IF YOU WOULD LIKE TO GET AN ACCOUNT, please write an
email to Administrator. User accounts are meant only to access repo
and report issues and/or generate pull requests.
This is a purpose-specific Git hosting for
BaseALT
projects. Thank you for your understanding!
Только зарегистрированные пользователи имеют доступ к сервису!
Для получения аккаунта, обратитесь к администратору.
commit 8d2ad999ca3c64cb08cf6a58d227b9d9e746d708 upstream.
The CXL subsystem, at cxl_mem ->probe() time, establishes a lineage of
ports (struct cxl_port objects) between an endpoint and the root of a
CXL topology. Each port including the endpoint port is attached to the
cxl_port driver.
Given that setup, it follows that when either any port in that lineage
goes through a cxl_port ->remove() event, or the memdev goes through a
cxl_mem ->remove() event. The hierarchy below the removed port, or the
entire hierarchy if the memdev is removed needs to come down.
The delete_endpoint() callback is careful to check whether it is being
called to tear down the hierarchy, or if it is only being called to
teardown the memdev because an ancestor port is going through
->remove().
That care needs to take the device_lock() of the endpoint's parent.
Which requires 2 bugs to be fixed:
1/ A reference on the parent is needed to prevent use-after-free
scenarios like this signature:
BUG: spinlock bad magic on CPU#0, kworker/u56:0/11
Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS edk2-20230524-3.fc38 05/24/2023
Workqueue: cxl_port detach_memdev [cxl_core]
RIP: 0010:spin_bug+0x65/0xa0
Call Trace:
do_raw_spin_lock+0x69/0xa0
__mutex_lock+0x695/0xb80
delete_endpoint+0xad/0x150 [cxl_core]
devres_release_all+0xb8/0x110
device_unbind_cleanup+0xe/0x70
device_release_driver_internal+0x1d2/0x210
detach_memdev+0x15/0x20 [cxl_core]
process_one_work+0x1e3/0x4c0
worker_thread+0x1dd/0x3d0
2/ In the case of RCH topologies, the parent device that needs to be
locked is not always @port->dev as returned by cxl_mem_find_port(), use
endpoint->dev.parent instead.
Fixes: 8dd2bc0f8e02 ("cxl/mem: Add the cxl_mem driver")
Cc: <stable@vger.kernel.org>
Reported-by: Robert Richter <rrichter@amd.com>
Closes: http://lore.kernel.org/r/20231018171713.1883517-2-rrichter@amd.com
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 98a04c7aced2b43b3ac4befe216c4eecc7257d4b upstream.
Root decoder granularity must match value from CFWMS, which may not
be the region's granularity for non-interleaved root decoders.
So when calculating granularities for host bridge decoders, use the
region's granularity instead of the root decoder's granularity to ensure
the correct granularities are set for the host bridge decoders and any
downstream switch decoders.
Test configuration is 1 host bridge * 2 switches * 2 endpoints per switch.
Region created with 2048 granularity using following command line:
cxl create-region -m -d decoder0.0 -w 4 mem0 mem2 mem1 mem3 \
-g 2048 -s 2048M
Use "cxl list -PDE | grep granularity" to get a view of the granularity
set at each level of the topology.
Before this patch:
"interleave_granularity":2048,
"interleave_granularity":2048,
"interleave_granularity":512,
"interleave_granularity":2048,
"interleave_granularity":2048,
"interleave_granularity":512,
"interleave_granularity":256,
After:
"interleave_granularity":2048,
"interleave_granularity":2048,
"interleave_granularity":4096,
"interleave_granularity":2048,
"interleave_granularity":2048,
"interleave_granularity":4096,
"interleave_granularity":2048,
Fixes: 27b3f8d13830 ("cxl/region: Program target lists")
Cc: <stable@vger.kernel.org>
Signed-off-by: Jim Harris <jim.harris@samsung.com>
Link: https://lore.kernel.org/r/169824893473.1403938.16110924262989774582.stgit@bgt-140510-bm03.eng.stellus.in
[djbw: fixup the prebuilt cxl_test region]
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 0718588c7aaa7a1510b4de972370535b61dddd0d upstream.
Commit 5e42bcbc3fef ("cxl/region: decrement ->nr_targets on error in
cxl_region_attach()") tried to avoid 'eiw' initialization errors when
->nr_targets exceeded 16, by just decrementing ->nr_targets when
cxl_region_setup_targets() failed.
Commit 86987c766276 ("cxl/region: Cleanup target list on attach error")
extended that cleanup to also clear cxled->pos and p->targets[pos]. The
initialization error was incidentally fixed separately by:
Commit 8d4285425714 ("cxl/region: Fix port setup uninitialized variable
warnings") which was merged a few days after 5e42bcbc3fef.
But now the original cleanup when cxl_region_setup_targets() fails
prevents endpoint and switch decoder resources from being reused:
1) the cleanup does not set the decoder's region to NULL, which results
in future dpa_size_store() calls returning -EBUSY
2) the decoder is not properly freed, which results in future commit
errors associated with the upstream switch
Now that the initialization errors were fixed separately, the proper
cleanup for this case is to just return immediately. Then the resources
associated with this target get cleanup up as normal when the failed
region is deleted.
The ->nr_targets decrement in the error case also helped prevent
a p->targets[] array overflow, so add a new check to prevent against
that overflow.
Tested by trying to create an invalid region for a 2 switch * 2 endpoint
topology, and then following up with creating a valid region.
Fixes: 5e42bcbc3fef ("cxl/region: decrement ->nr_targets on error in cxl_region_attach()")
Cc: <stable@vger.kernel.org>
Signed-off-by: Jim Harris <jim.harris@samsung.com>
Reviewed-by: Jonathan Cameron <Jonathan.Cameron@huawei.com>
Acked-by: Dan Carpenter <dan.carpenter@linaro.org>
Reviewed-by: Dave Jiang <dave.jiang@intel.com>
Link: https://lore.kernel.org/r/169703589120.1202031.14696100866518083806.stgit@bgt-140510-bm03.eng.stellus.in
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
[ Upstream commit 5d09c63f11f083707b60c8ea0bb420651c47740f ]
Dan reports that cxl_decoder_commit() potentially leaks a hold of
cxl_dpa_rwsem. The potential error case is a "should not" happen
scenario, turn it into a "can not" happen scenario by adding the error
check to cxl_port_setup_targets() where other setting validation occurs.
