, links 1 (path: file)
BTRFS info (device dm-4): scrub: finished on devid 1 with status: 0
Which provides the affected files directly to the end user.
[IMPROVEMENT]
Instead of the generic data checksum error messages, which is not doing
a good job for data reloc inodes, this patch introduce a scrub like
backref walking based solution.
When a sector fails its checksum for data reloc inode, we go the
following workflow:
- Get the real logical bytenr
For data reloc inode, the file offset is the offset inside the block
group.
Thus the real logical bytenr is @file_off + @block_group->start.
- Do an extent type check
If it's tree blocks it's much easier to handle, just go through
all the tree block backref.
- Do a backref walk and inode path resolution for data extents
This is mostly the same as scrub.
But unfortunately we can not reuse the same function as the output
format is different.
Now the new output would be more user friendly:
BTRFS info (device dm-4): relocating block group 13631488 flags data
BTRFS warning (device dm-4): csum failed root -9 ino 257 off 0 logical 13631488 csum 0x373e1ae3 expected csum 0x98757625 mirror 1
BTRFS warning (device dm-4): checksum error at logical 13631488 mirror 1 root 5 inode 257 offset 0 length 4096 links 1 (path: file)
BTRFS error (device dm-4): bdev /dev/mapper/test-scratch1 errs: wr 0, rd 0, flush 0, corrupt 2, gen 0
BTRFS info (device dm-4): balance: ended with status: -5
Reviewed-by: Anand Jain <anand.jain@oracle.com>
Signed-off-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
When using the logical to ino ioctl v2, if the flag to ignore offsets of
file extent items (BTRFS_LOGICAL_INO_ARGS_IGNORE_OFFSET) is given, the
backref walking code ends up not returning references for all file offsets
of an inode that point to the given logical bytenr. This happens since
kernel 6.2, commit 6ce6ba534418 ("btrfs: use a single argument for extent
offset in backref walking functions") because:
1) It mistakenly skipped the search for file extent items in a leaf that
point to the target extent if that flag is given. Instead it should
only skip the filtering done by check_extent_in_eb() - that is, it
should not avoid the calls to that function (or find_extent_in_eb(),
which uses it).
2) It was also not building a list of inode extent elements (struct
extent_inode_elem) if we have multiple inode references for an extent
when the ignore offset flag is given to the logical to ino ioctl - it
would leave a single element, only the last one that was found.
These stem from the confusing old interface for backref walking functions
where we had an extent item offset argument that was a pointer to a u64
and another boolean argument that indicated if the offset should be
ignored, but the pointer could be NULL. That NULL case is used by
relocation, qgroup extent accounting and fiemap, simply to avoid building
the inode extent list for each reference, as it's not necessary for those
use cases and therefore avoids memory allocations and some computations.
Fix this by adding a boolean argument to the backref walk context
structure to indicate that the inode extent list should not be built,
make relocation set that argument to true and fix the backref walking
logic to skip the calls to check_extent_in_eb() and find_extent_in_eb()
only if this new argument is true, instead of 'ignore_extent_item_pos'
being true.
A test case for fstests will be added soon, to provide cover not only
for these cases but to the logical to ino ioctl in general as well, as
currently we do not have a test case for it.
Reported-by: Vladimir Panteleev <git@vladimir.panteleev.md>
Link: https://lore.kernel.org/linux-btrfs/CAHhfkvwo=nmzrJSqZ2qMfF-rZB-ab6ahHnCD_sq9h4o8v+M7QQ@mail.gmail.com/
Fixes: 6ce6ba534418 ("btrfs: use a single argument for extent offset in backref walking functions")
CC: stable@vger.kernel.org # 6.2+
Tested-by: Vladimir Panteleev <git@vladimir.panteleev.md>
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
btrfs_bin_search() is a simple wrapper that searches for the whole slots
by calling btrfs_generic_bin_search() with the starting slot/first_slot
preset to 0.
This simple wrapper can be open coded as btrfs_bin_search().
Signed-off-by: Anand Jain <anand.jain@oracle.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
The header file linux/mm.h provides PAGE_ALIGN, PAGE_ALIGNED,
PAGE_ALIGN_DOWN macros. Use these macros to make code more
concise.
