/* * Driver for One Laptop Per Child ‘CAFÉ’ controller, aka Marvell 88ALP01 * * Copyright © 2006 Red Hat, Inc. * Copyright © 2006 David Woodhouse */ #define DEBUG #include #undef DEBUG #include #include #include #include #include #include #include #include #define CAFE_NAND_CTRL1 0x00 #define CAFE_NAND_CTRL2 0x04 #define CAFE_NAND_CTRL3 0x08 #define CAFE_NAND_STATUS 0x0c #define CAFE_NAND_IRQ 0x10 #define CAFE_NAND_IRQ_MASK 0x14 #define CAFE_NAND_DATA_LEN 0x18 #define CAFE_NAND_ADDR1 0x1c #define CAFE_NAND_ADDR2 0x20 #define CAFE_NAND_TIMING1 0x24 #define CAFE_NAND_TIMING2 0x28 #define CAFE_NAND_TIMING3 0x2c #define CAFE_NAND_NONMEM 0x30 #define CAFE_NAND_ECC_RESULT 0x3C #define CAFE_NAND_DMA_CTRL 0x40 #define CAFE_NAND_DMA_ADDR0 0x44 #define CAFE_NAND_DMA_ADDR1 0x48 #define CAFE_NAND_ECC_SYN01 0x50 #define CAFE_NAND_ECC_SYN23 0x54 #define CAFE_NAND_ECC_SYN45 0x58 #define CAFE_NAND_ECC_SYN67 0x5c #define CAFE_NAND_READ_DATA 0x1000 #define CAFE_NAND_WRITE_DATA 0x2000 #define CAFE_GLOBAL_CTRL 0x3004 #define CAFE_GLOBAL_IRQ 0x3008 #define CAFE_GLOBAL_IRQ_MASK 0x300c #define CAFE_NAND_RESET 0x3034 /* Missing from the datasheet: bit 19 of CTRL1 sets CE0 vs. CE1 */ #define CTRL1_CHIPSELECT (1<<19) struct cafe_priv { struct nand_chip nand; struct pci_dev *pdev; void __iomem *mmio; struct rs_control *rs; uint32_t ctl1; uint32_t ctl2; int datalen; int nr_data; int data_pos; int page_addr; dma_addr_t dmaaddr; unsigned char *dmabuf; }; static int usedma = 1; module_param(usedma, int, 0644); static int skipbbt = 0; module_param(skipbbt, int, 0644); static int debug = 0; module_param(debug, int, 0644); static int regdebug = 0; module_param(regdebug, int, 0644); static int checkecc = 1; module_param(checkecc, int, 0644); static int numtimings; static int timing[3]; module_param_array(timing, int, &numtimings, 0644); /* Hrm. Why isn't this already conditional on something in the struct device? */ #define cafe_dev_dbg(dev, args...) do { if (debug) dev_dbg(dev, ##args); } while(0) /* Make it easier to switch to PIO if we need to */ #define cafe_readl(cafe, addr) readl((cafe)->mmio + CAFE_##addr) #define cafe_writel(cafe, datum, addr) writel(datum, (cafe)->mmio + CAFE_##addr) static int cafe_device_ready(struct mtd_info *mtd) { struct cafe_priv *cafe = mtd->priv; int result = !!(cafe_readl(cafe, NAND_STATUS) | 0x40000000); uint32_t irqs = cafe_readl(cafe, NAND_IRQ); cafe_writel(cafe, irqs, NAND_IRQ); cafe_dev_dbg(&cafe->pdev->dev, "NAND device is%s ready, IRQ %x (%x) (%x,%x)\n", result?"":" not", irqs, cafe_readl(cafe, NAND_IRQ), cafe_readl(cafe, GLOBAL_IRQ), cafe_readl(cafe, GLOBAL_IRQ_MASK)); return result; } static void cafe_write_buf(struct mtd_info *mtd, const uint8_t *buf, int len) { struct cafe_priv *cafe = mtd->priv; if (usedma) memcpy(cafe->dmabuf + cafe->datalen, buf, len); else memcpy_toio(cafe->mmio + CAFE_NAND_WRITE_DATA + cafe->datalen, buf, len); cafe->datalen += len; cafe_dev_dbg(&cafe->pdev->dev, "Copy 0x%x bytes to write buffer. datalen 0x%x\n", len, cafe->datalen); } static void cafe_read_buf(struct mtd_info *mtd, uint8_t *buf, int len) { struct cafe_priv *cafe = mtd->priv; if (usedma) memcpy(buf, cafe->dmabuf + cafe->datalen, len); else memcpy_fromio(buf, cafe->mmio + CAFE_NAND_READ_DATA + cafe->datalen, len); cafe_dev_dbg(&cafe->pdev->dev, "Copy 0x%x bytes from position 0x%x in read buffer.\n", len, cafe->datalen); cafe->datalen += len; } static uint8_t cafe_read_byte(struct mtd_info *mtd) { struct cafe_priv *cafe = mtd->priv; uint8_t d; cafe_read_buf(mtd, &d, 1); cafe_dev_dbg(&cafe->pdev->dev, "Read %02x\n", d); return d; } static void cafe_nand_cmdfunc(struct mtd_info *mtd, unsigned command, int column, int page_addr) { struct cafe_priv *cafe = mtd->priv; int adrbytes = 0; uint32_t ctl1; uint32_t doneint = 0x80000000; cafe_dev_dbg(&cafe->pdev->dev, "cmdfunc %02x, 0x%x, 0x%x\n", command, column, page_addr); if (command == NAND_CMD_ERASE2 || command == NAND_CMD_PAGEPROG) { /* Second half of a command we already calculated */ cafe_writel(cafe, cafe->ctl2 | 0x100 | command, NAND_CTRL2); ctl1 = cafe->ctl1; cafe->ctl2 &= ~(1<<30); cafe_dev_dbg(&cafe->pdev->dev, "Continue command, ctl1 %08x, #data %d\n", cafe->ctl1, cafe->nr_data); goto do_command; } /* Reset ECC engine */ cafe_writel(cafe, 0, NAND_CTRL2); /* Emulate NAND_CMD_READOOB on large-page chips */ if (mtd->writesize > 512 && command == NAND_CMD_READOOB) { column += mtd->writesize; command = NAND_CMD_READ0; } /* FIXME: Do we need to send read command before sending data for small-page chips, to position the buffer correctly? */ if (column != -1) { cafe_writel(cafe, column, NAND_ADDR1); adrbytes = 2; if (page_addr != -1) goto write_adr2; } else if (page_addr != -1) { cafe_writel(cafe, page_addr & 0xffff, NAND_ADDR1); page_addr >>= 16; write_adr2: cafe_writel(cafe, page_addr, NAND_ADDR2); adrbytes += 2; if (mtd->size > mtd->writesize << 16) adrbytes++; } cafe->data_pos = cafe->datalen = 0; /* Set command valid bit, mask in the chip select bit */ ctl1 = 0x80000000 | command | (cafe->ctl1 & CTRL1_CHIPSELECT); /* Set RD or WR bits as appropriate */ if (command == NAND_CMD_READID || command == NAND_CMD_STATUS) { ctl1 |= (1<<26); /* rd */ /* Always 5 bytes, for now */ cafe->datalen = 4; /* And one address cycle -- even for STATUS, since the controller doesn't work without */ adrbytes = 1; } else if (command == NAND_CMD_READ0 || command == NAND_CMD_READ1 || command == NAND_CMD_READOOB || command == NAND_CMD_RNDOUT) { ctl1 |= 1<<26; /* rd */ /* For now, assume just read