Reported-by: Dan Carpenter <dan.carpenter@linaro.org>
Closes: http://lore.kernel.org/r/63295673-5d63-4919-b851-3b06d48734c0@moroto.mountain
Reviewed-by: Dave Jiang <dave.jiang@intel.com>
Reviewed-by: Ira Weiny <ira.weiny@intel.com>
Fixes: 176baefb2eb5 ("cxl/hdm: Commit decoder state to hardware")
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit 33d9c987bf8fb68a9292aba7cc4b1711fcb1be4d ]
commit 5d2ffbe4b81a ("cxl/port: Store the downstream port's Component Register mappings in struct cxl_dport")
...moved the dport component registers from a raw component_reg_phys
passed in at dport instantiation time to a 'struct cxl_register_map'
populated with both the component register data *and* the "host" device
for mapping operations.
While typical CXL switch dports are mapped by their associated 'struct
cxl_port', an RCH host bridge dport registered by cxl_acpi needs to wait
until the cxl_mem driver makes the attachment to map the registers. This
is because there are no intervening 'struct cxl_port' instances between
the root cxl_port and the endpoint port in an RCH topology.
For now just mark the host as NULL in the RCH dport case until code that
needs to map the dport registers arrives.
This patch is not flagged for -stable since nothing in the current
driver uses the dport->comp_map.
Now, I am slightly uneasy that cxl_setup_comp_regs() sets map->host to a
wrong value and then cxl_dport_setup_regs() fixes it up, but the
alternatives I came up with are more messy. For example, adding an
@logdev to 'struct cxl_register_map' that the dev_printk()s can fall
back to when @host is NULL. I settled on "post-fixup+comment" since it
is only RCH dports that have this special case where register probing is
split between a host-bridge RCRB lookup and when cxl_mem_probe() does
the association of the cxl_memdev and endpoint port.
[moved rename of @comp_map to @reg_map into next patch]
Fixes: 5d2ffbe4b81a ("cxl/port: Store the downstream port's Component Register mappings in struct cxl_dport")
Signed-off-by: Robert Richter <rrichter@amd.com>
Reviewed-by: Jonathan Cameron <Jonathan.Cameron@huawei.com>
Link: https://lore.kernel.org/r/20231018171713.1883517-4-rrichter@amd.com
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit dd22581f89537163f065e8ef7c125ce0fddf62cc ]
The primary role of @dev is to host the mappings for devm operations.
@dev is too ambiguous as a name. I.e. when does @dev refer to the
'struct device *' instance that the registers belong, and when does
@dev refer to the 'struct device *' instance hosting the mapping for
devm operations?
Clarify the role of @dev in cxl_register_map by renaming it to @host.
Also, rename local variables to 'host' where map->host is used.
Signed-off-by: Terry Bowman <terry.bowman@amd.com>
Signed-off-by: Robert Richter <rrichter@amd.com>
Reviewed-by: Jonathan Cameron <Jonathan.Cameron@huawei.com>
Link: https://lore.kernel.org/r/20231018171713.1883517-3-rrichter@amd.com
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
Stable-dep-of: 33d9c987bf8f ("cxl/port: Fix @host confusion in cxl_dport_setup_regs()")
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit 3531b27f1f04a6bc9c95cf00d40efe618d57aa93 ]
Fix a missed "goto out" to unlock on error to cleanup this splat:
WARNING: lock held when returning to user space!
6.6.0-rc3-lizhijian+ #213 Not tainted
------------------------------------------------
cxl/673 is leaving the kernel with locks still held!
1 lock held by cxl/673:
#0: ffffffffa013b9d0 (cxl_region_rwsem){++++}-{3:3}, at: commit_store+0x7d/0x3e0 [cxl_core]
In terms of user visible impact of this bug for backports:
cxl_region_invalidate_memregion() on x86 invokes wbinvd which is a
problematic instruction for virtualized environments. So, on virtualized
x86, cxl_region_invalidate_memregion() returns an error. This failure
case got missed because CXL memory-expander device passthrough is not a
production use case, and emulation of CXL devices is typically limited
to kernel development builds with CONFIG_CXL_REGION_INVALIDATION_TEST=y,
that makes cxl_region_invalidate_memregion() succeed.
In other words, the expected exposure of this bug is limited to CXL
subsystem development environments using QEMU that neglected
CONFIG_CXL_REGION_INVALIDATION_TEST=y.
Fixes: d1257d098a5a ("cxl/region: Move cache invalidation before region teardown, and before setup")
Signed-off-by: Li Zhijian <lizhijian@fujitsu.com>
Reviewed-by: Ira Weiny <ira.weiny@intel.com>
Link: https://lore.kernel.org/r/20231025085450.2514906-1-lizhijian@fujitsu.com
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit 0cf36a85c1408f86a967fb1db721de1b89b9e675 ]
For auto-discovered regions the driver must assign each target to
a valid position in the region interleave set based on the decoder
topology.
The current implementation fails to parse valid decode topologies,
as it does not consider the child offset into a parent port. The sort
put all targets of one port ahead of another port when an interleave
was expected, causing the region assembly to fail.
Replace the existing relative sort with cxl_calc_interleave_pos() that
finds the exact position in a region interleave for an endpoint based
on a walk up the ancestral tree from endpoint to root decoder.
cxl_calc_interleave_pos() was introduced in a prior patch, so the work
here is to use it in cxl_region_sort_targets().
Remove the obsoleted helper functions from the prior sort.
Testing passes on pre-production hardware with BIOS defined regions
that natively trigger this autodiscovery path of the region driver.
Testing passes a CXL unit test using the dev_dbg() calculation test
(see cxl_region_attach()) across an expanded set of region configs:
1, 1, 1+1, 1+1+1, 2, 2+2, 2+2+2, 2+2+2+2, 4, 4+4, where each number
represents the count of endpoints per host bridge.
Fixes: a32320b71f08 ("cxl/region: Add region autodiscovery")
Reported-by: Dmytro Adamenko <dmytro.adamenko@intel.com>
Signed-off-by: Alison Schofield <alison.schofield@intel.com>
Reviewed-by: Dave Jiang <dave.jiang@intel.com>
Reviewed-by: Jim Harris <jim.harris@samsung.com>
Link: https://lore.kernel.org/r/3946cc55ddc19678733eddc9de2c317749f43f3b.1698263080.git.alison.schofield@intel.com
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit a3e00c964fb943934af916f48f0dd43b5110c866 ]
Introduce a calculation to find a target's position in a region
interleave. Perform a self-test of the calculation on user-defined
regions.
