// SPDX-License-Identifier: GPL-2.0 #include "bcachefs.h" #include "bkey_methods.h" #include "bkey_buf.h" #include "btree_cache.h" #include "btree_iter.h" #include "btree_key_cache.h" #include "btree_locking.h" #include "btree_update.h" #include "debug.h" #include "error.h" #include "extents.h" #include "journal.h" #include "replicas.h" #include "subvolume.h" #include "trace.h" #include static inline void btree_path_list_remove(struct btree_trans *, struct btree_path *); static inline void btree_path_list_add(struct btree_trans *, struct btree_path *, struct btree_path *); static struct btree_path *btree_path_alloc(struct btree_trans *, struct btree_path *); /* * Unlocks before scheduling * Note: does not revalidate iterator */ static inline int bch2_trans_cond_resched(struct btree_trans *trans) { if (need_resched() || race_fault()) { bch2_trans_unlock(trans); schedule(); return bch2_trans_relock(trans) ? 0 : -EINTR; } else { return 0; } } static inline int __btree_path_cmp(const struct btree_path *l, enum btree_id r_btree_id, bool r_cached, struct bpos r_pos, unsigned r_level) { return cmp_int(l->btree_id, r_btree_id) ?: cmp_int((int) l->cached, (int) r_cached) ?: bpos_cmp(l->pos, r_pos) ?: -cmp_int(l->level, r_level); } static inline int btree_path_cmp(const struct btree_path *l, const struct btree_path *r) { return __btree_path_cmp(l, r->btree_id, r->cached, r->pos, r->level); } static inline struct bpos bkey_successor(struct btree_iter *iter, struct bpos p) { /* Are we iterating over keys in all snapshots? */ if (iter->flags & BTREE_ITER_ALL_SNAPSHOTS) { p = bpos_successor(p); } else { p = bpos_nosnap_successor(p); p.snapshot = iter->snapshot; } return p; } static inline struct bpos bkey_predecessor(struct btree_iter *iter, struct bpos p) { /* Are we iterating over keys in all snapshots? */ if (iter->flags & BTREE_ITER_ALL_SNAPSHOTS) { p = bpos_predecessor(p); } else { p = bpos_nosnap_predecessor(p); p.snapshot = iter->snapshot; } return p; } static inline bool is_btree_node(struct btree_path *path, unsigned l) { return l < BTREE_MAX_DEPTH && (unsigned long) path->l[l].b >= 128; } static inline struct bpos btree_iter_search_key(struct btree_iter *iter) { struct bpos pos = iter->pos; if ((iter->flags & BTREE_ITER_IS_EXTENTS) && bkey_cmp(pos, POS_MAX)) pos = bkey_successor(iter, pos); return pos; } static inline bool btree_path_pos_before_node(struct btree_path *path, struct btree *b) { return bpos_cmp(path->pos, b->data->min_key) < 0; } static inline bool btree_path_pos_after_node(struct btree_path *path, struct btree *b) { return bpos_cmp(b->key.k.p, path->pos) < 0; } static inline bool btree_path_pos_in_node(struct btree_path *path, struct btree *b) { return path->btree_id == b->c.btree_id && !btree_path_pos_before_node(path, b) && !btree_path_pos_after_node(path, b); } /* Btree node locking: */ void bch2_btree_node_unlock_write(struct btree_trans *trans, struct btree_path *path, struct btree *b) { bch2_btree_node_unlock_write_inlined(trans, path, b); } void __bch2_btree_node_lock_write(struct btree_trans *trans, struct btree *b) { struct btree_path *linked; unsigned readers = 0; trans_for_each_path(trans, linked) if (linked->l[b->c.level].b == b && btree_node_read_locked(linked, b->c.level)) readers++; /* * Must drop our read locks before calling six_lock_write() - * six_unlock() won't do wakeups until the reader count * goes to 0, and it's safe because we have the node intent * locked: */ if (!b->c.lock.readers) atomic64_sub(__SIX_VAL(read_lock, readers), &b->c.lock.state.counter); else this_cpu_sub(*b->c.lock.readers, readers); btree_node_lock_type(trans->c, b, SIX_LOCK_write); if (!b->c.lock.readers) atomic64_add(__SIX_VAL(read_lock, readers), &b->c.lock.state.counter); else this_cpu_add(*b->c.lock.readers, readers); } bool __bch2_btree_node_relock(struct btree_trans *trans, struct btree_path *path, unsigned level) { struct btree *b = btree_path_node(path, level); int want = __btree_lock_want(path, level); if (!is_btree_node(path, level)) return false; if (race_fault()) return false; if (six_relock_type(&b->c.lock, want, path->l[level].lock_seq) || (btree_node_lock_seq_matches(path, b, level) && btree_node_lock_increment(trans, b, level, want))) { mark_btree_node_locked(path, level, want); return true; } else { return false; } } bool bch2_btree_node_upgrade(struct btree_trans *trans, struct btree_path *path, unsigned level) { struct btree *b = path->l[level].b; if (!is_btree_node(path, level)) return false; switch (btree_lock_want(path, level)) { case BTREE_NODE_UNLOCKED: BUG_ON(btree_node_locked(path, level)); return true; case BTREE_NODE_READ_LOCKED: BUG_ON(btree_node_intent_locked(path, level)); return bch2_btree_node_relock(trans, path, level); case BTREE_NODE_INTENT_LOCKED: break; } if (btree_node_intent_locked(path, level)) return true; if (race_fault()) return false; if (btree_node_locked(path, level) ? six_lock_tryupgrade(&b->c.lock) : six_relock_type(&b->c.lock, SIX_LOCK_intent, path->l[level].lock_seq)) goto success; if (btree_node_lock_seq_matches(path, b, level) && btree_node_lock_increment(trans, b, level, BTREE_NODE_INTENT_LOCKED)) { btree_node_unlock(path, level); goto success; } return false; success: mark_btree_node_intent_locked(path, level); return true; } static inline bool btree_path_get_locks(struct btree_trans *trans, struct btree_path *path, bool upgrade, unsigned long trace_ip) { unsigned l = path->level; int fail_idx = -1; do { if (!btree_path_node(path, l)) break; if (!(upgrade ? bch2_btree_node_upgrade(trans, path, l) : bch2_btree_node_relock(trans, path, l))) fail_idx = l; l++; } while (l < path->locks_want); /* * When we fail to get a lock, we have to ensure that any child nodes * can't be relocked so bch2_btree_path_traverse has to walk back up to * the node that we failed to relock: */ if (fail_idx >= 0) { __bch2_btree_path_unlock(path); btree_path_set_dirty(path, BTREE_ITER_NEED_TRAVERSE); do { path->l[fail_idx].b = BTREE_ITER_NO_NODE_GET_LOCKS; --fail_idx; } while (fail_idx >= 0); } if (path->uptodate == BTREE_ITER_NEED_RELOCK) path->uptodate = BTREE_ITER_UPTODATE; bch2_trans_verify_locks(trans); return path->uptodate < BTREE_ITER_NEED_RELOCK; } static struct bpos btree_node_pos(struct btree_bkey_cached_common *_b, bool cached) { return !cached ? container_of(_b, struct btree, c)->key.k.p : container_of(_b, struct bkey_cached, c)->key.pos; } /* Slowpath: */ bool __bch2_btree_node_lock(struct btree_trans *trans, struct btree_path *path, struct btree *b, struct bpos pos, unsigned level, enum six_lock_type type, six_lock_should_sleep_fn should_sleep_fn, void *p, unsigned long ip) { struct btree_path *linked, *deadlock_path = NULL; u64 start_time = local_clock(); unsigned reason = 9; bool ret; /* Check if it's safe to block: */ trans_for_each_path(trans, linked) { if (!linked->nodes_locked) continue; /* * Can't block taking an intent lock if we have _any_ nodes read * locked: * * - Our read lock blocks another thread with an intent lock on * the same node from getting a write lock, and thus from * dropping its intent