to end of page */ cafe->datalen = mtd->writesize + mtd->oobsize - column; } else if (command == NAND_CMD_SEQIN) ctl1 |= 1<<25; /* wr */ /* Set number of address bytes */ if (adrbytes) ctl1 |= ((adrbytes-1)|8) << 27; if (command == NAND_CMD_SEQIN || command == NAND_CMD_ERASE1) { /* Ignore the first command of a pair; the hardware deals with them both at once, later */ cafe->ctl1 = ctl1; cafe_dev_dbg(&cafe->pdev->dev, "Setup for delayed command, ctl1 %08x, dlen %x\n", cafe->ctl1, cafe->datalen); return; } /* RNDOUT and READ0 commands need a following byte */ if (command == NAND_CMD_RNDOUT) cafe_writel(cafe, cafe->ctl2 | 0x100 | NAND_CMD_RNDOUTSTART, NAND_CTRL2); else if (command == NAND_CMD_READ0 && mtd->writesize > 512) cafe_writel(cafe, cafe->ctl2 | 0x100 | NAND_CMD_READSTART, NAND_CTRL2); do_command: cafe_dev_dbg(&cafe->pdev->dev, "dlen %x, ctl1 %x, ctl2 %x\n", cafe->datalen, ctl1, cafe_readl(cafe, NAND_CTRL2)); /* NB: The datasheet lies -- we really should be subtracting 1 here */ cafe_writel(cafe, cafe->datalen, NAND_DATA_LEN); cafe_writel(cafe, 0x90000000, NAND_IRQ); if (usedma && (ctl1 & (3<<25))) { uint32_t dmactl = 0xc0000000 + cafe->datalen; /* If WR or RD bits set, set up DMA */ if (ctl1 & (1<<26)) { /* It's a read */ dmactl |= (1<<29); /* ... so it's done when the DMA is done, not just the command. */ doneint = 0x10000000; } cafe_writel(cafe, dmactl, NAND_DMA_CTRL); } cafe->datalen = 0; if (unlikely(regdebug)) { int i; printk("About to write command %08x to register 0\n", ctl1); for (i=4; i< 0x5c; i+=4) printk("Register %x: %08x\n", i, readl(cafe->mmio + i)); } cafe_writel(cafe, ctl1, NAND_CTRL1); /* Apply this short delay always to ensure that we do wait tWB in * any case on any machine. */ ndelay(100); if (1) { int c; uint32_t irqs; for (c = 500000; c != 0; c--) { irqs = cafe_readl(cafe, NAND_IRQ); if (irqs & doneint) break; udelay(1); if (!(c % 100000)) cafe_dev_dbg(&cafe->pdev->dev, "Wait for ready, IRQ %x\n", irqs); cpu_relax(); } cafe_writel(cafe, doneint, NAND_IRQ); cafe_dev_dbg(&cafe->pdev->dev, "Command %x completed after %d usec, irqs %x (%x)\n", command, 500000-c, irqs, cafe_readl(cafe, NAND_IRQ)); } WARN_ON(cafe->ctl2 & (1<<30)); switch (command) { case NAND_CMD_CACHEDPROG: case NAND_CMD_PAGEPROG: case NAND_CMD_ERASE1: case NAND_CMD_ERASE2: case NAND_CMD_SEQIN: case NAND_CMD_RNDIN: case NAND_CMD_STATUS: case NAND_CMD_DEPLETE1: case NAND_CMD_RNDOUT: case NAND_CMD_STATUS_ERROR: case NAND_CMD_STATUS_ERROR0: case NAND_CMD_STATUS_ERROR1: case NAND_CMD_STATUS_ERROR2: case NAND_CMD_STATUS_ERROR3: cafe_writel(cafe, cafe->ctl2, NAND_CTRL2); return; } nand_wait_ready(mtd); cafe_writel(cafe, cafe->ctl2, NAND_CTRL2); } static void cafe_select_chip(struct mtd_info *mtd, int chipnr) { struct cafe_priv *cafe = mtd->priv; cafe_dev_dbg(&cafe->pdev->dev, "select_chip %d\n", chipnr); /* Mask the appropriate bit into the stored value of ctl1 which will be used by cafe_nand_cmdfunc() */ if (chipnr) cafe->ctl1 |= CTRL1_CHIPSELECT; else cafe->ctl1 &= ~CTRL1_CHIPSELECT; } static int cafe_nand_interrupt(int irq, void *id) { struct mtd_info *mtd = id; struct cafe_priv *cafe = mtd->priv; uint32_t irqs = cafe_readl(cafe, NAND_IRQ); cafe_writel(cafe, irqs & ~0x90000000, NAND_IRQ); if (!irqs) return IRQ_NONE; cafe_dev_dbg(&cafe->pdev->dev, "irq, bits %x (%x)\n", irqs, cafe_readl(cafe, NAND_IRQ)); return IRQ_HANDLED; } static void cafe_nand_bug(struct mtd_info *mtd) { BUG(); } static int cafe_nand_write_oob(struct mtd_info *mtd, struct nand_chip *chip, int page) { int status = 0; chip->cmdfunc(mtd, NAND_CMD_SEQIN, mtd->writesize, page); chip->write_buf(mtd, chip->oob_poi, mtd->oobsize); chip->cmdfunc(mtd, NAND_CMD_PAGEPROG, -1, -1); status = chip->waitfunc(mtd, chip); return status & NAND_STATUS_FAIL ? -EIO : 0; } /* Don't use -- use nand_read_oob_std for now */ static int cafe_nand_read_oob(struct mtd_info *mtd, struct nand_chip *chip, int page, int sndcmd) { chip->cmdfunc(mtd, NAND_CMD_READOOB, 0, page); chip->read_buf(mtd, chip->oob_poi, mtd->oobsize); return 1; } /** * cafe_nand_read_page_syndrome - {REPLACABLE] hardware ecc syndrom based page read * @mtd: mtd info structure * @chip: nand chip info structure * @buf: buffer to store read data * * The hw generator calculates the error syndrome automatically. Therefor * we need a special oob layout and handling. */ static int cafe_nand_read_page(struct mtd_info *mtd, struct nand_chip *chip, uint8_t *buf) { struct cafe_priv *cafe = mtd->priv; cafe_dev_dbg(&cafe->pdev->dev, "ECC result %08x SYN1,2 %08x\n", cafe_readl(cafe, NAND_ECC_RESULT), cafe_readl(cafe, NAND_ECC_SYN01)); chip->read_buf(mtd, buf, mtd->writesize); chip->read_buf(mtd, chip->oob_poi, mtd->oobsize); if (checkecc && cafe_readl(cafe, NAND_ECC_RESULT) & (1<<18)) { unsigned short syn[8], pat[4]; int pos[4]; u8 *oob = chip->oob_poi; int i, n; for (i=0; i<8; i+=2) { uint32_t tmp = cafe_readl(cafe, NAND_ECC_SYN01 + (i*2)); syn[i] = cafe->rs->index_of[tmp & 0xfff]; syn[i+1] = cafe->rs->index_of[(tmp >> 16) & 0xfff]; } n = decode_rs16(cafe->rs, NULL, NULL, 1367, syn, 0, pos, 0, pat); for (i = 0; i < n; i++) { int p = pos[i]; /* The 12-bit symbols are mapped to bytes here */ if (p > 1374) { /* out of range */ n = -1374; } else if (p == 0) { /* high four bits do not correspond to data */ if (pat[i] > 0xff) n = -2048; else buf[0] ^= pat[i]; } else if (p == 1365) { buf[2047] ^= pat[i] >> 4; oob[0] ^= pat[i] << 4; } else if (p > 1365) { if ((p & 1) == 1) { oob[3*p/2 - 2048] ^= pat[i] >> 4; oob[3*p/2 - 2047] ^= pat[i] << 