The region driver uses the kernel sort() function to put region
targets in relative order. Positions are assigned based on each
target's index in that sorted list. That relative sort doesn't
consider the offset of a port into its parent port which causes
some auto-discovered regions to fail creation. In one failure case,
a 2 + 2 config (2 host bridges each with 2 endpoints), the sort
puts all the targets of one port ahead of another port when they
were expected to be interleaved.
In preparation for repairing the autodiscovery region assembly,
introduce a new method for discovering a target position in the
region interleave.
cxl_calc_interleave_pos() adds a method to find the target position by
ascending from an endpoint to a root decoder. The calculation starts
with the endpoint's local position and position in the parent port. It
traverses towards the root decoder and examines both position and ways
in order to allow the position to be refined all the way to the root
decoder.
This calculation: position = position * parent_ways + parent_pos;
applied iteratively yields the correct position.
Include a self-test that exercises this new position calculation against
every successfully configured user-defined region.
Signed-off-by: Alison Schofield <alison.schofield@intel.com>
Link: https://lore.kernel.org/r/0ac32c75cf81dd8b86bf07d70ff139d33c2300bc.1698263080.git.alison.schofield@intel.com
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
Stable-dep-of: 0cf36a85c140 ("cxl/region: Use cxl_calc_interleave_pos() for auto-discovery")
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit 1110581412c7a223439bb3ecdcdd9f4432e08231 ]
match_decoder_by_range() and decoder_match_range() both determine
if an HPA range matches a decoder. The first does it for root
decoders and the second one operates on switch decoders.
Tidy these up with clear naming and make the switch helper more
like the root decoder helper in style and functionality. Make it
take the actual range, rather than an endpoint decoder from which
it extracts the range. Require an exact match on switch decoders,
because unlike a root decoder that maps an entire region, Linux
only supports 1:1 mapping of switch to endpoint decoders. Note that
root-decoders are a super-set of switch-decoders and the range they
cover is a super-set of a region, hence the use of range_contains() for
that case.
Aside from aesthetics and maintainability, this is in preparation
for reuse.
Signed-off-by: Alison Schofield <alison.schofield@intel.com>
Reviewed-by: Dave Jiang <dave.jiang@intel.com>
Reviewed-by: Jonathan Cameron <Jonathan.Cameron@huawei.com>
Reviewed-by: Jim Harris <jim.harris@samsung.com>
Link: https://lore.kernel.org/r/011b1f498e1758bb8df17c5951be00bd8d489e3b.1698263080.git.alison.schofield@intel.com
[djbw: fixup root decoder vs switch decoder range checks]
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
Stable-dep-of: 0cf36a85c140 ("cxl/region: Use cxl_calc_interleave_pos() for auto-discovery")
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit 88d3917f82ed4215a2154432c26de1480a61b209 ]
Ira reports that removing cxl_mock_mem causes a crash with the following
trace:
BUG: kernel NULL pointer dereference, address: 0000000000000044
[..]
RIP: 0010:cxl_region_decode_reset+0x7f/0x180 [cxl_core]
[..]
Call Trace:
<TASK>
cxl_region_detach+0xe8/0x210 [cxl_core]
cxl_decoder_kill_region+0x27/0x40 [cxl_core]
cxld_unregister+0x29/0x40 [cxl_core]
devres_release_all+0xb8/0x110
device_unbind_cleanup+0xe/0x70
device_release_driver_internal+0x1d2/0x210
bus_remove_device+0xd7/0x150
device_del+0x155/0x3e0
device_unregister+0x13/0x60
devm_release_action+0x4d/0x90
? __pfx_unregister_port+0x10/0x10 [cxl_core]
delete_endpoint+0x121/0x130 [cxl_core]
devres_release_all+0xb8/0x110
device_unbind_cleanup+0xe/0x70
device_release_driver_internal+0x1d2/0x210
bus_remove_device+0xd7/0x150
device_del+0x155/0x3e0
? lock_release+0x142/0x290
cdev_device_del+0x15/0x50
cxl_memdev_unregister+0x54/0x70 [cxl_core]
This crash is due to the clearing out the cxl_memdev's driver context
(@cxlds) before the subsystem is done with it. This is ultimately due to
the region(s), that this memdev is a member, being torn down and expecting
to be able to de-reference @cxlds, like here:
static int cxl_region_decode_reset(struct cxl_region *cxlr, int count)
...
if (cxlds->rcd)
goto endpoint_reset;
...
Fix it by keeping the driver context valid until memdev-device
unregistration, and subsequently the entire stack of related
dependencies, unwinds.
Fixes: 9cc238c7a526 ("cxl/pci: Introduce cdevm_file_operations")
Reported-by: Ira Weiny <ira.weiny@intel.com>
Reviewed-by: Davidlohr Bueso <dave@stgolabs.net>
Reviewed-by: Dave Jiang <dave.jiang@intel.com>
Reviewed-by: Jonathan Cameron <Jonathan.Cameron@huawei.com>
Reviewed-by: Ira Weiny <ira.weiny@intel.com>
Tested-by: Ira Weiny <ira.weiny@intel.com>
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit 339818380868e34ff2c482db05031bf47a67d609 ]
The sanitize operation is destructive and the expectation is that the
device is unmapped while in progress. The current implementation does a
lockless check for decoders being active, but then does nothing to
prevent decoders from racing to be committed. Introduce state tracking
to resolve this race.
This incidentally cleans up unpriveleged userspace from triggering mmio
read cycles by spinning on reading the 'security/state' attribute. Which
at a minimum is a waste since the kernel state machine can cache the
completion result.
Lastly cxl_mem_sanitize() was mistakenly marked EXPORT_SYMBOL() in the
original implementation, but an export was never required.
Fixes: 0c36b6ad436a ("cxl/mbox: Add sanitization handling machinery")
Cc: Davidlohr Bueso <dave@stgolabs.net>
Reviewed-by: Jonathan Cameron <Jonathan.Cameron@huawei.com>
Reviewed-by: Davidlohr Bueso <dave@stgolabs.net>
Reviewed-by: Dave Jiang <dave.jiang@intel.com>
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit 5f2da19714465739da2449253b13ac06cb353a26 ]
Fix a race condition between the mailbox-background command interrupt
firing and the security-state sysfs attribute being removed.
The race is difficult to see due to the awkward placement of the
sanitize-notifier setup code and the multiple places the teardown calls
are made, cxl_memdev_security_init() and cxl_memdev_security_shutdown().