lock * * - And the other thread may have multiple nodes intent locked: * both the node we want to intent lock, and the node we * already have read locked - deadlock: */ if (type == SIX_LOCK_intent && linked->nodes_locked != linked->nodes_intent_locked) { deadlock_path = linked; reason = 1; } if (linked->btree_id != path->btree_id) { if (linked->btree_id > path->btree_id) { deadlock_path = linked; reason = 3; } continue; } /* * Within the same btree, cached paths come before non * cached paths: */ if (linked->cached != path->cached) { if (path->cached) { deadlock_path = linked; reason = 4; } continue; } /* * Interior nodes must be locked before their descendants: if * another path has possible descendants locked of the node * we're about to lock, it must have the ancestors locked too: */ if (level > __fls(linked->nodes_locked)) { deadlock_path = linked; reason = 5; } /* Must lock btree nodes in key order: */ if (btree_node_locked(linked, level) && bpos_cmp(pos, btree_node_pos((void *) linked->l[level].b, linked->cached)) <= 0) { deadlock_path = linked; reason = 7; } } if (unlikely(deadlock_path)) { trace_trans_restart_would_deadlock(trans->ip, ip, trans->in_traverse_all, reason, deadlock_path->btree_id, deadlock_path->cached, &deadlock_path->pos, path->btree_id, path->cached, &pos); btree_trans_restart(trans); return false; } if (six_trylock_type(&b->c.lock, type)) return true; #ifdef CONFIG_BCACHEFS_DEBUG trans->locking_path_idx = path->idx; trans->locking_pos = pos; trans->locking_btree_id = path->btree_id; trans->locking_level = level; trans->locking = b; #endif ret = six_lock_type(&b->c.lock, type, should_sleep_fn, p) == 0; #ifdef CONFIG_BCACHEFS_DEBUG trans->locking = NULL; #endif if (ret) bch2_time_stats_update(&trans->c->times[lock_to_time_stat(type)], start_time); return ret; } /* Btree iterator locking: */ #ifdef CONFIG_BCACHEFS_DEBUG static void bch2_btree_path_verify_locks(struct btree_path *path) { unsigned l; if (!path->nodes_locked) { BUG_ON(path->uptodate == BTREE_ITER_UPTODATE && btree_path_node(path, path->level)); return; } for (l = 0; btree_path_node(path, l); l++) BUG_ON(btree_lock_want(path, l) != btree_node_locked_type(path, l)); } void bch2_trans_verify_locks(struct btree_trans *trans) { struct btree_path *path; trans_for_each_path(trans, path) bch2_btree_path_verify_locks(path); } #else static inline void bch2_btree_path_verify_locks(struct btree_path *path) {} #endif /* Btree path locking: */ /* * Only for btree_cache.c - only relocks intent locks */ bool bch2_btree_path_relock_intent(struct btree_trans *trans, struct btree_path *path) { unsigned l; for (l = path->level; l < path->locks_want && btree_path_node(path, l); l++) { if (!bch2_btree_node_relock(trans, path, l)) { __bch2_btree_path_unlock(path); btree_path_set_dirty(path, BTREE_ITER_NEED_TRAVERSE); btree_trans_restart(trans); return false; } } return true; } __flatten static bool bch2_btree_path_relock(struct btree_trans *trans, struct btree_path *path, unsigned long trace_ip) { bool ret = btree_path_get_locks(trans, path, false, trace_ip); if (!ret) btree_trans_restart(trans); return ret; } bool __bch2_btree_path_upgrade(struct btree_trans *trans, struct btree_path *path, unsigned new_locks_want) { struct btree_path *linked; EBUG_ON(path->locks_want >= new_locks_want); path->locks_want = new_locks_want; if (btree_path_get_locks(trans, path, true, _THIS_IP_)) return true; /* * XXX: this is ugly - we'd prefer to not be mucking with other * iterators in the btree_trans here. * * On failure to upgrade the iterator, setting iter->locks_want and * calling get_locks() is sufficient to make bch2_btree_path_traverse() * get the locks we want on transaction restart. * * But if this iterator was a clone, on transaction restart what we did * to this iterator isn't going to be preserved. * * Possibly we could add an iterator field for the parent iterator when * an iterator is a copy - for now, we'll just upgrade any other * iterators with the same btree id. * * The code below used to be needed to ensure ancestor nodes get locked * before interior nodes - now that's handled by * bch2_btree_path_traverse_all(). */ trans_for_each_path(trans, linked) if (linked != path && linked->cached == path->cached && linked->btree_id == path->btree_id && linked->locks_want < new_locks_want) { linked->locks_want = new_locks_want; btree_path_get_locks(trans, linked, true, _THIS_IP_); } return false; } void __bch2_btree_path_downgrade(struct btree_path *path, unsigned new_locks_want) { unsigned l; EBUG_ON(path->locks_want < new_locks_want); path->locks_want = new_locks_want; while (path->nodes_locked && (l = __fls(path->nodes_locked)) >= path->locks_want) { if (l > path->level) { btree_node_unlock(path, l); } else { if (btree_node_intent_locked(path, l)) { six_lock_downgrade(&path->l[l].b->c.lock); path->nodes_intent_locked ^= 1 << l; } break; } } bch2_btree_path_verify_locks(path); } void bch2_trans_downgrade(struct btree_trans *trans) { struct btree_path *path; trans_for_each_path(trans, path) bch2_btree_path_downgrade(path); } /* Btree transaction locking: */ bool bch2_trans_relock(struct btree_trans *trans) { struct btree_path *path; if (unlikely(trans->restarted)) return false; trans_for_each_path(trans, path) if (path->should_be_locked && !bch2_btree_path_relock(trans, path, _RET_IP_)) { trace_trans_restart_relock(trans->ip, _RET_IP_, path->btree_id, &path->pos); BUG_ON(!trans->restarted); return false; } return true; } void bch2_trans_unlock(struct btree_trans *trans) { struct btree_path *path; trans_for_each_path(trans, path) __bch2_btree_path_unlock(path); } /* Btree iterator: */ #ifdef CONFIG_BCACHEFS_DEBUG static void bch2_btree_path_verify_cached(struct btree_trans *trans, struct btree_path *path) { struct bkey_cached *ck; bool locked = btree_node_locked(path, 0); if (!bch2_btree_node_relock(trans, path, 0)) return; ck = (void *) path->l[0].b; BUG_ON(ck->key.btree_id != path->btree_id || bkey_cmp(ck->key.pos, path->pos)); if (!locked) btree_node_unlock(path, 0); } static void bch2_btree_path_verify_level(struct btree_trans *trans, struct btree_path *path, unsigned level) { struct btree_path_level *l; struct btree_node_iter tmp; bool locked; struct bkey_packed *p, *k; char buf1[100], buf2[100], buf3[100]; const char *msg; if (!bch2_debug_check_iterators) return; l = &path->l[level]; tmp = l->iter; locked = btree_node_locked(path, level); if (path->cached) { if (!level) bch2_btree_path_verify_cached(trans, path); return; } if (!btree_path_node(path, level)) return; if (!bch2_btree_node_relock(trans, path, level)) return; BUG_ON(!btree_path_pos_in_node(path, l->b)); bch2_btree_node_iter_verify(&l->iter, l->b); /* * For interior nodes, the iterator will have skipped past deleted keys: */ p = level ? bch2_btree_node_iter_prev(&tmp, l->b) : bch2_btree_node_iter_prev_all(&tmp, l->b); k = bch2_btree_node_iter_peek_all(&l->iter, l->b); if (p && bkey_iter_pos_cmp(l->b, p, &path->pos) >= 0) { msg = "before"; goto err; } if (k && bkey_iter_pos_cmp(l->b, k, &path->pos) < 0) { msg = "after"; goto err; } if (!locked) btree_node_unlock(path, level); return; err: strcpy(buf2, "(none)"); strcpy(buf3, "(none)"); bch2_bpos_to_text(&PBUF(buf1), path->pos); if (p) { struct bkey uk = bkey_unpack_key(l->b, p); bch2_bkey_to_text(&PBUF(buf2), &uk); } if (k) { struct bkey uk = bkey_unpack_key(l->b, k); bch2_bkey_to_text(&PBUF(buf3), &uk); } panic("path should be %s key at level %u:\n" "path pos %s\n" "prev key %s\n" "cur key %s\n", msg, level, buf1, buf2, buf3); } static void bch2_btree_path_verify(struct btree_trans *trans, struct btree_path *path) { struct bch_fs *c = trans->c; unsigned i; EBUG_ON(path->btree_id >= BTREE_ID_NR); for (i = 0; i < (!path->cached ? BTREE_MAX_DEPTH : 1); i++) { if (!path->l[i].b) { BUG_ON(!path->cached && c->btree_roots[path->btree_id].b->c.level > i); break; } bch2_btree_path_verify_level(trans, path, i); } bch2_btree_path_verify_locks(path); } void bch2_trans_verify_paths(struct btree_trans *trans) { struct btree_path *path; trans_for_each_path(trans, path) bch2_btree_path_verify(trans, path); } static void bch2_btree_iter_verify(struct btree_iter *iter) { struct btree_trans *trans = iter->trans; BUG_ON(iter->btree_id >= BTREE_ID_NR); BUG_ON(!!(iter->flags & BTREE_ITER_CACHED) != iter->path->cached); BUG_ON(!(iter->flags & BTREE_ITER_ALL_SNAPSHOTS) && iter->pos.snapshot != iter->snapshot); BUG_ON((iter->flags & BTREE_ITER_IS_EXTENTS) && (iter->flags & BTREE_ITER_ALL_SNAPSHOTS)); BUG_ON(!(iter->flags & __BTREE_ITER_ALL_SNAPSHOTS) && (iter->flags & BTREE_ITER_ALL_SNAPSHOTS) && !btree_type_has_snapshots(iter->btree_id)); bch2_btree_path_verify(trans, iter->path); } static void bch2_btree_iter_verify_entry_exit(struct btree_iter *iter) { BUG_ON((iter->flags & BTREE_ITER_FILTER_SNAPSHOTS) && !iter->pos.snapshot); BUG_ON(!(iter->flags & BTREE_ITER_ALL_SNAPSHOTS) && iter->pos.snapshot != iter->snapshot); BUG_ON(bkey_cmp(iter->pos, bkey_start_pos(&iter->k)) < 0 || bkey_cmp(iter->pos, iter->k.p) > 0); } static int bch2_btree_iter_verify_ret(struct btree_iter *iter, struct bkey_s_c k) { struct btree_trans *trans = iter->trans; struct btree_iter copy; struct bkey_s_c prev; int ret = 0; if (!bch2_debug_check_iterators) return 0; if (!(iter->flags & BTREE_ITER_FILTER_SNAPSHOTS)) return 0; if (bkey_err(k) || !k.k) return 0; BUG_ON(!bch2_snapshot_is_ancestor(trans->c, iter->snapshot, k.k->p.snapshot)); bch2_trans_iter_init(trans, ©, iter->btree_id, iter->pos, BTREE_ITER_ALL_SNAPSHOTS); prev = bch2_btree_iter_prev(©); if (!prev.k) goto out; ret = bkey_err(prev); if (ret) goto out; if (!bkey_cmp(prev.k->p, k.k->p) && bch2_snapshot_is_ancestor(trans->c, iter->snapshot, prev.k->p.snapshot) > 0) { char buf1[100], buf2[200]; bch2_bkey_to_text(&PBUF(buf1), k.k); bch2_bkey_to_text(&PBUF(buf2), prev.k); panic("iter snap %u\n" "k %s\n" "prev %s\n", iter->snapshot, buf1, buf2); } out: bch2_trans_iter_exit(trans, ©); return ret; } void bch2_assert_pos_locked(struct btree_trans *trans, enum btree_id id, struct bpos pos, bool key_cache) { struct btree_path *path; unsigned idx; char buf[100]; trans_for_each_path_inorder(trans, path, idx) { int cmp = cmp_int(path->btree_id, id) ?: cmp_int(path->cached, key_cache); if (cmp > 0) break; if (cmp < 0) continue; if (!(path->nodes_locked & 1) || !path->should_be_locked) continue; if (!key_cache) { if (bkey_cmp(pos, path->l[0].b->data->min_key) >= 0 && bkey_cmp(pos, path->l[0].b->key.k.p) <= 0) return; } else { if (!bkey_cmp(pos, path->pos)) return; } } bch2_dump_trans_paths_updates(trans); panic("not locked: %s %s%s\n", bch2_btree_ids[id], (bch2_bpos_to_text(&PBUF(buf), pos), buf), key_cache ? " cached" : ""); } #else static inline void bch2_btree_path_verify_level(struct btree_trans *trans, struct btree_path *path, unsigned l) {} static inline void bch2_btree_path_verify(struct btree_trans *trans, struct btree_path *path) {} static inline void bch2_btree_iter_verify(struct btree_iter *iter) {} static inline void bch2_btree_iter_verify_entry_exit(struct btree_iter *iter) {} static inline int bch2_btree_iter_verify_ret(struct btree_iter *iter, struct bkey_s_c k) { return 0; } #endif /* Btree path: fixups after btree updates */ static void btree_node_iter_set_set_pos(struct btree_node_iter *iter, struct btree *b, struct bset_tree *t, struct bkey_packed *k) { struct btree_node_iter_set *set; btree_node_iter_for_each(iter, set) if (set->end == t->end_offset) { set->k = __btree_node_key_to_offset(b, k); bch2_btree_node_iter_sort(iter, b); return; } bch2_btree_node_iter_push(iter, b, k, btree_bkey_last(b, t)); } static void __bch2_btree_path_fix_key_modified(struct btree_path *path, struct btree *b, struct bkey_packed *where) { struct btree_path_level *l = &path->l[b->c.level]; if (where != bch2_btree_node_iter_peek_all(&l->iter, l->b)) return; if (bkey_iter_pos_cmp(l->b, where, &path->pos) < 0) bch2_btree_node_iter_advance(&l->iter, l->b); } void bch2_btree_path_fix_key_modified(struct btree_trans *trans, struct btree *b, struct bkey_packed *where) { struct btree_path *path; trans_for_each_path_with_node(trans, b, path) { __bch2_btree_path_fix_key_modified(path, b, where); bch2_btree_path_verify_level(trans, path, b->c.level); } } static void __bch2_btree_node_iter_fix(struct btree_path *path, struct btree *b, struct btree_node_iter *node_iter, struct bset_tree *t, struct bkey_packed *where, unsigned clobber_u64s, unsigned new_u64s) { const struct bkey_packed *end = btree_bkey_last(b, t); struct btree_node_iter_set *set; unsigned offset = __btree_node_key_to_offset(b, where); int shift = new_u64s - clobber_u64s; unsigned old_end = t->end_offset - shift; unsigned orig_iter_pos = node_iter->data[0].k; bool iter_current_key_modified = orig_iter_pos >= offset && orig_iter_pos <= offset + clobber_u64s; btree_node_iter_for_each(node_iter, set) if (set->end == old_end) goto found; /* didn't find the bset in the iterator - might have to readd it: */ if (new_u64s && bkey_iter_pos_cmp(b, where, &path->pos) >= 0) { bch2_btree_node_iter_push(node_iter, b, where, end); goto fixup_done; } else { /* Iterator is after key that changed */ return; } found: set->end = t->end_offset; /* Iterator hasn't gotten to the key that changed yet: */ if (set->k < offset) return; if (new_u64s && bkey_iter_pos_cmp(b, where, &path->pos) >= 0) { set->k = offset; } else if (set->k < offset + clobber_u64s) { set->k = offset + new_u64s; if (set->k == set->end) bch2_btree_node_iter_set_drop(node_iter, set); } else { /* Iterator is after key that changed */ set->k = (int) set->k + shift; return; } bch2_btree_node_iter_sort(node_iter, b); fixup_done: if (node_iter->data[0].k != orig_iter_pos) iter_current_key_modified = true; /* * When a new key is added, and the node iterator now points to that * key, the iterator might have skipped past deleted keys that should * come after the key the iterator now points to. We have to rewind to * before those deleted keys - otherwise * bch2_btree_node_iter_prev_all() breaks: */ if (!bch2_btree_node_iter_end(node_iter) && iter_current_key_modified && b->c.level) { struct bset_tree *t; struct bkey_packed *k, *k2, *p; k = bch2_btree_node_iter_peek_all(node_iter, b); for_each_bset(b, t) { bool set_pos = false; if (node_iter->data[0].end == t->end_offset) continue; k2 = bch2_btree_node_iter_bset_pos(node_iter, b, t); while ((p = bch2_bkey_prev_all(b, t, k2)) && bkey_iter_cmp(b, k, p) < 0) { k2 = p; set_pos = true; } if (set_pos) btree_node_iter_set_set_pos(node_iter, b, t, k2); } } } void bch2_btree_node_iter_fix(struct btree_trans *trans, struct btree_path *path, struct btree *b, struct btree_node_iter *node_iter, struct bkey_packed *where, unsigned clobber_u64s, unsigned new_u64s) { struct bset_tree *t = bch2_bkey_to_bset_inlined(b, where); struct btree_path *linked; if (node_iter != &path->l[b->c.level].iter) { __bch2_btree_node_iter_fix(path, b, node_iter, t, where, clobber_u64s, new_u64s); if (bch2_debug_check_iterators) bch2_btree_node_iter_verify(node_iter, b); } trans_for_each_path_with_node(trans, b, linked) { __bch2_btree_node_iter_fix(linked, b, &linked->l[b->c.level].iter, t, where, clobber_u64s, new_u64s); bch2_btree_path_verify_level(trans, linked, b->c.level); } } /* Btree path level: pointer to a particular btree node and node iter */ static inline struct bkey_s_c __btree_iter_unpack(struct bch_fs *c, struct btree_path_level *l, struct bkey *u, struct bkey_packed *k) { struct bkey_s_c ret; if (unlikely(!k)) { /* * signal to bch2_btree_iter_peek_slot() that we're currently at * a hole */ u->type = KEY_TYPE_deleted; return bkey_s_c_null; } ret = bkey_disassemble(l->b, k, u); /* * XXX: bch2_btree_bset_insert_key() generates invalid keys when we * overwrite extents - it sets k->type = KEY_TYPE_deleted on the key * being overwritten but doesn't change k->size. But this is ok, because * those keys are never written out, we just have to avoid a spurious * assertion here: */ if (bch2_debug_check_bkeys && !bkey_deleted(ret.k)) bch2_bkey_debugcheck(c, l->b, ret); return ret; } static inline struct bkey_s_c btree_path_level_peek_all(struct bch_fs *c, struct btree_path_level *l, struct bkey *u) { return __btree_iter_unpack(c, l, u, bch2_btree_node_iter_peek_all(&l->iter, l->b)); } static inline struct bkey_s_c btree_path_level_peek(struct btree_trans *trans, struct btree_path *path, struct btree_path_level *l, struct bkey *u) { struct bkey_s_c k = __btree_iter_unpack(trans->c, l, u, bch2_btree_node_iter_peek(&l->iter, l->b)); path->pos = k.k ? k.k->p : l->b->key.k.p; trans->paths_sorted = false; return k; } static inline struct bkey_s_c btree_path_level_prev(struct btree_trans *trans, struct btree_path *path, struct btree_path_level *l, struct bkey *u) { struct bkey_s_c k = __btree_iter_unpack(trans->c, l, u, bch2_btree_node_iter_prev(&l->iter, l->b)); path->pos = k.k ? k.k->p : l->b->data->min_key; trans->paths_sorted = false; return k; } static inline bool btree_path_advance_to_pos(struct btree_path *path, struct btree_path_level *l, int max_advance) { struct bkey_packed *k; int nr_advanced = 0; while ((k = bch2_btree_node_iter_peek_all(&l->iter, l->b)) && bkey_iter_pos_cmp(l->b, k, &path->pos) < 0) { if (max_advance > 0 && nr_advanced >= max_advance) return false; bch2_btree_node_iter_advance(&l->iter, l->b); nr_advanced++; } return true; } /* * Verify that iterator for parent node points to child node: */ static void btree_path_verify_new_node(struct btree_trans *trans, struct btree_path *path, struct btree *b) { struct btree_path_level *l; unsigned plevel; bool parent_locked; struct bkey_packed *k; if (!IS_ENABLED(CONFIG_BCACHEFS_DEBUG)) return; plevel = b->c.level + 1; if (!btree_path_node(path, plevel)) return; parent_locked = btree_node_locked(path, plevel); if (!bch2_btree_node_relock(trans, path, plevel)) return; l = &path->l[plevel]; k = bch2_btree_node_iter_peek_all(&l->iter, l->b); if (!k || bkey_deleted(k) || bkey_cmp_left_packed(l->b, k, &b->key.k.p)) { char buf1[100]; char buf2[100]; char buf3[100]; char buf4[100]; struct bkey uk = bkey_unpack_key(b, k); bch2_dump_btree_node(trans->c, l->b); bch2_bpos_to_text(&PBUF(buf1), path->pos); bch2_bkey_to_text(&PBUF(buf2), &uk); bch2_bpos_to_text(&PBUF(buf3), b->data->min_key); bch2_bpos_to_text(&PBUF(buf3), b->data->max_key); panic("parent iter doesn't point to new node:\n" "iter pos %s %s\n" "iter key %s\n" "new node %s-%s\n", bch2_btree_ids[path->btree_id], buf1, buf2, buf3, buf4); } if (!parent_locked) btree_node_unlock(path, plevel); } static inline void __btree_path_level_init(struct btree_path *path, unsigned level) { struct btree_path_level *l = &path->l[level]; bch2_btree_node_iter_init(&l->iter, l->b, &path->pos); /* * Iterators to interior nodes should always be pointed at the first non * whiteout: */ if (level) bch2_btree_node_iter_peek(&l->iter, l->b); } static inline void btree_path_level_init(struct btree_trans *trans, struct btree_path *path, struct btree *b) { BUG_ON(path->cached); btree_path_verify_new_node(trans, path, b); EBUG_ON(!btree_path_pos_in_node(path, b)); EBUG_ON(b->c.lock.state.seq & 1); path->l[b->c.level].lock_seq = b->c.lock.state.seq; path->l[b->c.level].b = b; __btree_path_level_init(path, b->c.level); } /* Btree path: fixups after btree node updates: */ /* * A btree node is being replaced - update the iterator to point to the new * node: */ void bch2_trans_node_add(struct btree_trans *trans, struct btree *b) { struct btree_path *path; trans_for_each_path(trans, path) if (!path->cached && btree_path_pos_in_node(path, b)) { enum btree_node_locked_type t = btree_lock_want(path, b->c.level); if (path->nodes_locked && t != BTREE_NODE_UNLOCKED) { btree_node_unlock(path, b->c.level); six_lock_increment(&b->c.lock, (enum six_lock_type) t); mark_btree_node_locked(path, b->c.level, (enum six_lock_type) t); } btree_path_level_init(trans, path, b); } } /* * A btree node has been modified in such a way as to invalidate iterators - fix * them: */ void bch2_trans_node_reinit_iter(struct btree_trans *trans, struct btree *b) { struct btree_path *path; trans_for_each_path_with_node(trans, b, path) __btree_path_level_init(path, b->c.level); } /* Btree path: traverse, set_pos: */ static int lock_root_check_fn(struct six_lock *lock, void *p) { struct btree *b = container_of(lock, struct btree, c.lock); struct btree **rootp = p; return b == *rootp ? 0 : -1; } static inline int btree_path_lock_root(struct btree_trans *trans, struct btree_path *path, unsigned depth_want, unsigned long trace_ip) { struct bch_fs *c = trans->c; struct btree *b, **rootp = &c->btree_roots[path->btree_id].b; enum six_lock_type lock_type; unsigned i; EBUG_ON(path->nodes_locked); while (1) { b = READ_ONCE(*rootp); path->level = READ_ONCE(b->c.level); if (unlikely(path->level < depth_want)) { /* * the root is at a lower depth than the depth we want: * got to the end of the btree, or we're walking nodes * greater than some depth and there are no nodes >= * that depth */ path->level = depth_want; for (i = path->level; i < BTREE_MAX_DEPTH; i++) path->l[i].b = NULL; return 1; } lock_type = __btree_lock_want(path, path->level); if (unlikely(!btree_node_lock(trans, path, b, SPOS_MAX, path->level, lock_type, lock_root_check_fn, rootp, trace_ip))) { if (trans->restarted) return -EINTR; continue; } if (likely(b == READ_ONCE(*rootp) && b->c.level == path->level && !race_fault())) { for (i = 0; i < path->level; i++) path->l[i].b = BTREE_ITER_NO_NODE_LOCK_ROOT; path->l[path->level].b = b; for (i = path->level + 1; i < BTREE_MAX_DEPTH; i++) path->l[i].b = NULL; mark_btree_node_locked(path, path->level, lock_type); btree_path_level_init(trans, path, b); return 0; } six_unlock_type(&b->c.lock, lock_type); } } noinline static int btree_path_prefetch(struct btree_trans *trans, struct btree_path *path) { struct bch_fs *c = trans->c; struct btree_path_level *l = path_l(path); struct btree_node_iter node_iter = l->iter; struct bkey_packed *k; struct bkey_buf tmp; unsigned nr = test_bit(BCH_FS_STARTED, &c->flags) ? (path->level > 1 ? 