4; } else { oob[3*p/2 - 2049] ^= pat[i] >> 8; oob[3*p/2 - 2048] ^= pat[i]; } } else if ((p & 1) == 1) { buf[3*p/2] ^= pat[i] >> 4; buf[3*p/2 + 1] ^= pat[i] << 4; } else { buf[3*p/2 - 1] ^= pat[i] >> 8; buf[3*p/2] ^= pat[i]; } } if (n < 0) { dev_dbg(&cafe->pdev->dev, "Failed to correct ECC at %08x\n", cafe_readl(cafe, NAND_ADDR2) * 2048); for (i = 0; i < 0x5c; i += 4) printk("Register %x: %08x\n", i, readl(cafe->mmio + i)); mtd->ecc_stats.failed++; } else { dev_dbg(&cafe->pdev->dev, "Corrected %d symbol errors\n", n); mtd->ecc_stats.corrected += n; } } return 0; } static struct nand_ecclayout cafe_oobinfo_2048 = { .eccbytes = 14, .eccpos = { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13}, .oobfree = {{14, 50}} }; /* Ick. The BBT code really ought to be able to work this bit out for itself from the above, at least for the 2KiB case */ static uint8_t cafe_bbt_pattern_2048[] = { 'B', 'b', 't', '0' }; static uint8_t cafe_mirror_pattern_2048[] = { '1', 't', 'b', 'B' }; static uint8_t cafe_bbt_pattern_512[] = { 0xBB }; static uint8_t cafe_mirror_pattern_512[] = { 0xBC }; static struct nand_bbt_descr cafe_bbt_main_descr_2048 = { .options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE | NAND_BBT_2BIT | NAND_BBT_VERSION, .offs = 14, .len = 4, .veroffs = 18, .maxblocks = 4, .pattern = cafe_bbt_pattern_2048 }; static struct nand_bbt_descr cafe_bbt_mirror_descr_2048 = { .options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE | NAND_BBT_2BIT | NAND_BBT_VERSION, .offs = 14, .len = 4, .veroffs = 18, .maxblocks = 4, .pattern = cafe_mirror_pattern_2048 }; static struct nand_ecclayout cafe_oobinfo_512 = { .eccbytes = 14, .eccpos = { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13}, .oobfree = {{14, 2}} }; static struct nand_bbt_descr cafe_bbt_main_descr_512 = { .options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE | NAND_BBT_2BIT | NAND_BBT_VERSION, .offs = 14, .len = 1, .veroffs = 15, .maxblocks = 4, .pattern = cafe_bbt_pattern_512 }; static struct nand_bbt_descr cafe_bbt_mirror_descr_512 = { .options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE | NAND_BBT_2BIT | NAND_BBT_VERSION, .offs = 14, .len = 1, .veroffs = 15, .maxblocks = 4, .pattern = cafe_mirror_pattern_512 }; static void cafe_nand_write_page_lowlevel(struct mtd_info *mtd, struct nand_chip *chip, const uint8_t *buf) { struct cafe_priv *cafe = mtd->priv; chip->write_buf(mtd, buf, mtd->writesize); chip->write_buf(mtd, chip->oob_poi, mtd->oobsize); /* Set up ECC autogeneration */ cafe->ctl2 |= (1<<30); } static int cafe_nand_write_page(struct mtd_info *mtd, struct nand_chip *chip, const uint8_t *buf, int page, int cached, int raw) { int status; chip->cmdfunc(mtd, NAND_CMD_SEQIN, 0x00, page); if (unlikely(raw)) chip->ecc.write_page_raw(mtd, chip, buf); else chip->ecc.write_page(mtd, chip, buf); /* * Cached progamming disabled for now, Not sure if its worth the * trouble. The speed gain is not very impressive. (2.3->2.6Mib/s) */ cached = 0; if (!cached || !