Unify setup in one place, cxl_sanitize_setup_notifier(). Arrange for
the paired cxl_sanitize_teardown_notifier() to safely quiet the notifier
and let the cxl_memdev + irq be unregistered later in the flow.
Note: The special wrinkle of the sanitize notifier is that it interacts
with interrupts, which are enabled early in the flow, and it interacts
with memdev sysfs which is not initialized until late in the flow. Hence
why this setup routine takes an @cxlmd argument, and not just @mds.
This fix is also needed as a preparation fix for a memdev unregistration
crash.
Reported-by: Jonathan Cameron <Jonathan.Cameron@Huawei.com>
Closes: http://lore.kernel.org/r/20230929100316.00004546@Huawei.com
Cc: Dave Jiang <dave.jiang@intel.com>
Cc: Davidlohr Bueso <dave@stgolabs.net>
Fixes: 0c36b6ad436a ("cxl/mbox: Add sanitization handling machinery")
Reviewed-by: Dave Jiang <dave.jiang@intel.com>
Reviewed-by: Ira Weiny <ira.weiny@intel.com>
Reviewed-by: Davidlohr Bueso <dave@stgolabs.net>
Reviewed-by: Jonathan Cameron <Jonathan.Cameron@huawei.com>
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit f29a824b0b6710328a78b018de3c2cfa9db65876 ]
It is all too easy to get confused about @dev usage in the CXL driver
stack. Before adding a new cxl_pci_probe() setup operation that has a
devm lifetime dependent on @cxlds->dev binding, but also references
@cxlmd->dev, and prints messages, rework the devm_cxl_add_memdev() and
cxl_memdev_setup_fw_upload() function signatures to make this
distinction explicit. I.e. pass in the devm context as an @host argument
rather than infer it from other objects.
This is in preparation for adding a devm_cxl_sanitize_setup_notifier().
Note the whitespace fixup near the change of the devm_cxl_add_memdev()
signature. That uncaught typo originated in the patch that added
cxl_memdev_security_init().
Reviewed-by: Jonathan Cameron <Jonathan.Cameron@huawei.com>
Reviewed-by: Ira Weiny <ira.weiny@intel.com>
Reviewed-by: Dave Jiang <dave.jiang@intel.com>
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
Stable-dep-of: 5f2da1971446 ("cxl/pci: Fix sanitize notifier setup")
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit 2627c995c15dc375f4b5a591d782a14b1c0e3e7d ]
If dev_err_probe() is to be used it should at least be used consistently
within the same function. It is also worth questioning whether
every potential -ENOMEM needs an explicit error message.
Remove the cxl_setup_fw_upload() error prints for what are rare /
hardware-independent failures.
Reviewed-by: Jonathan Cameron <Jonathan.Cameron@huawei.com>
Reviewed-by: Ira Weiny <ira.weiny@intel.com>
Reviewed-by: Davidlohr Bueso <dave@stgolabs.net>
Reviewed-by: Dave Jiang <dave.jiang@intel.com>
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
Stable-dep-of: 5f2da1971446 ("cxl/pci: Fix sanitize notifier setup")
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit e30a106558e7d1e06d1fcfd12466dc646673d03d ]
In preparation for fixing the init/teardown of the 'sanitize' workqueue
and sysfs notification mechanism, arrange for cxl_mbox_sanitize_work()
to be the single location where the sysfs attribute is notified. With
that change there is no distinction between polled mode and interrupt
mode. All the interrupt does is accelerate the polling interval.
The change to check for "mds->security.sanitize_node" under the lock is
there to ensure that the interrupt, the work routine and the
setup/teardown code can all have a consistent view of the registered
notifier and the workqueue state. I.e. the expectation is that the
interrupt is live past the point that the sanitize sysfs attribute is
published, and it may race teardown, so it must be consulted under a
lock. Given that new locking requirement, cxl_pci_mbox_irq() is moved
from hard to thread irq context.
Lastly, some opportunistic replacements of
"queue_delayed_work(system_wq, ...)", which is just open coded
schedule_delayed_work(), are included.
Reviewed-by: Dave Jiang <dave.jiang@intel.com>
Reviewed-by: Jonathan Cameron <Jonathan.Cameron@huawei.com>
Reviewed-by: Ira Weiny <ira.weiny@intel.com>
Reviewed-by: Davidlohr Bueso <dave@stgolabs.net>
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
Stable-dep-of: 5f2da1971446 ("cxl/pci: Fix sanitize notifier setup")
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit 76fe8713dd0a1331d84d767e8e5d3f365d959e8a ]
Given that any particular put_device() could be the final put of the
device, the fact that there are usages of cxlds->dev after
put_device(cxlds->dev) is a red flag. Drop the reference counting since
the device is pinned by being registered and will not be unregistered
without triggering the driver + workqueue to shutdown.
Reviewed-by: Dave Jiang <dave.jiang@intel.com>
Reviewed-by: Davidlohr Bueso <dave@stgolabs.net>
Reviewed-by: Jonathan Cameron <Jonathan.Cameron@huawei.com>
Reviewed-by: Ira Weiny <ira.weiny@intel.com>
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
Stable-dep-of: 5f2da1971446 ("cxl/pci: Fix sanitize notifier setup")
Signed-off-by: Sasha Levin <sashal@kernel.org>
Prepare for the coming implementation by GCC and Clang of the __counted_by
attribute. Flexible array members annotated with __counted_by can have
their accesses bounds-checked at run-time checking via CONFIG_UBSAN_BOUNDS
(for array indexing) and CONFIG_FORTIFY_SOURCE (for strcpy/memcpy-family
functions).
As found with Coccinelle[1], add __counted_by for struct cxl_cxims_data.
Additionally, since the element count member must be set before accessing
the annotated flexible array member, move its initialization earlier.
[1] https://github.com/kees/kernel-tools/blob/trunk/coccinelle/examples/counted_by.cocci
Cc: Davidlohr Bueso <dave@stgolabs.net>
Cc: Jonathan Cameron <jonathan.cameron@huawei.com>
Cc: Dave Jiang <dave.jiang@intel.com>
Cc: Alison Schofield <alison.schofield@intel.com>
Cc: Vishal Verma <vishal.l.verma@intel.com>
Cc: Ira Weiny <ira.weiny@intel.com>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: linux-cxl@vger.kernel.org
Signed-off-by: Kees Cook <keescook@chromium.org>
Reviewed-by: Vishal Verma <vishal.l.verma@intel.com>
Reviewed-by: Dave Jiang <dave.jiang@intel.com>
Link: https://lore.kernel.org/r/20230922175319.work.096-kees@kernel.org
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
The cxl_test unit test environment models a CXL topology for
sysfs/user-ABI regression testing. It uses interface mocking via the
"--wrap=" linker option to redirect cxl_core routines that parse
hardware registers with versions that just publish objects, like
devm_cxl_enumerate_decoders().