0 : 2) : (path->level > 1 ? 1 : 16); bool was_locked = btree_node_locked(path, path->level); int ret = 0; bch2_bkey_buf_init(&tmp); while (nr && !ret) { if (!bch2_btree_node_relock(trans, path, path->level)) break; bch2_btree_node_iter_advance(&node_iter, l->b); k = bch2_btree_node_iter_peek(&node_iter, l->b); if (!k) break; bch2_bkey_buf_unpack(&tmp, c, l->b, k); ret = bch2_btree_node_prefetch(c, trans, path, tmp.k, path->btree_id, path->level - 1); } if (!was_locked) btree_node_unlock(path, path->level); bch2_bkey_buf_exit(&tmp, c); return ret; } static noinline void btree_node_mem_ptr_set(struct btree_trans *trans, struct btree_path *path, unsigned plevel, struct btree *b) { struct btree_path_level *l = &path->l[plevel]; bool locked = btree_node_locked(path, plevel); struct bkey_packed *k; struct bch_btree_ptr_v2 *bp; if (!bch2_btree_node_relock(trans, path, plevel)) return; k = bch2_btree_node_iter_peek_all(&l->iter, l->b); BUG_ON(k->type != KEY_TYPE_btree_ptr_v2); bp = (void *) bkeyp_val(&l->b->format, k); bp->mem_ptr = (unsigned long)b; if (!locked) btree_node_unlock(path, plevel); } static __always_inline int btree_path_down(struct btree_trans *trans, struct btree_path *path, unsigned flags, unsigned long trace_ip) { struct bch_fs *c = trans->c; struct btree_path_level *l = path_l(path); struct btree *b; unsigned level = path->level - 1; enum six_lock_type lock_type = __btree_lock_want(path, level); struct bkey_buf tmp; int ret; EBUG_ON(!btree_node_locked(path, path->level)); bch2_bkey_buf_init(&tmp); bch2_bkey_buf_unpack(&tmp, c, l->b, bch2_btree_node_iter_peek(&l->iter, l->b)); b = bch2_btree_node_get(trans, path, tmp.k, level, lock_type, trace_ip); ret = PTR_ERR_OR_ZERO(b); if (unlikely(ret)) goto err; mark_btree_node_locked(path, level, lock_type); btree_path_level_init(trans, path, b); if (tmp.k->k.type == KEY_TYPE_btree_ptr_v2 && unlikely(b != btree_node_mem_ptr(tmp.k))) btree_node_mem_ptr_set(trans, path, level + 1, b); if (flags & BTREE_ITER_PREFETCH) ret = btree_path_prefetch(trans, path); if (btree_node_read_locked(path, level + 1)) btree_node_unlock(path, level + 1); path->level = level; bch2_btree_path_verify_locks(path); err: bch2_bkey_buf_exit(&tmp, c); return ret; } static int btree_path_traverse_one(struct btree_trans *, struct btree_path *, unsigned, unsigned long); static int __btree_path_traverse_all(struct btree_trans *trans, int ret, unsigned long trace_ip) { struct bch_fs *c = trans->c; struct btree_path *path, *prev = NULL; int i; if (trans->in_traverse_all) return -EINTR; trans->in_traverse_all = true; retry_all: trans->restarted = false; trans_for_each_path(trans, path) path->should_be_locked = false; btree_trans_sort_paths(trans); trans_for_each_path_inorder_reverse(trans, path, i) { if (prev) { if (path->btree_id == prev->btree_id && path->locks_want < prev->locks_want) __bch2_btree_path_upgrade(trans, path, prev->locks_want); else if (!path->locks_want && prev->locks_want) __bch2_btree_path_upgrade(trans, path, 1); } prev = path; } bch2_trans_unlock(trans); cond_resched(); if (unlikely(ret == -ENOMEM)) { struct closure cl; closure_init_stack(&cl); do { ret = bch2_btree_cache_cannibalize_lock(c, &cl); closure_sync(&cl); } while (ret); } if (unlikely(ret == -EIO)) goto out; BUG_ON(ret && ret != -EINTR); /* Now, redo traversals in correct order: */ i = 0; while (i < trans->nr_sorted) { path = trans->paths + trans->sorted[i]; EBUG_ON(!(trans->paths_allocated & (1ULL << path->idx))); ret = btree_path_traverse_one(trans, path, 0, _THIS_IP_); if (ret) goto retry_all; EBUG_ON(!(trans->paths_allocated & (1ULL << path->idx))); if (path->nodes_locked || !btree_path_node(path, path->level)) i++; } /* * BTREE_ITER_NEED_RELOCK is ok here - if we called bch2_trans_unlock() * and relock(), relock() won't relock since path->should_be_locked * isn't set yet, which is all fine */ trans_for_each_path(trans, path) BUG_ON(path->uptodate >= BTREE_ITER_NEED_TRAVERSE); out: bch2_btree_cache_cannibalize_unlock(c); trace_trans_traverse_all(trans->ip, trace_ip); return ret; } static int bch2_btree_path_traverse_all(struct btree_trans *trans) { return __btree_path_traverse_all(trans, 0, _RET_IP_); } static inline bool btree_path_good_node(struct btree_trans *trans, struct btree_path *path, unsigned l, int check_pos) { if (!is_btree_node(path, l) || !bch2_btree_node_relock(trans, path, l)) return false; if (check_pos < 0 && btree_path_pos_before_node(path, path->l[l].b)) return false; if (check_pos > 0 && btree_path_pos_after_node(path, path->l[l].b)) return false; return true; } static inline unsigned btree_path_up_until_good_node(struct btree_trans *trans, struct btree_path *path, int check_pos) { unsigned i, l = path->level; while (btree_path_node(path, l) && !btree_path_good_node(trans, path, l, check_pos)) { btree_node_unlock(path, l); path->l[l].b = BTREE_ITER_NO_NODE_UP; l++; } /* If we need intent locks, take them too: */ for (i = l + 1; i < path->locks_want && btree_path_node(path, i); i++) if (!bch2_btree_node_relock(trans, path, i)) while (l <= i) { btree_node_unlock(path, l); path->l[l].b = BTREE_ITER_NO_NODE_UP; l++; } return l; } /* * This is the main state machine for walking down the btree - walks down to a * specified depth * * Returns 0 on success, -EIO on error (error reading in a btree node). * * On error, caller (peek_node()/peek_key()) must return NULL; the error is * stashed in the iterator and returned from bch2_trans_exit(). */ static int btree_path_traverse_one(struct btree_trans *trans, struct btree_path *path, unsigned flags, unsigned long trace_ip) { unsigned depth_want = path->level; int ret = 0; if (unlikely(trans->restarted)) { ret = -EINTR; goto out; } /* * Ensure we obey path->should_be_locked: if it's set, we can't unlock * and re-traverse the path without a transaction restart: */ if (path->should_be_locked) { ret = bch2_btree_path_relock(trans, path, trace_ip) ? 