(chip->options & NAND_CACHEPRG)) { chip->cmdfunc(mtd, NAND_CMD_PAGEPROG, -1, -1); status = chip->waitfunc(mtd, chip); /* * See if operation failed and additional status checks are * available */ if ((status & NAND_STATUS_FAIL) && (chip->errstat)) status = chip->errstat(mtd, chip, FL_WRITING, status, page); if (status & NAND_STATUS_FAIL) return -EIO; } else { chip->cmdfunc(mtd, NAND_CMD_CACHEDPROG, -1, -1); status = chip->waitfunc(mtd, chip); } #ifdef CONFIG_MTD_NAND_VERIFY_WRITE /* Send command to read back the data */ chip->cmdfunc(mtd, NAND_CMD_READ0, 0, page); if (chip->verify_buf(mtd, buf, mtd->writesize)) return -EIO; #endif return 0; } static int cafe_nand_block_bad(struct mtd_info *mtd, loff_t ofs, int getchip) { return 0; } /* F_2[X]/(X**6+X+1) */ static unsigned short __devinit gf64_mul(u8 a, u8 b) { u8 c; unsigned int i; c = 0; for (i = 0; i < 6; i++) { if (a & 1) c ^= b; a >>= 1; b <<= 1; if ((b & 0x40) != 0) b ^= 0x43; } return c; } /* F_64[X]/(X**2+X+A**-1) with A the generator of F_64[X] */ static u16 __devinit gf4096_mul(u16 a, u16 b) { u8 ah, al, bh, bl, ch, cl; ah = a >> 6; al = a & 0x3f; bh = b >> 6; bl = b & 0x3f; ch = gf64_mul(ah ^ al, bh ^ bl) ^ gf64_mul(al, bl); cl = gf64_mul(gf64_mul(ah, bh), 0x21) ^ gf64_mul(al, bl); return (ch << 6) ^ cl; } static int __devinit cafe_mul(int x) { if (x == 0) return 1; return gf4096_mul(x, 0xe01); } static int __devinit cafe_nand_probe(struct pci_dev *pdev, const struct pci_device_id *ent) { struct mtd_info *mtd; struct cafe_priv *cafe; uint32_t ctrl; int err = 0; /* Very old versions shared the same PCI ident for all three functions on the chip. Verify the class too... */ if ((pdev->class >> 8) != PCI_CLASS_MEMORY_FLASH) return -ENODEV; err = pci_enable_device(pdev); if (err) return err; pci_set_master(pdev); mtd = kzalloc(sizeof(*mtd) + sizeof(struct cafe_priv), GFP_KERNEL); if (!mtd) { dev_warn(&pdev->dev, "failed to alloc mtd_info\n"); return -ENOMEM; } cafe = (void *)(&mtd[1]); mtd->priv = cafe; mtd->owner = THIS_MODULE; cafe->pdev = pdev; cafe->mmio = pci_iomap(pdev, 0, 0); if (!cafe->mmio) { dev_warn(&pdev->dev, "failed to iomap\n"); err = -ENOMEM; goto out_free_mtd; } cafe->dmabuf = dma_alloc_coherent(&cafe->pdev->dev, 2112 + sizeof(struct nand_buffers), &cafe->dmaaddr, GFP_KERNEL); if (!cafe->dmabuf) { err = -ENOMEM; goto out_ior; } cafe->nand.buffers = (void *)cafe->dmabuf + 2112; cafe->rs = init_rs_non_canonical(12, &cafe_mul, 0, 1, 8); if (!cafe->rs) { err = -ENOMEM; goto out_ior; } cafe->nand.cmdfunc = cafe_nand_cmdfunc; cafe->nand.dev_ready = cafe_device_ready; cafe->nand.read_byte = cafe_read_byte; cafe->nand.read_buf = cafe_read_buf; cafe->nand.write_buf = cafe_write_buf; cafe->nand.select_chip = cafe_select_chip; cafe->nand.chip_delay = 0; /* Enable the following for a flash based bad block table */ cafe->nand.options = NAND_USE_FLASH_BBT | NAND_NO_AUTOINCR | NAND_OWN_BUFFERS; if (skipbbt) { cafe->nand.options |= NAND_SKIP_BBTSCAN; cafe->nand.block_bad = cafe_nand_block_bad; } if (numtimings && numtimings != 3) { dev_warn(&cafe->pdev->dev, "%d timing register values ignored; precisely three are required\n", numtimings); } if (numtimings == 3) { cafe_dev_dbg(&cafe->pdev->dev, "Using provided timings (%08x %08x %08x)\n", timing[0], timing[1], timing[2]); } else { timing[0] = cafe_readl(cafe, NAND_TIMING1); timing[1] = cafe_readl(cafe, NAND_TIMING2); timing[2] = cafe_readl(cafe, NAND_TIMING3); if (timing[0] | timing[1] | timing[2]) { cafe_dev_dbg(&cafe->pdev->dev, "Timing registers already set (%08x %08x %08x)\n", timing[0], timing[1], timing[2]); } else { dev_warn(&cafe->pdev->dev, "Timing registers unset; using most conservative defaults\n"); timing[0] = timing[1] = timing[2] = 0xffffffff; } } /* Start off by resetting the NAND controller completely */ cafe_writel(cafe, 1, NAND_RESET); cafe_writel(cafe, 0, NAND_RESET); cafe_writel(cafe, timing[0], NAND_TIMING1); cafe_writel(cafe, timing[1], NAND_TIMING2); cafe_writel(cafe, timing[2], NAND_TIMING3); cafe_writel(cafe, 0xffffffff, NAND_IRQ_MASK); err = request_irq(pdev->irq, &cafe_nand_interrupt, IRQF_SHARED, "CAFE NAND", mtd); if (err) { dev_warn(&pdev->dev, "Could not register IRQ %d\n", pdev->irq); goto out_free_dma; } /* Disable master reset, enable NAND clock */ ctrl = cafe_readl(cafe, GLOBAL_CTRL); ctrl &= 0xffffeff0; ctrl |= 0x00007000; cafe_writel(cafe, ctrl | 0x05, GLOBAL_CTRL); cafe_writel(cafe, ctrl | 0x0a, GLOBAL_CTRL); cafe_writel(cafe, 0, NAND_DMA_CTRL); cafe_writel(cafe, 0x7006, GLOBAL_CTRL); cafe_writel(cafe, 0x700a, GLOBAL_CTRL); /* Set up DMA address */ cafe_writel(cafe, cafe->dmaaddr & 0xffffffff, NAND_DMA_ADDR0); if (sizeof(cafe->dmaaddr) > 4) /* Shift in two parts to shut the compiler up */ cafe_writel(cafe, (cafe->dmaaddr >> 16) >> 16, NAND_DMA_ADDR1); else cafe_writel(cafe, 0, NAND_DMA_ADDR1); cafe_dev_dbg(&cafe->pdev->dev, "Set DMA address to %x (virt %p)\n", cafe_readl(cafe, NAND_DMA_ADDR0), cafe->dmabuf); /* Enable NAND IRQ in global IRQ mask register */ cafe_writel(cafe, 0x80000007, GLOBAL_IRQ_MASK); cafe_dev_dbg(&cafe->pdev->dev, "Control %x, IRQ mask %x\n", cafe_readl(cafe, GLOBAL_CTRL), cafe_readl(cafe, GLOBAL_IRQ_MASK)); /* Scan to find existence of the device */ if (nand_scan_ident(mtd, 2)) { err = -ENXIO; goto out_irq; } cafe->ctl2 = 