Starting with:
Commit 19ab69a60e3b ("cxl/port: Store the port's Component Register mappings in struct cxl_port")
...port register enumeration is moved into devm_cxl_add_port(). This
conflicts with the "cxl_test avoids emulating registers stance" so
either the port code needs to be refactored (too violent), or modified
so that register enumeration is skipped on "fake" cxl_test ports
(annoying, but straightforward).
This conflict has happened previously and the "check for platform
device" workaround to avoid instrusive refactoring was deployed in those
scenarios. In general, refactoring should only benefit production code,
test code needs to remain minimally instrusive to the greatest extent
possible.
This was missed previously because it may sometimes just cause warning
messages to be emitted, but it can also cause test failures. The
backport to -stable is only nice to have for clean cxl_test runs.
Fixes: 19ab69a60e3b ("cxl/port: Store the port's Component Register mappings in struct cxl_port")
Cc: stable@vger.kernel.org
Reported-by: Alison Schofield <alison.schofield@intel.com>
Reviewed-by: Dave Jiang <dave.jiang@intel.com>
Tested-by: Dave Jiang <dave.jiang@intel.com>
Link: https://lore.kernel.org/r/169476525052.1013896.6235102957693675187.stgit@dwillia2-xfh.jf.intel.com
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
In cxl_port_setup_targets() the region driver validates the
configuration of auto-discovered region decoders, as well
as decoders the driver is preparing to program.
The existing calculations use the encoded interleave granularity
value to create an interleave granularity that properly fans out
when routing an x1 interleave to a greater than x1 interleave.
That all worked well, until this config came along:
Host Bridge: 2 way at 256 granularity
Switch Decoder_A: 1 way at 512
Endpoint_X: 2 way at 256
Switch Decoder_B: 1 way at 512
Endpoint_Y: 2 way at 256
When the Host Bridge interleave is greater than 1 and the root
decoder interleave is exactly 1, the region driver needs to
consider the number of targets in the region when calculating
the expected granularity.
While examining the existing logic, and trying to cover the case
above, a couple of simplifications appeared, hence this proposed
refactoring.
The first simplification is to apply the logic to the nominal
values and use the existing helper function granularity_to_eig() to
translate the desired granularity to the encoded form. This means
the comment and code regarding setting address bits is discarded.
Although that logic is not wrong, it adds a level of complexity that
is not required in the granularity selection. The eig and eiw are
indeed part of the routing instructions programmed into the decoders.
Up-level the discussion to nominal ways and granularity for clearer
analysis.
The second simplification reduces the logic to a single granularity
calculation that works for all cases. The new calculation doesn't
care if parent_iw => 1 because parent_iw is used as a multiplier.
The refactor cleans up a useless assignment of eiw made after the
iw is already calculated.
Regression testing included an examination of all of the ways and
granularity selections made during a run of the cxl_test unit tests.
There were no differences in selections before and after this patch.
Fixes: ("27b3f8d13830 cxl/region: Program target lists")
Signed-off-by: Alison Schofield <alison.schofield@intel.com>
Reviewed-by: Dave Jiang <dave.jiang@intel.com>
Link: https://lore.kernel.org/r/20230822180928.117596-1-alison.schofield@intel.com
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
Currently, when the region driver attaches a region to a port, it
selects the ports next available decoder to program.
With the addition of auto-discovered regions, a port decoder has
already been programmed so grabbing the next available decoder can
be a mismatch when there is more than one region using the port.
The failure appears like this with CXL DEBUG enabled:
[] cxl_core:alloc_region_ref:754: cxl region0: endpoint9: HPA order violation region0:[mem 0x14780000000-0x1478fffffff flags 0x200] vs [mem 0x880000000-0x185fffffff flags 0x200]
[] cxl_core:cxl_port_attach_region:972: cxl region0: endpoint9: failed to allocate region reference
When CXL DEBUG is not enabled, there is no failure message. The region
just never materializes. Users can suspect this issue if they know their
firmware has programmed decoders so that more than one region is using
a port. Note that the problem may appear intermittently, ie not on
every reboot.
Add a matching method for auto-discovered regions that finds a decoder
based on an HPA range. The decoder range must exactly match the region
resource parameter.
Fixes: a32320b71f08 ("cxl/region: Add region autodiscovery")
Signed-off-by: Alison Schofield <alison.schofield@intel.com>
Reviewed-by: Dave Jiang <dave.jiang@intel.com>
Reviewed-by: Davidlohr Bueso <dave@stgolabs.net>
Reviewed-by: Jonathan Cameron <Jonathan.Cameron@huawei.com>
Link: https://lore.kernel.org/r/20230905211007.256385-1-alison.schofield@intel.com
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
The following debug output was observed while testing CXL
cxl_core:cxl_walk_cel:721: cxl_mock_mem cxl_mem.0: Opcode 0x4300 unsupported by driver
opcode 0x4300 (Get Poison) is supported by the driver and the mock
device supports it. The logic should be checking that the opcode is
both not poison and not security.
Fix the logic to allow poison and security commands.
Fixes: ad64f5952ce3 ("cxl/memdev: Only show sanitize sysfs files when supported")
Cc: <stable@vger.kernel.org>
Signed-off-by: Ira Weiny <ira.weiny@intel.com>
Reviewed-by: Davidlohr Bueso <dave@stgolabs.net>
Acked-by: Jonathan Cameron <Jonathan.Cameron@huawei.com>
Link: https://lore.kernel.org/r/20230903-cxl-cel-fix-v1-1-e260c9467be3@intel.com
[cleanup cxl_walk_cel() to centralized "enabled" checks]
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
Use pcie_aer_is_native() to determine the native AER ownership as the
usage of host_bride->native_aer does not cover command line override of
AER ownership.