0 : -EINTR; goto out; } if (path->cached) { ret = bch2_btree_path_traverse_cached(trans, path, flags); goto out; } if (unlikely(path->level >= BTREE_MAX_DEPTH)) goto out; path->level = btree_path_up_until_good_node(trans, path, 0); /* * Note: path->nodes[path->level] may be temporarily NULL here - that * would indicate to other code that we got to the end of the btree, * here it indicates that relocking the root failed - it's critical that * btree_path_lock_root() comes next and that it can't fail */ while (path->level > depth_want) { ret = btree_path_node(path, path->level) ? btree_path_down(trans, path, flags, trace_ip) : btree_path_lock_root(trans, path, depth_want, trace_ip); if (unlikely(ret)) { if (ret == 1) { /* * No nodes at this level - got to the end of * the btree: */ ret = 0; goto out; } __bch2_btree_path_unlock(path); path->level = depth_want; if (ret == -EIO) path->l[path->level].b = BTREE_ITER_NO_NODE_ERROR; else path->l[path->level].b = BTREE_ITER_NO_NODE_DOWN; goto out; } } path->uptodate = BTREE_ITER_UPTODATE; out: BUG_ON((ret == -EINTR) != !!trans->restarted); bch2_btree_path_verify(trans, path); return ret; } static int __btree_path_traverse_all(struct btree_trans *, int, unsigned long); int __must_check bch2_btree_path_traverse(struct btree_trans *trans, struct btree_path *path, unsigned flags) { if (path->uptodate < BTREE_ITER_NEED_RELOCK) return 0; return bch2_trans_cond_resched(trans) ?: btree_path_traverse_one(trans, path, flags, _RET_IP_); } static void btree_path_copy(struct btree_trans *trans, struct btree_path *dst, struct btree_path *src) { unsigned i, offset = offsetof(struct btree_path, pos); memcpy((void *) dst + offset, (void *) src + offset, sizeof(struct btree_path) - offset); for (i = 0; i < BTREE_MAX_DEPTH; i++) if (btree_node_locked(dst, i)) six_lock_increment(&dst->l[i].b->c.lock, __btree_lock_want(dst, i)); trans->paths_sorted = false; } static struct btree_path *btree_path_clone(struct btree_trans *trans, struct btree_path *src, bool intent) { struct btree_path *new = btree_path_alloc(trans, src); btree_path_copy(trans, new, src); __btree_path_get(new, intent); return new; } struct btree_path * __must_check __bch2_btree_path_make_mut(struct btree_trans *trans, struct btree_path *path, bool intent) { __btree_path_put(path, intent); path = btree_path_clone(trans, path, intent); path->preserve = false; #ifdef CONFIG_BCACHEFS_DEBUG path->ip_allocated = _RET_IP_; #endif return path; } static struct btree_path * __must_check __bch2_btree_path_set_pos(struct btree_trans *trans, struct btree_path *path, struct bpos new_pos, bool intent, int cmp) { unsigned l = path->level; EBUG_ON(trans->restarted); EBUG_ON(!path->ref); path = bch2_btree_path_make_mut(trans, path, intent); path->pos = new_pos; path->should_be_locked = false; trans->paths_sorted = false; if (unlikely(path->cached)) { btree_node_unlock(path, 0); path->l[0].b = BTREE_ITER_NO_NODE_CACHED; btree_path_set_dirty(path, BTREE_ITER_NEED_TRAVERSE); goto out; } l = btree_path_up_until_good_node(trans, path, cmp); if (btree_path_node(path, l)) { /* * We might have to skip over many keys, or just a few: try * advancing the node iterator, and if we have to skip over too * many keys just reinit it (or if we're rewinding, since that * is expensive). */ if (cmp < 0 || !btree_path_advance_to_pos(path, &path->l[l], 8)) __btree_path_level_init(path, l); } if (l != path->level) { btree_path_set_dirty(path, BTREE_ITER_NEED_TRAVERSE); __bch2_btree_path_unlock(path); } out: bch2_btree_path_verify(trans, path); return path; } static inline struct btree_path * __must_check btree_path_set_pos(struct btree_trans *trans, struct btree_path *path, struct bpos new_pos, bool intent) { int cmp = bpos_cmp(new_pos, path->pos); return cmp ? __bch2_btree_path_set_pos(trans, path, new_pos, intent, cmp) : path; } /* Btree path: main interface: */ static struct btree_path *have_path_at_pos(struct btree_trans *trans, struct btree_path *path) { struct btree_path *next; next = prev_btree_path(trans, path); if (next && !btree_path_cmp(next, path)) return next; next = next_btree_path(trans, path); if (next && !btree_path_cmp(next, path)) return next; return NULL; } static struct btree_path *have_node_at_pos(struct btree_trans *trans, struct btree_path *path) { struct btree_path *next; next = prev_btree_path(trans, path); if (next && next->level == path->level && path_l(next)->b == path_l(path)->b) return next; next = next_btree_path(trans, path); if (next && next->level == path->level && path_l(next)->b == path_l(path)->b) return next; return NULL; } static inline void __bch2_path_free(struct btree_trans *trans, struct btree_path *path) { __bch2_btree_path_unlock(path); btree_path_list_remove(trans, path); trans->paths_allocated &= ~(1ULL << path->idx); } void bch2_path_put(struct btree_trans *trans, struct btree_path *path, bool intent) { struct btree_path *dup; EBUG_ON(trans->paths + path->idx != path); EBUG_ON(!path->ref); if (!__btree_path_put(path, intent)) return; /* * Perhaps instead we should check for duplicate paths in traverse_all: */ if (path->preserve && (dup = have_path_at_pos(trans, path))) { dup->preserve = true; path->preserve = false; goto free; } if (!path->preserve && (dup = have_node_at_pos(trans, path))) goto free; return; free: if (path->should_be_locked && !btree_node_locked(dup, path->level)) return; dup->should_be_locked |= path->should_be_locked; __bch2_path_free(trans, path); } noinline __cold void bch2_dump_trans_paths_updates(struct btree_trans *trans) { struct btree_path *path; struct btree_insert_entry *i; unsigned idx; char buf1[300], buf2[300]; btree_trans_sort_paths(trans); trans_for_each_path_inorder(trans, path, idx) printk(KERN_ERR "path: idx %u ref %u:%u%s%s btree %s pos %s locks %u %pS\n", path->idx, path->ref, path->intent_ref, path->should_be_locked ? " S" : "", path->preserve ? " P" : "", bch2_btree_ids[path->btree_id], (bch2_bpos_to_text(&PBUF(buf1), path->pos), buf1), path->nodes_locked, #ifdef CONFIG_BCACHEFS_DEBUG (void *) path->ip_allocated #else NULL #endif ); trans_for_each_update(trans, i) { struct bkey u; struct bkey_s_c old = bch2_btree_path_peek_slot(i->path, &u); printk(KERN_ERR "update: btree %s %pS\n old %s\n new %s", bch2_btree_ids[i->btree_id], (void *) i->ip_allocated, (bch2_bkey_val_to_text(&PBUF(buf1), trans->c, old), buf1), (bch2_bkey_val_to_text(&PBUF(buf2), trans->c, bkey_i_to_s_c(i->k)), buf2)); } } static struct btree_path *btree_path_alloc(struct btree_trans *trans, struct btree_path *pos) { struct btree_path *path; unsigned idx; if (unlikely(trans->paths_allocated == ~((~0ULL << 1) << (BTREE_ITER_MAX - 1)))) { bch2_dump_trans_paths_updates(trans); panic("trans path oveflow\n"); } idx = __ffs64(~trans->paths_allocated); trans->paths_allocated |= 1ULL << idx; path = &trans->paths[idx]; path->idx = idx; path->ref = 0; path->intent_ref = 0; path->nodes_locked = 0; path->nodes_intent_locked = 0; btree_path_list_add(trans, pos, path); return path; } struct btree_path *bch2_path_get(struct btree_trans *trans, bool cached, enum btree_id btree_id, struct bpos pos, unsigned locks_want, unsigned level, bool intent) { struct btree_path *path, *path_pos = NULL; int i; BUG_ON(trans->restarted); btree_trans_sort_paths(trans); trans_for_each_path_inorder(trans, path, i) { if (__btree_path_cmp(path, btree_id, cached, pos, level) > 0) break; path_pos = path; } if (path_pos && path_pos->cached == cached && path_pos->btree_id == btree_id && path_pos->level == level) { __btree_path_get(path_pos, intent); path = btree_path_set_pos(trans, path_pos, pos, intent); path->preserve = true; } else { path = btree_path_alloc(trans, path_pos); path_pos = NULL; __btree_path_get(path, intent); path->pos = pos; path->btree_id = btree_id; path->cached = cached; path->preserve = true; path->uptodate = BTREE_ITER_NEED_TRAVERSE; path->should_be_locked = false; path->level = level; path->locks_want = locks_want; path->nodes_locked = 0; path->nodes_intent_locked = 0; for (i = 0; i < ARRAY_SIZE(path->l); i++) path->l[i].b = BTREE_ITER_NO_NODE_INIT; #ifdef CONFIG_BCACHEFS_DEBUG path->ip_allocated = _RET_IP_; #endif trans->paths_sorted = false; } if (path->intent_ref) locks_want = max(locks_want, level + 1); /* * If the path has locks_want greater than requested, we don't downgrade * it here - on transaction restart because btree node split needs to * upgrade locks, we might be putting/getting the iterator again. * Downgrading iterators only happens via bch2_trans_downgrade(), after * a successful transaction commit. */ locks_want = min(locks_want, BTREE_MAX_DEPTH); if (locks_want > path->locks_want) { path->locks_want = locks_want; btree_path_get_locks(trans, path, true, _THIS_IP_); } return path; } inline struct bkey_s_c bch2_btree_path_peek_slot(struct btree_path *path, struct bkey *u) { struct bkey_s_c k; BUG_ON(path->uptodate != BTREE_ITER_UPTODATE); if (!path->cached) { struct btree_path_level *l = path_l(path); struct bkey_packed *_k = bch2_btree_node_iter_peek_all(&l->iter, l->b); k = _k ? bkey_disassemble(l->b, _k, u) : bkey_s_c_null; EBUG_ON(k.k && bkey_deleted(k.k) && bpos_cmp(k.k->p, path->pos) == 0); if (!k.k || bpos_cmp(path->pos, k.k->p)) goto hole; } else { struct bkey_cached *ck = (void *) path->l[0].b; EBUG_ON(path->btree_id != ck->key.btree_id || bkey_cmp(path->pos, ck->key.pos)); /* BTREE_ITER_CACHED_NOFILL? */ if (unlikely(!ck->valid)) goto hole; k = bkey_i_to_s_c(ck->k); } return k; hole: bkey_init(u); u->p = path->pos; return (struct bkey_s_c) { u, NULL }; } /* Btree iterators: */ int __must_check __bch2_btree_iter_traverse(struct btree_iter *iter) { return bch2_btree_path_traverse(iter->trans, iter->path, iter->flags); } int __must_check bch2_btree_iter_traverse(struct btree_iter *iter) { int ret; iter->path = btree_path_set_pos(iter->trans, iter->path, btree_iter_search_key(iter), iter->flags & BTREE_ITER_INTENT); ret = bch2_btree_path_traverse(iter->trans, iter->path, iter->flags); if (ret) return ret; iter->path->should_be_locked = true; return 0; } /* Iterate across nodes (leaf and interior nodes) */ struct btree *bch2_btree_iter_peek_node(struct btree_iter *iter) { struct btree_trans *trans = iter->trans; struct btree *b = NULL; int ret; EBUG_ON(iter->path->cached); bch2_btree_iter_verify(iter); ret = bch2_btree_path_traverse(trans, iter->path, iter->flags); if (ret) goto err; b = btree_path_node(iter->path, iter->path->level); if (!b) goto out; BUG_ON(bpos_cmp(b->key.k.p, iter->pos) < 0); bkey_init(&iter->k); iter->k.p = iter->pos = b->key.k.p; iter->path = btree_path_set_pos(trans, iter->path, b->key.k.p, iter->flags & BTREE_ITER_INTENT); iter->path->should_be_locked = true; BUG_ON(iter->path->uptodate); out: bch2_btree_iter_verify_entry_exit(iter); bch2_btree_iter_verify(iter); return b; err: b = ERR_PTR(ret); goto out; } struct btree *bch2_btree_iter_next_node(struct btree_iter *iter) { struct btree_trans *trans = iter->trans; struct btree_path *path = iter->path; struct btree *b = NULL; unsigned l; int ret; BUG_ON(trans->restarted); EBUG_ON(iter->path->cached); bch2_btree_iter_verify(iter); /* already at end? */ if (!btree_path_node(path, path->level)) return NULL; /* got to end? */ if (!btree_path_node(path, path->level + 1)) { btree_node_unlock(path, path->level); path->l[path->level].b = BTREE_ITER_NO_NODE_UP; path->level++; return NULL; } if (!bch2_btree_node_relock(trans, path, path->level + 1)) { __bch2_btree_path_unlock(path); path->l[path->level].b = BTREE_ITER_NO_NODE_GET_LOCKS; path->l[path->level + 1].b = BTREE_ITER_NO_NODE_GET_LOCKS; btree_trans_restart(trans); ret = -EINTR; goto err; } b = btree_path_node(path, path->level + 1); if (!bpos_cmp(iter->pos, b->key.k.p)) { btree_node_unlock(path, path->level); path->l[path->level].b = BTREE_ITER_NO_NODE_UP; path->level++; } else { /* * Haven't gotten to the end of the parent node: go back down to * the next child node */ path = iter->path = btree_path_set_pos(trans, path, bpos_successor(iter->pos), iter->flags & BTREE_ITER_INTENT); path->level = iter->min_depth; for (l = path->level + 1; l < BTREE_MAX_DEPTH; l++) if (btree_lock_want(path, l) == BTREE_NODE_UNLOCKED) btree_node_unlock(path, l); btree_path_set_dirty(path, BTREE_ITER_NEED_TRAVERSE); bch2_btree_iter_verify(iter); ret = bch2_btree_path_traverse(trans, path, iter->flags); if (ret) goto err; b = path->l[path->level].b; } bkey_init(&iter->k); iter->k.p = iter->pos = b->key.k.p; iter->path = btree_path_set_pos(trans, iter->path, b->key.k.p, iter->flags & BTREE_ITER_INTENT); iter->path->should_be_locked = true; BUG_ON(iter->path->uptodate); out: bch2_btree_iter_verify_entry_exit(iter); bch2_btree_iter_verify(iter); return b; err: b = ERR_PTR(ret); goto out; } /* Iterate across keys (in leaf nodes only) */ inline bool bch2_btree_iter_advance(struct btree_iter *iter) { struct bpos pos = iter->k.p; bool ret = (iter->flags & BTREE_ITER_ALL_SNAPSHOTS ? bpos_cmp(pos, SPOS_MAX) : bkey_cmp(pos, SPOS_MAX)) != 0; if (ret && !(iter->flags & BTREE_ITER_IS_EXTENTS)) pos = bkey_successor(iter, pos); bch2_btree_iter_set_pos(iter, pos); return ret; } inline bool bch2_btree_iter_rewind(struct btree_iter *iter) { struct bpos pos = bkey_start_pos(&iter->k); bool ret = (iter->flags & BTREE_ITER_ALL_SNAPSHOTS ? bpos_cmp(pos, POS_MIN) : bkey_cmp(pos, POS_MIN)) != 0; if (ret && !(iter->flags & BTREE_ITER_IS_EXTENTS)) pos = bkey_predecessor(iter, pos); bch2_btree_iter_set_pos(iter, pos); return ret; } struct bkey_i *__bch2_btree_trans_peek_updates(struct btree_iter *iter) { struct btree_insert_entry *i; struct bkey_i *ret = NULL; trans_for_each_update(iter->trans, i) { if (i->btree_id < iter->btree_id) continue; if (i->btree_id > iter->btree_id) break; if (bpos_cmp(i->k->k.p, iter->path->pos) < 0) continue; if (!ret || bpos_cmp(i->k->k.p, ret->k.p) < 0) ret = i->k; } return ret; } /** * bch2_btree_iter_peek: returns first key greater than or equal to iterator's * current position */ struct bkey_s_c bch2_btree_iter_peek(struct btree_iter *iter) { struct btree_trans *trans = iter->trans; struct bpos search_key = btree_iter_search_key(iter); struct bkey_i *next_update; struct bkey_s_c k; int ret, cmp; EBUG_ON(iter->path->cached || iter->path->level); bch2_btree_iter_verify(iter); bch2_btree_iter_verify_entry_exit(iter); while (1) { iter->path = btree_path_set_pos(trans, iter->path, search_key, iter->flags & BTREE_ITER_INTENT); ret = bch2_btree_path_traverse(trans, iter->path, iter->flags); if (unlikely(ret)) { /* ensure that iter->k is consistent with iter->pos: */ bch2_btree_iter_set_pos(iter, iter->pos); k = bkey_s_c_err(ret); goto out; } next_update = btree_trans_peek_updates(iter); k = btree_path_level_peek_all(trans->c, &iter->path->l[0], &iter->k); /* * In the btree, deleted keys sort before non deleted: */ if (k.k && bkey_deleted(k.k) && (!next_update || bpos_cmp(k.k->p, next_update->k.p) <= 0)) { search_key = k.k->p; continue; } if (next_update && bpos_cmp(next_update->k.p, k.k ? k.k->p : iter->path->l[0].b->key.k.p) <= 0) { iter->k = next_update->k; k = bkey_i_to_s_c(next_update); } if (likely(k.k)) { /* * We can never have a key in a leaf node at POS_MAX, so * we don't have to check these successor() calls: */ if ((iter->flags & BTREE_ITER_FILTER_SNAPSHOTS) && !bch2_snapshot_is_ancestor(trans->c, iter->snapshot, k.k->p.snapshot)) { search_key = bpos_successor(k.k->p); continue; } if (bkey_whiteout(k.k) && !