Signed-off-by: Yushan Zhou <katrinzhou@tencent.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
The code used by btrfs_submit_bio only interacts with the rest of
volumes.c through __btrfs_map_block (which itself is a more generic
version of two exported helpers) and does not really have anything
to do with volumes.c. Create a new bio.c file and a bio.h header
going along with it for the btrfs_bio-based storage layer, which
will grow even more going forward.
Also update the file with my copyright notice given that a large
part of the moved code was written or rewritten by me.
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Although we have an existing function, btrfs_lookup_csums_range(), to
find all data checksums for a range, it's based on a btrfs_ordered_sum
list.
For the incoming RAID56 data checksum verification at RMW time, we don't
want to waste time by allocating temporary memory.
So this patch will introduce a new helper, btrfs_lookup_csums_bitmap().
It will use bitmap based result, which will be a perfect fit for later
RAID56 usage.
Signed-off-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
There are several different tree block parentness check parameters used
across several helpers:
- level
Mandatory
- transid
Under most cases it's mandatory, but there are several backref cases
which skips this check.
- owner_root
- first_key
Utilized by most top-down tree search routine. Otherwise can be
skipped.
Those four members are not always mandatory checks, and some of them are
the same u64, which means if some arguments got swapped compiler will
not catch it.
Furthermore if we're going to further expand the parentness check, we
need to modify quite some helpers just to add one more parameter.
This patch will concentrate all these members into a structure called
btrfs_tree_parent_check, and pass that structure for the following
helpers:
- btrfs_read_extent_buffer()
- read_tree_block()
Signed-off-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
The function is for internal interfaces so we should use the
btrfs_inode.
Reviewed-by: Anand Jain <anand.jain@oracle.com>
Signed-off-by: David Sterba <dsterba@suse.com>
All callers except one pass NULL, so the parameter can be dropped and
the inode::io_tree initialization can be open coded.
Reviewed-by: Anand Jain <anand.jain@oracle.com>
Signed-off-by: David Sterba <dsterba@suse.com>
The function is for internal interfaces so we should use the
btrfs_inode.
Reviewed-by: Anand Jain <anand.jain@oracle.com>
Signed-off-by: David Sterba <dsterba@suse.com>
The function is for internal interfaces so we should use the
btrfs_inode.
Reviewed-by: Anand Jain <anand.jain@oracle.com>
Signed-off-by: David Sterba <dsterba@suse.com>
The public backref walking functions have quite a lot of arguments that
are passed down the call stack to find_parent_nodes(), the core function
of the backref walking code.
The next patches in series will need to add even arguments to these
functions that should be passed not only to find_parent_nodes(), but also
to other functions used by the later (directly or even lower in the call
stack).
So create a structure to hold all these arguments and state used by the
main backref walking function, find_parent_nodes(), and use it as the
argument for the public backref walking functions iterate_extent_inodes(),
btrfs_find_all_leafs() and btrfs_find_all_roots().
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
The interface for find_parent_nodes() has two extent offset related
arguments:
1) One u64 pointer argument for the extent offset;
2) One boolean argument to tell if the extent offset should be ignored or
not.
These are confusing, becase the extent offset pointer can be NULL and in
some cases callers pass a NULL value as a way to tell the backref walking
code to ignore offsets in file extent items (and simply consider all file
extent items that point to the target data extent).
The boolean argument was added in commit c995ab3cda3f ("btrfs: add a flag
to iterate_inodes_from_logical to find all extent refs for uncompressed
extents"), but it was never really necessary, it was enough if it could
find a way to get a NULL value passed to the "extent_item_pos" argument of
find_parent_nodes(). The arguments are also passed to functions called
by find_parent_nodes() and respective helper functions, which further
makes everything more complicated than needed.
Then we have several backref walking related functions that end up calling
find_parent_nodes(), either directly or through some other function that
they call, and for many we have to use an "extent_item_pos" (u64) argument
and a boolean "ignore_offset" argument too.
This is confusing and not really necessary. So use a single argument to
specify the extent offset, as a simple u64 and not as a pointer, but
using a special value of (u64)-1, defined as a documented constant, to
indicate when the extent offset should be ignored.
