/* SPDX-License-Identifier: GPL-2.0 */ #ifndef __KVM_X86_MMU_H #define __KVM_X86_MMU_H #include #include "kvm_cache_regs.h" #include "cpuid.h" #define PT64_PT_BITS 9 #define PT64_ENT_PER_PAGE (1 << PT64_PT_BITS) #define PT32_PT_BITS 10 #define PT32_ENT_PER_PAGE (1 << PT32_PT_BITS) #define PT_WRITABLE_SHIFT 1 #define PT_USER_SHIFT 2 #define PT_PRESENT_MASK (1ULL << 0) #define PT_WRITABLE_MASK (1ULL << PT_WRITABLE_SHIFT) #define PT_USER_MASK (1ULL << PT_USER_SHIFT) #define PT_PWT_MASK (1ULL << 3) #define PT_PCD_MASK (1ULL << 4) #define PT_ACCESSED_SHIFT 5 #define PT_ACCESSED_MASK (1ULL << PT_ACCESSED_SHIFT) #define PT_DIRTY_SHIFT 6 #define PT_DIRTY_MASK (1ULL << PT_DIRTY_SHIFT) #define PT_PAGE_SIZE_SHIFT 7 #define PT_PAGE_SIZE_MASK (1ULL << PT_PAGE_SIZE_SHIFT) #define PT_PAT_MASK (1ULL << 7) #define PT_GLOBAL_MASK (1ULL << 8) #define PT64_NX_SHIFT 63 #define PT64_NX_MASK (1ULL << PT64_NX_SHIFT) #define PT_PAT_SHIFT 7 #define PT_DIR_PAT_SHIFT 12 #define PT_DIR_PAT_MASK (1ULL << PT_DIR_PAT_SHIFT) #define PT32_DIR_PSE36_SIZE 4 #define PT32_DIR_PSE36_SHIFT 13 #define PT32_DIR_PSE36_MASK \ (((1ULL << PT32_DIR_PSE36_SIZE) - 1) << PT32_DIR_PSE36_SHIFT) #define PT64_ROOT_5LEVEL 5 #define PT64_ROOT_4LEVEL 4 #define PT32_ROOT_LEVEL 2 #define PT32E_ROOT_LEVEL 3 static __always_inline u64 rsvd_bits(int s, int e) { BUILD_BUG_ON(__builtin_constant_p(e) && __builtin_constant_p(s) && e < s); if (__builtin_constant_p(e)) BUILD_BUG_ON(e > 63); else e &= 63; if (e < s) return 0; return ((2ULL << (e - s)) - 1) << s; } void kvm_mmu_set_mmio_spte_mask(u64 mmio_value, u64 mmio_mask, u64 access_mask); void kvm_mmu_set_ept_masks(bool has_ad_bits, bool has_exec_only); void reset_shadow_zero_bits_mask(struct kvm_vcpu *vcpu, struct kvm_mmu *context); void kvm_init_mmu(struct kvm_vcpu *vcpu); void kvm_init_shadow_npt_mmu(struct kvm_vcpu *vcpu, u32 cr0, u32 cr4, u32 efer, gpa_t nested_cr3); void kvm_init_shadow_ept_mmu(struct kvm_vcpu *vcpu, bool execonly, bool accessed_dirty, gpa_t new_eptp); bool kvm_can_do_async_pf(struct kvm_vcpu *vcpu); int kvm_handle_page_fault(struct kvm_vcpu *vcpu, u64 error_code, u64 fault_address, char *insn, int insn_len); int kvm_mmu_load(struct kvm_vcpu *vcpu); void kvm_mmu_unload(struct kvm_vcpu *vcpu); void kvm_mmu_sync_roots(struct kvm_vcpu *vcpu); static inline int kvm_mmu_reload(struct kvm_vcpu *vcpu) { if (likely(vcpu->arch.mmu->root_hpa != INVALID_PAGE)) return 0; return kvm_mmu_load(vcpu); } static inline unsigned long kvm_get_pcid(struct kvm_vcpu *vcpu, gpa_t cr3) { BUILD_BUG_ON((X86_CR3_PCID_MASK & PAGE_MASK) != 0); return kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE) ? cr3 & X86_CR3_PCID_MASK : 0; } static inline unsigned long kvm_get_active_pcid(struct kvm_vcpu *vcpu) { return kvm_get_pcid(vcpu, kvm_read_cr3(vcpu)); } static inline void kvm_mmu_load_pgd(struct kvm_vcpu *vcpu) { u64 root_hpa = vcpu->arch.mmu->root_hpa; if (!VALID_PAGE(root_hpa)) return; static_call(kvm_x86_load_mmu_pgd)(vcpu, root_hpa, vcpu->arch.mmu->shadow_root_level); } int kvm_tdp_page_fault(struct kvm_vcpu *vcpu, gpa_t gpa, u32 error_code, bool prefault); static inline int kvm_mmu_do_page_fault(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa, u32 err, bool prefault) { #ifdef CONFIG_RETPOLINE if (likely(vcpu->arch.mmu->page_fault == kvm_tdp_page_fault)) return kvm_tdp_page_fault(vcpu, cr2_or_gpa, err, prefault); #endif return vcpu->arch.mmu->page_fault(vcpu, cr2_or_gpa, err, prefault); } /* * Currently, we have two sorts of write-protection, a) the first one * write-protects guest page to sync the guest modification, b) another one is * used to sync dirty bitmap when we do KVM_GET_DIRTY_LOG. The differences * between these two sorts are: * 1) the first case clears MMU-writable bit. * 2) the first case requires flushing tlb immediately avoiding corrupting * shadow page table between all vcpus so it should be in the protection of * mmu-lock. And the another case does not