Signed-off-by: Smita Koralahalli <Smita.KoralahalliChannabasappa@amd.com>
Reviewed-by: Kuppuswamy Sathyanarayanan <sathyanarayanan.kuppuswamy@linux.intel.com>
Reviewed-by: Robert Richter <rrichter@amd.com>
Reviewed-by: Jonathan Cameron <Jonathan.Cameron@huawei.com>
Reviewed-by: Dave Jiang <dave.jiang@intel.com>
Link: https://lore.kernel.org/r/20230823234305.27333-4-Smita.KoralahalliChannabasappa@amd.com
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
cxl_pci fails to unmask CXL protocol errors when CXL memory error reporting
is not granted native control. Given that CXL memory error reporting uses
the event interface and protocol errors use AER, unmask protocol errors
based only on the native AER setting. Without this change end user
deployments will fail to report protocol errors in the case where native
memory error handling is not granted to Linux.
Also, return zero instead of an error code to not block the communication
with the cxl device when in native memory error reporting mode.
Fixes: 248529edc86f ("cxl: add RAS status unmasking for CXL")
Cc: <stable@vger.kernel.org>
Signed-off-by: Smita Koralahalli <Smita.KoralahalliChannabasappa@amd.com>
Reviewed-by: Robert Richter <rrichter@amd.com>
Reviewed-by: Jonathan Cameron <Jonathan.Cameron@huawei.com>
Reviewed-by: Dave Jiang <dave.jiang@intel.com>
Link: https://lore.kernel.org/r/20230823234305.27333-2-Smita.KoralahalliChannabasappa@amd.com
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
If the device does not support Sanitize or Secure Erase commands,
hide the respective sysfs interfaces such that the operation can
never be attempted.
In order to be generic, keep track of the enabled security commands
found in the CEL - the driver does not support Security Passthrough.
Signed-off-by: Davidlohr Bueso <dave@stgolabs.net>
Link: https://lore.kernel.org/r/20230726051940.3570-4-dave@stgolabs.net
Reviewed-by: Dave Jiang <dave.jiang@intel.com>
Signed-off-by: Vishal Verma <vishal.l.verma@intel.com>
... as is the case with all members of struct cxl_memdev_state.
Signed-off-by: Davidlohr Bueso <dave@stgolabs.net>
Link: https://lore.kernel.org/r/20230726051940.3570-3-dave@stgolabs.net
Reviewed-by: Dave Jiang <dave.jiang@intel.com>
Signed-off-by: Vishal Verma <vishal.l.verma@intel.com>
Driver initialization returned success (return 0) even if the
initialization (cxl_decoder_add() or acpi_table_parse_cedt()) failed.
Return the error instead of swallowing it.
Fixes: f4ce1f766f1e ("cxl/acpi: Convert CFMWS parsing to ACPI sub-table helpers")
Signed-off-by: Breno Leitao <leitao@debian.org>
Link: https://lore.kernel.org/r/20230714093146.2253438-2-leitao@debian.org
Reviewed-by: Alison Schofield <alison.schofield@intel.com>
Signed-off-by: Vishal Verma <vishal.l.verma@intel.com>
KASAN and KFENCE detected an user-after-free in the CXL driver. This
happens in the cxl_decoder_add() fail path. KASAN prints the following
error:
BUG: KASAN: slab-use-after-free in cxl_parse_cfmws (drivers/cxl/acpi.c:299)
This happens in cxl_parse_cfmws(), where put_device() is called,
releasing cxld, which is accessed later.
Use the local variables in the dev_err() instead of pointing to the
released memory. Since the dev_err() is printing a resource, change the open
coded print format to use the %pr format specifier.
Fixes: e50fe01e1f2a ("cxl/core: Drop ->platform_res attribute for root decoders")
Signed-off-by: Breno Leitao <leitao@debian.org>
Link: https://lore.kernel.org/r/20230714093146.2253438-1-leitao@debian.org
Reviewed-by: Alison Schofield <alison.schofield@intel.com>
Reviewed-by: Dave Jiang <dave.jiang@intel.com>
Reviewed-by: Jonathan Cameron <Jonathan.Cameron@huawei.com>
Signed-off-by: Vishal Verma <vishal.l.verma@intel.com>
The CXL_FW_CANCEL macro is used with set/test_bit() so it should be a
bit number and not the shifted value. The original code is the
equivalent of using BIT(BIT(0)) so it's 0x2 instead of 0x1. This has
no effect on runtime because it's done consistently and nothing else
was using the 0x2 bit.
Fixes: 9521875bbe00 ("cxl: add a firmware update mechanism using the sysfs firmware loader")
Signed-off-by: Dan Carpenter <dan.carpenter@linaro.org>
Link: https://lore.kernel.org/r/a11b0c78-4717-4f4e-90be-f47f300d607c@moroto.mountain
Reviewed-by: Vishal Verma <vishal.l.verma@intel.com>
Reviewed-by: Davidlohr Bueso <dave@stgolabs.net>
Reviewed-by: Dave Jiang <dave.jiang@intel.com>
Signed-off-by: Vishal Verma <vishal.l.verma@intel.com>
When FW_LOADER is disabled, cxl fails to link:
arm-linux-gnueabi-ld: drivers/cxl/core/memdev.o: in function `cxl_memdev_setup_fw_upload':
memdev.c:(.text+0x90e): undefined reference to `firmware_upload_register'
memdev.c:(.text+0x93c): undefined reference to `firmware_upload_unregister'
In order to use the firmware_upload_register() function, both FW_LOADER
and FW_UPLOAD have to be enabled, which is a bit confusing. In addition,
the dependency is on the wrong symbol, as the caller is part of the
cxl_core.ko module, not the cxl_mem.ko module.
Fixes: 9521875bbe005 ("cxl: add a firmware update mechanism using the sysfs firmware loader")
Signed-off-by: Arnd Bergmann <arnd@arndb.de>
Link: https://lore.kernel.org/r/20230703112928.332321-1-arnd@kernel.org
Reviewed-by: Xiao Yang <yangx.jy@fujitsu.com>
Reviewed-by: Dave Jiang <dave.jiang@intel.com>
Signed-off-by: Vishal Verma <vishal.l.verma@intel.com>
Fix a merge error that updated the argument to cxl_mem_get_fw_info() but
not the kernel-doc.
drivers/cxl/core/memdev.c:678: warning: Function parameter or member
'mds' not described in 'cxl_mem_get_fw_info'
drivers/cxl/core/memdev.c:678: warning: Excess function parameter
'cxlds' description in 'cxl_mem_get_fw_info'
Signed-off-by: Yang Li <yang.lee@linux.alibaba.com>
Link: https://lore.kernel.org/r/20230629021118.102744-1-yang.lee@linux.alibaba.com
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
Pick up the first half of the RCH error handling series. The back half
needs some fixups for test regressions. Small conflicts with the PMU
work around register enumeration and setup helpers.