1<<27; /* Reed-Solomon ECC */ if (mtd->writesize == 2048) cafe->ctl2 |= 1<<29; /* 2KiB page size */ /* Set up ECC according to the type of chip we found */ if (mtd->writesize == 2048) { cafe->nand.ecc.layout = &cafe_oobinfo_2048; cafe->nand.bbt_td = &cafe_bbt_main_descr_2048; cafe->nand.bbt_md = &cafe_bbt_mirror_descr_2048; } else if (mtd->writesize == 512) { cafe->nand.ecc.layout = &cafe_oobinfo_512; cafe->nand.bbt_td = &cafe_bbt_main_descr_512; cafe->nand.bbt_md = &cafe_bbt_mirror_descr_512; } else { printk(KERN_WARNING "Unexpected NAND flash writesize %d. Aborting\n", mtd->writesize); goto out_irq; } cafe->nand.ecc.mode = NAND_ECC_HW_SYNDROME; cafe->nand.ecc.size = mtd->writesize; cafe->nand.ecc.bytes = 14; cafe->nand.ecc.hwctl = (void *)cafe_nand_bug; cafe->nand.ecc.calculate = (void *)cafe_nand_bug; cafe->nand.ecc.correct = (void *)cafe_nand_bug; cafe->nand.write_page = cafe_nand_write_page; cafe->nand.ecc.write_page = cafe_nand_write_page_lowlevel; cafe->nand.ecc.write_oob = cafe_nand_write_oob; cafe->nand.ecc.read_page = cafe_nand_read_page; cafe->nand.ecc.read_oob = cafe_nand_read_oob; err = nand_scan_tail(mtd); if (err) goto out_irq; pci_set_drvdata(pdev, mtd); add_mtd_device(mtd); goto out; out_irq: /* Disable NAND IRQ in global IRQ mask register */ cafe_writel(cafe, ~1 & cafe_readl(cafe, GLOBAL_IRQ_MASK), GLOBAL_IRQ_MASK); free_irq(pdev->irq, mtd); out_free_dma: dma_free_coherent(&cafe->pdev->dev, 2112, cafe->dmabuf, cafe->dmaaddr); out_ior: pci_iounmap(pdev, cafe->mmio); out_free_mtd: kfree(mtd); out: return err; } static void __devexit cafe_nand_remove(struct pci_dev *pdev) { struct mtd_info *mtd = pci_get_drvdata(pdev); struct cafe_priv *cafe = mtd->priv; del_mtd_device(mtd); /* Disable NAND IRQ in global IRQ mask register */ cafe_writel(cafe, ~1 & cafe_readl(cafe, GLOBAL_IRQ_MASK), GLOBAL_IRQ_MASK); free_irq(pdev->irq, mtd); nand_release(mtd); free_rs(cafe->rs); pci_iounmap(pdev, cafe->mmio); dma_free_coherent(&cafe->pdev->dev, 2112, cafe->dmabuf, cafe->dmaaddr); kfree(mtd); } static struct pci_device_id cafe_nand_tbl[] = { { 0x11ab, 0x4100, PCI_ANY_ID, PCI_ANY_ID }, { } }; MODULE_DEVICE_TABLE(pci, cafe_nand_tbl); static struct pci_driver cafe_nand_pci_driver = { .name = "CAFÉ NAND", .id_table = cafe_nand_tbl, .probe = cafe_nand_probe, .remove = __devexit_p(cafe_nand_remove), #ifdef CONFIG_PMx .suspend = cafe_nand_suspend, .resume = cafe_nand_resume, #endif }; static int cafe_nand_init(void) { return pci_register_driver(&cafe_nand_pci_driver); } static void cafe_nand_exit(void) { pci_unregister_driver(&cafe_nand_pci_driver); } module_init(cafe_nand_init); module_exit(cafe_nand_exit); MODULE_LICENSE("GPL"); MODULE_AUTHOR("David Woodhouse "); MODULE_DESCRIPTION("NAND flash driver for OLPC CAFÉ chip");