need to flush tlb until returning * the dirty bitmap to userspace since it only write-protects the page * logged in the bitmap, that means the page in the dirty bitmap is not * missed, so it can flush tlb out of mmu-lock. * * So, there is the problem: the first case can meet the corrupted tlb caused * by another case which write-protects pages but without flush tlb * immediately. In order to making the first case be aware this problem we let * it flush tlb if we try to write-protect a spte whose MMU-writable bit * is set, it works since another case never touches MMU-writable bit. * * Anyway, whenever a spte is updated (only permission and status bits are * changed) we need to check whether the spte with MMU-writable becomes * readonly, if that happens, we need to flush tlb. Fortunately, * mmu_spte_update() has already handled it perfectly. * * The rules to use MMU-writable and PT_WRITABLE_MASK: * - if we want to see if it has writable tlb entry or if the spte can be * writable on the mmu mapping, check MMU-writable, this is the most * case, otherwise * - if we fix page fault on the spte or do write-protection by dirty logging, * check PT_WRITABLE_MASK. * * TODO: introduce APIs to split these two cases. */ static inline bool is_writable_pte(unsigned long pte) { return pte & PT_WRITABLE_MASK; } static inline bool is_write_protection(struct kvm_vcpu *vcpu) { return kvm_read_cr0_bits(vcpu, X86_CR0_WP); } /* * Check if a given access (described through the I/D, W/R and U/S bits of a * page fault error code pfec) causes a permission fault with the given PTE * access rights (in ACC_* format). * * Return zero if the access does not fault; return the page fault error code * if the access faults. */ static inline u8 permission_fault(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu, unsigned pte_access, unsigned pte_pkey, unsigned pfec) { int cpl = static_call(kvm_x86_get_cpl)(vcpu); unsigned long rflags = static_call(kvm_x86_get_rflags)(vcpu); /* * If CPL < 3, SMAP prevention are disabled if EFLAGS.AC = 1. * * If CPL = 3, SMAP applies to all supervisor-mode data accesses * (these are implicit supervisor accesses) regardless of the value * of EFLAGS.AC. * * This computes (cpl < 3) && (rflags & X86_EFLAGS_AC), leaving * the result in X86_EFLAGS_AC. We then insert it in place of * the PFERR_RSVD_MASK bit; this bit will always be zero in pfec, * but it will be one in index if SMAP checks are being overridden. * It is important to keep this branchless. */ unsigned long smap = (cpl - 3) & (rflags & X86_EFLAGS_AC); int index = (pfec >> 1) + (smap >> (X86_EFLAGS_AC_BIT - PFERR_RSVD_BIT + 1)); bool fault = (mmu->permissions[index] >> pte_access) & 1; u32 errcode = PFERR_PRESENT_MASK; WARN_ON(pfec & (PFERR_PK_MASK | PFERR_RSVD_MASK)); if (unlikely(mmu->pkru_mask)) { u32 pkru_bits, offset; /* * PKRU defines 32 bits, there are 16 domains and 2 * attribute bits per domain in pkru. pte_pkey is the * index of the protection domain, so pte_pkey * 2 is * is the index of the first bit for the domain. */ pkru_bits = (vcpu->arch.pkru >> (pte_pkey * 2)) & 3; /* clear present bit, replace PFEC.RSVD with ACC_USER_MASK. */ offset = (pfec & ~1) + ((pte_access & PT_USER_MASK) << (PFERR_RSVD_BIT - PT_USER_SHIFT)); pkru_bits &= mmu->pkru_mask >> offset; errcode |= -pkru_bits & PFERR_PK_MASK; fault |= (pkru_bits != 0); } return -(u32)fault & errcode; } void kvm_zap_gfn_range(struct kvm *kvm, gfn_t gfn_start, gfn_t gfn_end); int kvm_arch_write_log_dirty(struct kvm_vcpu *vcpu); int kvm_mmu_post_init_vm(struct kvm *kvm); void kvm_mmu_pre_destroy_vm(struct kvm *kvm); static inline bool kvm_memslots_have_rmaps(struct kvm *kvm) { /* * Read memslot_have_rmaps before rmap pointers. Hence, threads reading * memslots_have_rmaps in any lock context are guaranteed to see the * pointers. Pairs with smp_store_release in alloc_all_memslots_rmaps. */ return smp_load_acquire(&kvm->arch.memslots_have_rmaps); } #endif