This is also preparation work for the upcoming patches in the series that
add other arguments to find_parent_nodes() and other related functions
that use it.
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
This will make syncing fs.h to user space a little easier if we can pull
the super block specific helpers out of fs.h and put them in super.h.
Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Move these out of ctree.h into relocation.h to cut down on code in
ctree.h
Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Move these prototypes out of ctree.h and into file-item.h.
Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Move all the root-tree.c prototypes to root-tree.h, and then update all
the necessary files to include the new header.
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Move all the extent tree related prototypes to extent-tree.h out of
ctree.h, and then go include it everywhere needed so everything
compiles.
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
There's only one caller that passes GFP_NOFS, we can drop the parameter
an use the flags directly.
Reviewed-by: Anand Jain <anand.jain@oracle.com>
Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Signed-off-by: David Sterba <dsterba@suse.com>
This is a large patch, but because they're all macros it's impossible to
split up. Simply copy all of the item accessors in ctree.h and paste
them in accessors.h, and then update any files to include the header so
everything compiles.
Reviewed-by: Anand Jain <anand.jain@oracle.com>
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
[ reformat comments, style fixups ]
Signed-off-by: David Sterba <dsterba@suse.com>
We have several fs wide related helpers in ctree.h. The bulk of these
are the incompat flag test helpers, but there are things such as
btrfs_fs_closing() and the read only helpers that also aren't directly
related to the ctree code. Move these into a fs.h header, which will
serve as the location for file system wide related helpers.
Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Reviewed-by: Anand Jain <anand.jain@oracle.com>
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
This code is used in space-info.c, move the definitions to space-info.h.
Reviewed-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
All of the relocation code avoids using the cached state, despite
everywhere using the normal
lock_extent()
// do something
unlock_extent()
pattern. Fix this by plumbing a cached state throughout all of these
functions in order to allow for less tree searches.
Reviewed-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
With nowait becoming more pervasive throughout our codebase go ahead and
add a cached_state to try_lock_extent(). This allows us to be faster
about clearing the locked area if we have contention, and then gives us
the same optimization for unlock if we are able to lock the range.
Reviewed-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
We have several places that need to drop all the extent maps in a given
file range and then add a new extent map for that range. Currently they
call btrfs_drop_extent_map_range() to delete all extent maps in the range
and then keep trying to add the new extent map in a loop that keeps
retrying while the insertion of the new extent map fails with -EEXIST.
So instead of repeating this logic, add a helper to extent_map.c that
does these steps and name it btrfs_replace_extent_map_range(). Also add
a comment about why the retry loop is necessary.
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
The function btrfs_drop_extent_cache() doesn't really belong at file.c
because what it does is drop a range of extent maps for a file range.
It directly allocates and manipulates extent maps, by dropping,
splitting and replacing them in an extent map tree, so it should be
located at extent_map.c, where all manipulations of an extent map tree
and its extent maps are supposed to be done.
So move it out of file.c and into extent_map.c. Additionally do the
following changes:
1) Rename it into btrfs_drop_extent_map_range(), as this makes it more
clear about what it does. The term "cache" is a bit confusing as it's
not widely used, "extent maps" or "extent mapping" is much more common;
2) Change its 'skip_pinned' argument from int to bool;
3) Turn several of its local variables from int to bool, since they are
used as booleans;
4) Move the declaration of some variables out of the function's main
scope and into the scopes where they are used;
5) Remove pointless assignment of false to 'modified' early in the while
loop, as later that variable is set and it's not used before that
second assignment;
6) Remove checks for NULL before calling free_extent_map().
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
If we have NOWAIT specified on our IOCB and we're writing into a
PREALLOC or NOCOW extent then we need to be able to tell
can_nocow_extent that we don't want to wait on any locks or metadata IO.
Fix can_nocow_extent to allow for NOWAIT.
Reviewed-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: Stefan Roesch <shr@fb.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
We have two variants of lock/unlock extent, one set that takes a cached
state, another that does not. This is slightly annoying, and generally
speaking there are only a few places where we don't have a cached state.
Simplify this by making lock_extent/unlock_extent the only variant and
make it take a cached state, then convert all the callers appropriately.