Pick up initial support for the CXL 3.0 performance monitoring
definition. Small conflicts with the firmware update work as they both
placed their init code in the same location.
CXL rev 3.0 introduces a standard performance monitoring hardware
block to CXL. Instances are discovered using CXL Register Locator DVSEC
entries. Each CXL component may have multiple PMUs.
This initial driver supports a subset of types of counter.
It supports counters that are either fixed or configurable, but requires
that they support the ability to freeze and write value whilst frozen.
Development done with QEMU model which will be posted shortly.
Example:
$ perf stat -a -e cxl_pmu_mem0.0/h2d_req_snpcur/ -e cxl_pmu_mem0.0/h2d_req_snpdata/ -e cxl_pmu_mem0.0/clock_ticks/ sleep 1
Performance counter stats for 'system wide':
96,757,023,244,321 cxl_pmu_mem0.0/h2d_req_snpcur/
96,757,023,244,365 cxl_pmu_mem0.0/h2d_req_snpdata/
193,514,046,488,653 cxl_pmu_mem0.0/clock_ticks/
1.090539600 seconds time elapsed
Reviewed-by: Dave Jiang <dave.jiang@intel.com>
Reviewed-by: Kan Liang <kan.liang@linux.intel.com>
Signed-off-by: Jonathan Cameron <Jonathan.Cameron@huawei.com>
Link: https://lore.kernel.org/r/20230526095824.16336-5-Jonathan.Cameron@huawei.com
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
Pick up the recent fixes to how CPU caches are managed relative to
region setup / teardown, and make sure that all decoders transition
successfully before updating the region state from COMMIT => ACTIVE.
Pick up the driver cleanups identified in preparation for CXL "type-2"
(accelerator) device support. The major change here from a conflict
generation perspective is the split of 'struct cxl_memdev_state' from
the core 'struct cxl_dev_state'. Since an accelerator may not care about
all the optional features that are standard on a CXL "type-3" (host-only
memory expander) device.
A silent conflict also occurs with the move of the endpoint port to be a
formal property of a 'struct cxl_memdev' rather than drvdata.
Add the first typical (non-sanitization) consumer of the new background
command infrastructure, firmware update. Given both firmware-update and
sanitization were developed in parallel from the common
background-command baseline, resolve some minor context conflicts.
Pick up the sanitization work and the infrastructure for other
background commands for 6.5. Sanitization has a different completion
path than typical background commands so it was important to have both
thought out and implemented before either went upstream.
The sysfs based firmware loader mechanism was created to easily allow
userspace to upload firmware images to FPGA cards. This also happens to
be pretty suitable to create a user-initiated but kernel-controlled
firmware update mechanism for CXL devices, using the CXL specified
mailbox commands.
Since firmware update commands can be long-running, and can be processed
in the background by the endpoint device, it is desirable to have the
ability to chunk the firmware transfer down to smaller pieces, so that
one operation does not monopolize the mailbox, locking out any other
long running background commands entirely - e.g. security commands like
'sanitize' or poison scanning operations.
The firmware loader mechanism allows a natural way to perform this
chunking, as after each mailbox command, that is restricted to the
maximum mailbox payload size, the cxl memdev driver relinquishes control
back to the fw_loader system and awaits the next chunk of data to
transfer. This opens opportunities for other background commands to
access the mailbox and send their own slices of background commands.
Add the necessary helpers and state tracking to be able to perform the
'Get FW Info', 'Transfer FW', and 'Activate FW' mailbox commands as
described in the CXL spec. Wire these up to the firmware loader
callbacks, and register with that system to create the memX/firmware/
sysfs ABI.
Cc: Davidlohr Bueso <dave@stgolabs.net>
Cc: Jonathan Cameron <Jonathan.Cameron@Huawei.com>
Cc: Russ Weight <russell.h.weight@intel.com>
Cc: Alison Schofield <alison.schofield@intel.com>
Cc: Ira Weiny <ira.weiny@intel.com>
Cc: Dave Jiang <dave.jiang@intel.com>
Cc: Ben Widawsky <bwidawsk@kernel.org>
Cc: Dan Williams <dan.j.williams@intel.com>
Reviewed-by: Jonathan Cameron <Jonathan.Cameron@huawei.com>
Reviewed-by: Dave Jiang <dave.jiang@intel.com>
Signed-off-by: Vishal Verma <vishal.l.verma@intel.com>
Link: https://lore.kernel.org/r/20230602-vv-fw_update-v4-1-c6265bd7343b@intel.com
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
Implement support for the non-pmem exclusive secure erase, per
CXL specs. Create a write-only 'security/erase' sysfs file to
perform the requested operation.
As with the sanitation this requires the device being offline
and thus no active HPA-DPA decoding.
The expectation is that userspace can use it such as:
cxl disable-memdev memX
echo 1 > /sys/bus/cxl/devices/memX/security/erase
cxl enable-memdev memX
Reviewed-by: Jonathan Cameron <Jonathan.Cameron@huawei.com>
Reviewed-by: Dave Jiang <dave.jiang@intel.com>
Reviewed-by: Fan Ni <fan.ni@samsung.com>
Signed-off-by: Davidlohr Bueso <dave@stgolabs.net>
Link: https://lore.kernel.org/r/20230612181038.14421-7-dave@stgolabs.net
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
Implement support for CXL 3.0 8.2.9.8.5.1 Sanitize. This is done by
adding a security/sanitize' memdev sysfs file to trigger the operation
and extend the status file to make it poll(2)-capable for completion.
Unlike all other background commands, this is the only operation that
is special and monopolizes the device for long periods of time.
In addition to the traditional pmem security requirements, all regions
must also be offline in order to perform the operation. This permits
avoiding explicit global CPU cache management, relying instead on the
implict cache management when a region transitions between
CXL_CONFIG_ACTIVE and CXL_CONFIG_COMMIT.
The expectation is that userspace can use it such as:
cxl disable-memdev memX
echo 1 > /sys/bus/cxl/devices/memX/security/sanitize
cxl wait-sanitize memX
cxl enable-memdev memX
Reviewed-by: Dave Jiang <dave.jiang@intel.com>
Reviewed-by: Jonathan Cameron <Jonathan.Cameron@huawei.com>
Signed-off-by: Davidlohr Bueso <dave@stgolabs.net>
Link: https://lore.kernel.org/r/20230612181038.14421-5-dave@stgolabs.net
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
Sanitization is by definition a device-monopolizing operation, and thus
the timeslicing rules for other background commands do not apply.