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
We have been hitting the following lockdep splat with btrfs/187 recently
WARNING: possible circular locking dependency detected
5.19.0-rc8+ #775 Not tainted
------------------------------------------------------
btrfs/752500 is trying to acquire lock:
ffff97e1875a97b8 (btrfs-treloc-02#2){+.+.}-{3:3}, at: __btrfs_tree_lock+0x24/0x110
but task is already holding lock:
ffff97e1875a9278 (btrfs-tree-01/1){+.+.}-{3:3}, at: __btrfs_tree_lock+0x24/0x110
which lock already depends on the new lock.
the existing dependency chain (in reverse order) is:
-> #2 (btrfs-tree-01/1){+.+.}-{3:3}:
down_write_nested+0x41/0x80
__btrfs_tree_lock+0x24/0x110
btrfs_init_new_buffer+0x7d/0x2c0
btrfs_alloc_tree_block+0x120/0x3b0
__btrfs_cow_block+0x136/0x600
btrfs_cow_block+0x10b/0x230
btrfs_search_slot+0x53b/0xb70
btrfs_lookup_inode+0x2a/0xa0
__btrfs_update_delayed_inode+0x5f/0x280
btrfs_async_run_delayed_root+0x24c/0x290
btrfs_work_helper+0xf2/0x3e0
process_one_work+0x271/0x590
worker_thread+0x52/0x3b0
kthread+0xf0/0x120
ret_from_fork+0x1f/0x30
-> #1 (btrfs-tree-01){++++}-{3:3}:
down_write_nested+0x41/0x80
__btrfs_tree_lock+0x24/0x110
btrfs_search_slot+0x3c3/0xb70
do_relocation+0x10c/0x6b0
relocate_tree_blocks+0x317/0x6d0
relocate_block_group+0x1f1/0x560
btrfs_relocate_block_group+0x23e/0x400
btrfs_relocate_chunk+0x4c/0x140
btrfs_balance+0x755/0xe40
btrfs_ioctl+0x1ea2/0x2c90
__x64_sys_ioctl+0x88/0xc0
do_syscall_64+0x38/0x90
entry_SYSCALL_64_after_hwframe+0x63/0xcd
-> #0 (btrfs-treloc-02#2){+.+.}-{3:3}:
__lock_acquire+0x1122/0x1e10
lock_acquire+0xc2/0x2d0
down_write_nested+0x41/0x80
__btrfs_tree_lock+0x24/0x110
btrfs_lock_root_node+0x31/0x50
btrfs_search_slot+0x1cb/0xb70
replace_path+0x541/0x9f0
merge_reloc_root+0x1d6/0x610
merge_reloc_roots+0xe2/0x260
relocate_block_group+0x2c8/0x560
btrfs_relocate_block_group+0x23e/0x400
btrfs_relocate_chunk+0x4c/0x140
btrfs_balance+0x755/0xe40
btrfs_ioctl+0x1ea2/0x2c90
__x64_sys_ioctl+0x88/0xc0
do_syscall_64+0x38/0x90
entry_SYSCALL_64_after_hwframe+0x63/0xcd
other info that might help us debug this:
Chain exists of:
btrfs-treloc-02#2 --> btrfs-tree-01 --> btrfs-tree-01/1
Possible unsafe locking scenario:
CPU0 CPU1
---- ----
lock(btrfs-tree-01/1);
lock(btrfs-tree-01);
lock(btrfs-tree-01/1);
lock(btrfs-treloc-02#2);
*** DEADLOCK ***
7 locks held by btrfs/752500:
#0: ffff97e292fdf460 (sb_writers#12){.+.+}-{0:0}, at: btrfs_ioctl+0x208/0x2c90
#1: ffff97e284c02050 (&fs_info->reclaim_bgs_lock){+.+.}-{3:3}, at: btrfs_balance+0x55f/0xe40
#2: ffff97e284c00878 (&fs_info->cleaner_mutex){+.+.}-{3:3}, at: btrfs_relocate_block_group+0x236/0x400
#3: ffff97e292fdf650 (sb_internal#2){.+.+}-{0:0}, at: merge_reloc_root+0xef/0x610
#4: ffff97e284c02378 (btrfs_trans_num_writers){++++}-{0:0}, at: join_transaction+0x1a8/0x5a0
#5: ffff97e284c023a0 (btrfs_trans_num_extwriters){++++}-{0:0}, at: join_transaction+0x1a8/0x5a0
#6: ffff97e1875a9278 (btrfs-tree-01/1){+.+.}-{3:3}, at: __btrfs_tree_lock+0x24/0x110
stack backtrace:
CPU: 1 PID: 752500 Comm: btrfs Not tainted 5.19.0-rc8+ #775
Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS 1.13.0-2.fc32 04/01/2014
Call Trace:
dump_stack_lvl+0x56/0x73
check_noncircular+0xd6/0x100
? lock_is_held_type+0xe2/0x140
__lock_acquire+0x1122/0x1e10
lock_acquire+0xc2/0x2d0
? __btrfs_tree_lock+0x24/0x110
down_write_nested+0x41/0x80
? __btrfs_tree_lock+0x24/0x110
__btrfs_tree_lock+0x24/0x110
btrfs_lock_root_node+0x31/0x50
btrfs_search_slot+0x1cb/0xb70
? lock_release+0x137/0x2d0
? _raw_spin_unlock+0x29/0x50
? release_extent_buffer+0x128/0x180
replace_path+0x541/0x9f0
merge_reloc_root+0x1d6/0x610
merge_reloc_roots+0xe2/0x260
relocate_block_group+0x2c8/0x560
btrfs_relocate_block_group+0x23e/0x400
btrfs_relocate_chunk+0x4c/0x140
btrfs_balance+0x755/0xe40
btrfs_ioctl+0x1ea2/0x2c90
? lock_is_held_type+0xe2/0x140
? lock_is_held_type+0xe2/0x140
? __x64_sys_ioctl+0x88/0xc0
__x64_sys_ioctl+0x88/0xc0
do_syscall_64+0x38/0x90
entry_SYSCALL_64_after_hwframe+0x63/0xcd
This isn't necessarily new, it's just tricky to hit in practice. There
are two competing things going on here. With relocation we create a
snapshot of every fs tree with a reloc tree. Any extent buffers that
get initialized here are initialized with the reloc root lockdep key.
However since it is a snapshot, any blocks that are currently in cache
that originally belonged to the fs tree will have the normal tree
lockdep key set. This creates the lock dependency of
reloc tree -> normal tree
for the extent buffer locking during the first phase of the relocation
as we walk down the reloc root to relocate blocks.
However this is problematic because the final phase of the relocation is
merging the reloc root into the original fs root. This involves
searching down to any keys that exist in the original fs root and then
swapping the relocated block and the original fs root block. We have to
search down to the fs root first, and then go search the reloc root for
the block we need to replace. This creates the dependency of
normal tree -> reloc tree
which is why lockdep complains.
Additionally even if we were to fix this particular mismatch with a
different nesting for the merge case, we're still slotting in a block
that has a owner of the reloc root objectid into a normal tree, so that
block will have its lockdep key set to the tree reloc root, and create a
lockdep splat later on when we wander into that block from the fs root.
Unfortunately the only solution here is to make sure we do not set the
lockdep key to the reloc tree lockdep key normally, and then reset any
blocks we wander into from the reloc root when we're doing the merged.
This solves the problem of having mixed tree reloc keys intermixed with
normal tree keys, and then allows us to make sure in the merge case we
maintain the lock order of
normal tree -> reloc tree
We handle this by setting a bit on the reloc root when we do the search
for the block we want to relocate, and any block we search into or COW
at that point gets set to the reloc tree key. This works correctly
because we only ever COW down to the parent node, so we aren't resetting
the key for the block we're linking into the fs root.
With this patch we no longer have the lockdep splat in btrfs/187.
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
In btrfs_relocate_block_group(), the rc is allocated. Then
btrfs_relocate_block_group() calls
relocate_block_group()
prepare_to_relocate()
set_reloc_control()
that assigns rc to the variable fs_info->reloc_ctl. When
prepare_to_relocate() returns, it calls
btrfs_commit_transaction()
btrfs_start_dirty_block_groups()
btrfs_alloc_path()
kmem_cache_zalloc()
which may fail for example (or other errors could happen). When the
failure occurs, btrfs_relocate_block_group() detects the error and frees
rc and doesn't set fs_info->reloc_ctl to NULL. After that, in
btrfs_init_reloc_root(), rc is retrieved from fs_info->reloc_ctl and
then used, which may cause a use-after-free bug.