As such handle this special case asynchronously and return immediately.
Subsequent changes will allow completion to be pollable from userspace
via a sysfs file interface.
For devices that don't support interrupts for notifying background
command completion, self-poll with the caveat that the poller can
be out of sync with the ready hardware, and therefore care must be
taken to not allow any new commands to go through until the poller
sees the hw completion. The poller takes the mbox_mutex to stabilize
the flagging, minimizing any runtime overhead in the send path to
check for 'sanitize_tmo' for uncommon poll scenarios.
The irq case is much simpler as hardware will serialize/error
appropriately.
Reviewed-by: Dave Jiang <dave.jiang@intel.com>
Signed-off-by: Davidlohr Bueso <dave@stgolabs.net>
Reviewed-by: Jonathan Cameron <Jonathan.Cameron@huawei.com>
Link: https://lore.kernel.org/r/20230612181038.14421-4-dave@stgolabs.net
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
Add a read-only sysfs file to display the security state
of a device (currently only pmem):
/sys/bus/cxl/devices/memX/security/state
This introduces a cxl_security_state structure that is
to be the placeholder for common CXL security features.
Reviewed-by: Jonathan Cameron <Jonathan.Cameron@huawei.com>
Reviewed-by: Fan Ni <fan.ni@samsung.com>
Signed-off-by: Davidlohr Bueso <dave@stgolabs.net>
Reviewed-by: Dave Jiang <dave.jiang@intel.com>
Link: https://lore.kernel.org/r/20230612181038.14421-3-dave@stgolabs.net
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
For cases when the mailbox background operation is not complete,
do not "handle" the interrupt, as it was not from this device.
And furthermore there are no racy scenarios such as the hw being
out of sync with the driver and starting a new background op
behind its back.
Reported-by: Jonathan Cameron <Jonathan.Cameron@Huawei.com>
Fixes: ccadf1310fb (cxl/mbox: Add background cmd handling machinery)
Signed-off-by: Davidlohr Bueso <dave@stgolabs.net>
Reviewed-by: Dave Jiang <dave.jiang@intel.com>
Reviewed-by: Jonathan Cameron <Jonathan.Cameron@huawei.com>
Link: https://lore.kernel.org/r/20230612181038.14421-2-dave@stgolabs.net
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
commit eb0764b822b9 ("cxl/port: Enable the HDM decoder capability for switch ports")
...was added on the observation of CXL memory not being accessible after
setting up a region on a "cold-plugged" device. A "cold-plugged" CXL
device is one that was not present at boot, so platform-firmware/BIOS
has no chance to set it up.
While it is true that the debug found the enable bit clear in the
host-bridge's instance of the global control register (CXL 3.0
8.2.4.19.2 CXL HDM Decoder Global Control Register), that bit is
described as:
"This bit is only applicable to CXL.mem devices and shall
return 0 on CXL Host Bridges and Upstream Switch Ports."
So it is meant to be zero, and further testing confirmed that this "fix"
had no effect on the failure. Revert it, and be more vigilant about
proposed fixes in the future. Since the original copied stable@, flag
this revert for stable@ as well.
Cc: <stable@vger.kernel.org>
Fixes: eb0764b822b9 ("cxl/port: Enable the HDM decoder capability for switch ports")
Reviewed-by: Jonathan Cameron <Jonathan.Cameron@huawei.com>
Reviewed-by: Dave Jiang <dave.jiang@intel.com>
Link: https://lore.kernel.org/r/168685882012.3475336.16733084892658264991.stgit@dwillia2-xfh.jf.intel.com
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
Move the endpoint port that the cxl_mem driver establishes from drvdata
to a first class attribute. This is in preparation for device-memory
drivers reusing the CXL core for memory region management. Those drivers
need a type-safe method to retrieve their CXL port linkage. Leave
drvdata for private usage of the cxl_mem driver not external consumers
of a 'struct cxl_memdev' object.
Reviewed-by: Fan Ni <fan.ni@samsung.com>
Reviewed-by: Jonathan Cameron <Jonathan.Cameron@huawei.com>
Reviewed-by: Dave Jiang <dave.jiang@intel.com>
Link: https://lore.kernel.org/r/168679264292.3436160.3901392135863405807.stgit@dwillia2-xfh.jf.intel.com
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
The current check for 256B Flit mode is incomplete and unnecessary. It
is incomplete because it fails to consider the link speed, or check for
CXL link capabilities. It is unnecessary because unconditionally
unmasking 256B Flit errors is a nop when 256B Flit operation is not
available.
Remove this check in preparation for creating a cxl_probe_link() helper
to centralize this detection.
Reviewed-by: Jonathan Cameron <Jonathan.Cameron@huawei.com>
Reviewed-by: Dave Jiang <dave.jiang@intel.com>
Link: https://lore.kernel.org/r/168679263124.3436160.6228910132469454346.stgit@dwillia2-xfh.jf.intel.com
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
Switch-level (mid-level) decoders between the platform root and an
endpoint can dynamically switch modes between HDM-H and HDM-D[B]
depending on which region they target. Use the region type to fixup each
decoder that gets allocated to map the given region.
Note that endpoint decoders are meant to determine the region type, so
warn if those ever need to be fixed up, but since it is possible to
continue do so.
Reviewed-by: Jonathan Cameron <Jonathan.Cameron@huawei.com>
Reviewed-by: Dave Jiang <dave.jiang@intel.com>
Link: https://lore.kernel.org/r/168679262543.3436160.13053831955768440312.stgit@dwillia2-xfh.jf.intel.com
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
In preparation for device-memory region creation, arrange for decoders
of CXL_DEVTYPE_DEVMEM memdevs to default to CXL_DECODER_DEVMEM for their
target type.
Revisit this if a device ever shows up that wants to offer mixed HDM-H
(Host-Only Memory) and HDM-DB support, or an CXL_DEVTYPE_DEVMEM device
that supports HDM-H.
Reviewed-by: Jonathan Cameron <Jonathan.Cameron@huawei.com>
Reviewed-by: Dave Jiang <dave.jiang@intel.com>
Link: https://lore.kernel.org/r/168679261945.3436160.11673393474107374595.stgit@dwillia2-xfh.jf.intel.com
Signed-off-by: Dan Williams <dan.j.williams@intel.com>