This possible bug can be triggered by calling btrfs_ioctl_balance()
before calling btrfs_ioctl_defrag().
To fix this possible bug, in prepare_to_relocate(), check if
btrfs_commit_transaction() fails. If the failure occurs,
unset_reloc_control() is called to set fs_info->reloc_ctl to NULL.
The error log in our fault-injection testing is shown as follows:
[ 58.751070] BUG: KASAN: use-after-free in btrfs_init_reloc_root+0x7ca/0x920 [btrfs]
...
[ 58.753577] Call Trace:
...
[ 58.755800] kasan_report+0x45/0x60
[ 58.756066] btrfs_init_reloc_root+0x7ca/0x920 [btrfs]
[ 58.757304] record_root_in_trans+0x792/0xa10 [btrfs]
[ 58.757748] btrfs_record_root_in_trans+0x463/0x4f0 [btrfs]
[ 58.758231] start_transaction+0x896/0x2950 [btrfs]
[ 58.758661] btrfs_defrag_root+0x250/0xc00 [btrfs]
[ 58.759083] btrfs_ioctl_defrag+0x467/0xa00 [btrfs]
[ 58.759513] btrfs_ioctl+0x3c95/0x114e0 [btrfs]
...
[ 58.768510] Allocated by task 23683:
[ 58.768777] ____kasan_kmalloc+0xb5/0xf0
[ 58.769069] __kmalloc+0x227/0x3d0
[ 58.769325] alloc_reloc_control+0x10a/0x3d0 [btrfs]
[ 58.769755] btrfs_relocate_block_group+0x7aa/0x1e20 [btrfs]
[ 58.770228] btrfs_relocate_chunk+0xf1/0x760 [btrfs]
[ 58.770655] __btrfs_balance+0x1326/0x1f10 [btrfs]
[ 58.771071] btrfs_balance+0x3150/0x3d30 [btrfs]
[ 58.771472] btrfs_ioctl_balance+0xd84/0x1410 [btrfs]
[ 58.771902] btrfs_ioctl+0x4caa/0x114e0 [btrfs]
...
[ 58.773337] Freed by task 23683:
...
[ 58.774815] kfree+0xda/0x2b0
[ 58.775038] free_reloc_control+0x1d6/0x220 [btrfs]
[ 58.775465] btrfs_relocate_block_group+0x115c/0x1e20 [btrfs]
[ 58.775944] btrfs_relocate_chunk+0xf1/0x760 [btrfs]
[ 58.776369] __btrfs_balance+0x1326/0x1f10 [btrfs]
[ 58.776784] btrfs_balance+0x3150/0x3d30 [btrfs]
[ 58.777185] btrfs_ioctl_balance+0xd84/0x1410 [btrfs]
[ 58.777621] btrfs_ioctl+0x4caa/0x114e0 [btrfs]
...
Reported-by: TOTE Robot <oslab@tsinghua.edu.cn>
CC: stable@vger.kernel.org # 5.15+
Reviewed-by: Sweet Tea Dorminy <sweettea-kernel@dorminy.me>
Reviewed-by: Nikolay Borisov <nborisov@suse.com>
Signed-off-by: Zixuan Fu <r33s3n6@gmail.com>
Signed-off-by: David Sterba <dsterba@suse.com>
- Appoint myself page cache maintainer
- Fix how scsicam uses the page cache
- Use the memalloc_nofs_save() API to replace AOP_FLAG_NOFS
- Remove the AOP flags entirely
- Remove pagecache_write_begin() and pagecache_write_end()
- Documentation updates
- Convert several address_space operations to use folios:
- is_dirty_writeback
- readpage becomes read_folio
- releasepage becomes release_folio
- freepage becomes free_folio
- Change filler_t to require a struct file pointer be the first argument
like ->read_folio
-----BEGIN PGP SIGNATURE-----
iQEzBAABCgAdFiEEejHryeLBw/spnjHrDpNsjXcpgj4FAmKNMDUACgkQDpNsjXcp
gj4/mwf/bpHhXH4ZoNIvtUpTF6rZbqeffmc0VrbxCZDZ6igRnRPglxZ9H9v6L53O
7B0FBQIfxgNKHZpdqGdOkv8cjg/GMe/HJUbEy5wOakYPo4L9fZpHbDZ9HM2Eankj
xBqLIBgBJ7doKr+Y62DAN19TVD8jfRfVtli5mqXJoNKf65J7BkxljoTH1L3EXD9d
nhLAgyQjR67JQrT/39KMW+17GqLhGefLQ4YnAMONtB6TVwX/lZmigKpzVaCi4r26
bnk5vaR/3PdjtNxIoYvxdc71y2Eg05n2jEq9Wcy1AaDv/5vbyZUlZ2aBSaIVbtKX
WfrhN9O3L0bU5qS7p9PoyfLc9wpq8A==
=djLv
-----END PGP SIGNATURE-----
Merge tag 'folio-5.19' of git://git.infradead.org/users/willy/pagecache
Pull page cache updates from Matthew Wilcox:
- Appoint myself page cache maintainer
- Fix how scsicam uses the page cache
- Use the memalloc_nofs_save() API to replace AOP_FLAG_NOFS
- Remove the AOP flags entirely
- Remove pagecache_write_begin() and pagecache_write_end()
- Documentation updates
- Convert several address_space operations to use folios:
- is_dirty_writeback
- readpage becomes read_folio
- releasepage becomes release_folio
- freepage becomes free_folio
- Change filler_t to require a struct file pointer be the first
argument like ->read_folio
* tag 'folio-5.19' of git://git.infradead.org/users/willy/pagecache: (107 commits)
nilfs2: Fix some kernel-doc comments
Appoint myself page cache maintainer
fs: Remove aops->freepage
secretmem: Convert to free_folio
nfs: Convert to free_folio
orangefs: Convert to free_folio
fs: Add free_folio address space operation
fs: Convert drop_buffers() to use a folio
fs: Change try_to_free_buffers() to take a folio
jbd2: Convert release_buffer_page() to use a folio
jbd2: Convert jbd2_journal_try_to_free_buffers to take a folio
reiserfs: Convert release_buffer_page() to use a folio
fs: Remove last vestiges of releasepage
ubifs: Convert to release_folio
reiserfs: Convert to release_folio
orangefs: Convert to release_folio
ocfs2: Convert to release_folio
nilfs2: Remove comment about releasepage
nfs: Convert to release_folio
jfs: Convert to release_folio
...
iput() already handles NULL and non-NULL parameter, so it is not needed
to check that. This unifies all iput calls.
Reported-by: Zeal Robot <zealci@zte.com.cn>
Signed-off-by: Lv Ruyi <lv.ruyi@zte.com.cn>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Explicit type casts are not necessary when it's void* to another pointer
type.
Signed-off-by: Yu Zhe <yuzhe@nfschina.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Relocation of a data block group creates ordered extents. They can cause
a hang when a process is trying to thaw the filesystem.
We should have called sb_start_write(), so the filesystem is not being
frozen. Add an ASSERT to check it is protected.
Reviewed-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: Naohiro Aota <naohiro.aota@wdc.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
When doing a NOWAIT direct IO write, if we can NOCOW then it means we can
proceed with the non-blocking, NOWAIT path. However reserving the metadata
space and qgroup meta space can often result in blocking - flushing
delalloc, wait for ordered extents to complete, trigger transaction
commits, etc, going against the semantics of a NOWAIT write.
So make the NOWAIT write path to try to reserve all the metadata it needs
without resulting in a blocking behaviour - if we get -ENOSPC or -EDQUOT
then return -EAGAIN to make the caller fallback to a blocking direct IO
write.
This is part of a patchset comprised of the following patches:
btrfs: avoid blocking on page locks with nowait dio on compressed range
btrfs: avoid blocking nowait dio when locking file range
btrfs: avoid double nocow check when doing nowait dio writes
btrfs: stop allocating a path when checking if cross reference exists
btrfs: free path at can_nocow_extent() before checking for checksum items
btrfs: release path earlier at can_nocow_extent()
btrfs: avoid blocking when allocating context for nowait dio read/write
btrfs: avoid blocking on space revervation when doing nowait dio writes
The following test was run before and after applying this patchset:
$ cat io-uring-nodatacow-test.sh
#!/bin/bash
DEV=/dev/sdc
MNT=/mnt/sdc
MOUNT_OPTIONS="-o ssd -o nodatacow"
MKFS_OPTIONS="-R free-space-tree -O no-holes"
NUM_JOBS=4
FILE_SIZE=8G
RUN_TIME=300
cat <<EOF > /tmp/fio-job.ini
[io_uring_rw]
rw=randrw
fsync=0
fallocate=posix
group_reporting=1
direct=1
ioengine=io_uring
iodepth=64
bssplit=4k/20:8k/20:16k/20:32k/10:64k/10:128k/5:256k/5:512k/5:1m/5
filesize=$FILE_SIZE
runtime=$RUN_TIME
time_based
filename=foobar
directory=$MNT
numjobs=$NUM_JOBS
thread
EOF
echo performance | \
tee /sys/devices/system/cpu/cpu*/cpufreq/scaling_governor
umount $MNT &> /dev/null
mkfs.btrfs -f $MKFS_OPTIONS $DEV &> /dev/null
mount $MOUNT_OPTIONS $DEV $MNT
fio /tmp/fio-job.ini
umount $MNT
The test was run a 12 cores box with 64G of ram, using a non-debug kernel
config (Debian's default config) and a spinning disk.
Result before the patchset:
READ: bw=407MiB/s (427MB/s), 407MiB/s-407MiB/s (427MB/s-427MB/s), io=119GiB (128GB), run=300175-300175msec
WRITE: bw=407MiB/s (427MB/s), 407MiB/s-407MiB/s (427MB/s-427MB/s), io=119GiB (128GB), run=300175-300175msec
Result after the patchset:
READ: bw=436MiB/s (457MB/s), 436MiB/s-436MiB/s (457MB/s-457MB/s), io=128GiB (137GB), run=300044-300044msec
WRITE: bw=435MiB/s (456MB/s), 435MiB/s-435MiB/s (456MB/s-456MB/s), io=128GiB (137GB), run=300044-300044msec
That's about +7.2% throughput for reads and +6.9% for writes.
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
This is a "weak" conversion which converts straight back to using pages.
A full conversion should be performed at some point, hopefully by
someone familiar with the filesystem.
Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org>
Removes a couple of calls to compound_head and saves a few bytes.
Also convert verity's read_file_data_page() to be folio-based.
Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org>
Reviewed-by: Christoph Hellwig <hch@lst.de>
We had an error handling pattern for read_tree_block() like this:
eb = read_tree_block();
if (IS_ERR(eb)) {
/*
* Handling error here
* Normally ended up with return or goto out.
*/
} else if (!extent_buffer_uptodate(eb)) {
/*
* Different error handling here
* Normally also ended up with return or goto out;
*/
}
This is fine, but if we want to add extra check for each
read_tree_block(), the existing if-else-if is not that expandable and
will take reader some seconds to figure out there is no extra branch.
Here we change it to a more common way, without the extra else:
eb = read_tree_block();
if (IS_ERR(eb)) {
/*
* Handling error here
*/
return eb or goto out;
}
if (!extent_buffer_uptodate(eb)) {
/*
* Different error handling here
*/
return eb or goto out;
}
This also removes some oddball call sites which uses some creative way
to check error.
Signed-off-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
We don't need a root here, we just need the btrfs_fs_info, we can just
get the specific roots we need from fs_info.
Reviewed-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Currently, we always reserve the same extent size in the file and extent
size on disk for delalloc because the former is the worst case for the
latter. For BTRFS_IOC_ENCODED_WRITE writes, we know the exact size of
the extent on disk, which may be less than or greater than (for
bookends) the size in the file. Add a disk_num_bytes parameter to
btrfs_delalloc_reserve_metadata() so that we can reserve the correct
amount of csum bytes. No functional change.
Reviewed-by: Nikolay Borisov <nborisov@suse.com>
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: Omar Sandoval <osandov@fb.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>