(iter->flags & BTREE_ITER_ALL_SNAPSHOTS)) { search_key = bkey_successor(iter, k.k->p); continue; } break; } else if (likely(bpos_cmp(iter->path->l[0].b->key.k.p, SPOS_MAX))) { /* Advance to next leaf node: */ search_key = bpos_successor(iter->path->l[0].b->key.k.p); } else { /* End of btree: */ bch2_btree_iter_set_pos(iter, SPOS_MAX); k = bkey_s_c_null; goto out; } } /* * iter->pos should be mononotically increasing, and always be equal to * the key we just returned - except extents can straddle iter->pos: */ if (!(iter->flags & BTREE_ITER_IS_EXTENTS)) iter->pos = k.k->p; else if (bkey_cmp(bkey_start_pos(k.k), iter->pos) > 0) iter->pos = bkey_start_pos(k.k); if (iter->flags & BTREE_ITER_FILTER_SNAPSHOTS) iter->pos.snapshot = iter->snapshot; cmp = bpos_cmp(k.k->p, iter->path->pos); if (cmp) { iter->path = bch2_btree_path_make_mut(trans, iter->path, iter->flags & BTREE_ITER_INTENT); iter->path->pos = k.k->p; trans->paths_sorted = false; } out: iter->path->should_be_locked = true; bch2_btree_iter_verify_entry_exit(iter); bch2_btree_iter_verify(iter); ret = bch2_btree_iter_verify_ret(iter, k); if (unlikely(ret)) return bkey_s_c_err(ret); return k; } /** * bch2_btree_iter_next: returns first key greater than iterator's current * position */ struct bkey_s_c bch2_btree_iter_next(struct btree_iter *iter) { if (!bch2_btree_iter_advance(iter)) return bkey_s_c_null; return bch2_btree_iter_peek(iter); } /** * bch2_btree_iter_peek_prev: returns first key less than or equal to * iterator's current position */ struct bkey_s_c bch2_btree_iter_peek_prev(struct btree_iter *iter) { struct btree_trans *trans = iter->trans; struct bpos search_key = iter->pos; struct btree_path *saved_path = NULL; struct bkey_s_c k; struct bkey saved_k; const struct bch_val *saved_v; int ret; EBUG_ON(iter->path->cached || iter->path->level); EBUG_ON(iter->flags & BTREE_ITER_WITH_UPDATES); bch2_btree_iter_verify(iter); bch2_btree_iter_verify_entry_exit(iter); if (iter->flags & BTREE_ITER_FILTER_SNAPSHOTS) search_key.snapshot = U32_MAX; while (1) { iter->path = btree_path_set_pos(trans, iter->path, search_key, iter->flags & BTREE_ITER_INTENT); ret = bch2_btree_path_traverse(trans, iter->path, iter->flags); if (unlikely(ret)) { /* ensure that iter->k is consistent with iter->pos: */ bch2_btree_iter_set_pos(iter, iter->pos); k = bkey_s_c_err(ret); goto out; } k = btree_path_level_peek(trans, iter->path, &iter->path->l[0], &iter->k); if (!k.k || ((iter->flags & BTREE_ITER_IS_EXTENTS) ? bpos_cmp(bkey_start_pos(k.k), search_key) >= 0 : bpos_cmp(k.k->p, search_key) > 0)) k = btree_path_level_prev(trans, iter->path, &iter->path->l[0], &iter->k); if (likely(k.k)) { if (iter->flags & BTREE_ITER_FILTER_SNAPSHOTS) { if (k.k->p.snapshot == iter->snapshot) goto got_key; /* * If we have a saved candidate, and we're no * longer at the same _key_ (not pos), return * that candidate */ if (saved_path && bkey_cmp(k.k->p, saved_k.p)) { bch2_path_put(trans, iter->path, iter->flags & BTREE_ITER_INTENT); iter->path = saved_path; saved_path = NULL; iter->k = saved_k; k.v = saved_v; goto got_key; } if (bch2_snapshot_is_ancestor(iter->trans->c, iter->snapshot, k.k->p.snapshot)) { if (saved_path) bch2_path_put(trans, saved_path, iter->flags & BTREE_ITER_INTENT); saved_path = btree_path_clone(trans, iter->path, iter->flags & BTREE_ITER_INTENT); saved_k = *k.k; saved_v = k.v; } search_key = bpos_predecessor(k.k->p); continue; } got_key: if (bkey_whiteout(k.k) && !(iter->flags & BTREE_ITER_ALL_SNAPSHOTS)) { search_key = bkey_predecessor(iter, k.k->p); if (iter->flags & BTREE_ITER_FILTER_SNAPSHOTS) search_key.snapshot = U32_MAX; continue; } break; } else if (likely(bpos_cmp(iter->path->l[0].b->data->min_key, POS_MIN))) { /* Advance to previous leaf node: */ search_key = bpos_predecessor(iter->path->l[0].b->data->min_key); } else { /* Start of btree: */ bch2_btree_iter_set_pos(iter, POS_MIN); k = bkey_s_c_null; goto out; } } EBUG_ON(bkey_cmp(bkey_start_pos(k.k), iter->pos) > 0); /* Extents can straddle iter->pos: */ if (bkey_cmp(k.k->p, iter->pos) < 0) iter->pos = k.k->p; if (iter->flags & BTREE_ITER_FILTER_SNAPSHOTS) iter->pos.snapshot = iter->snapshot; out: if (saved_path) bch2_path_put(trans, saved_path, iter->flags & BTREE_ITER_INTENT); iter->path->should_be_locked = true; bch2_btree_iter_verify_entry_exit(iter); bch2_btree_iter_verify(iter); return k; } /** * bch2_btree_iter_prev: returns first key less than iterator's current * position */ struct bkey_s_c bch2_btree_iter_prev(struct btree_iter *iter) { if (!bch2_btree_iter_rewind(iter)) return bkey_s_c_null; return bch2_btree_iter_peek_prev(iter); } struct bkey_s_c bch2_btree_iter_peek_slot(struct btree_iter *iter) { struct btree_trans *trans = iter->trans; struct bpos search_key; struct bkey_s_c k; int ret; EBUG_ON(iter->path->level); bch2_btree_iter_verify(iter); bch2_btree_iter_verify_entry_exit(iter); /* extents can't span inode numbers: */ if ((iter->flags & BTREE_ITER_IS_EXTENTS) && unlikely(iter->pos.offset == KEY_OFFSET_MAX)) { if (iter->pos.inode == KEY_INODE_MAX) return bkey_s_c_null; bch2_btree_iter_set_pos(iter, bpos_nosnap_successor(iter->pos)); } search_key = btree_iter_search_key(iter); iter->path = btree_path_set_pos(trans, iter->path, search_key, iter->flags & BTREE_ITER_INTENT); ret = bch2_btree_path_traverse(trans, iter->path, iter->flags); if (unlikely(ret)) return bkey_s_c_err(ret); if ((iter->flags & BTREE_ITER_CACHED) || !(iter->flags & (BTREE_ITER_IS_EXTENTS|BTREE_ITER_FILTER_SNAPSHOTS))) { struct bkey_i *next_update; next_update = btree_trans_peek_updates(iter); if (next_update && !bpos_cmp(next_update->k.p, iter->pos)) { iter->k = next_update->k; k = bkey_i_to_s_c(next_update); } else { k = bch2_btree_path_peek_slot(iter->path, &iter->k); } if (!k.k || ((iter->flags & BTREE_ITER_ALL_SNAPSHOTS) ? bpos_cmp(iter->pos, k.k->p) : bkey_cmp(iter->pos, k.k->p))) { bkey_init(&iter->k); iter->k.p = iter->pos; k = (struct bkey_s_c) { &iter->k, NULL }; } } else { struct bpos next; if (iter->flags & BTREE_ITER_INTENT) { struct btree_iter iter2; bch2_trans_copy_iter(&iter2, iter); k = bch2_btree_iter_peek(&iter2); if (k.k && !bkey_err(k)) { iter->k = iter2.k; k.k = &iter->k; } bch2_trans_iter_exit(trans, &iter2); } else { struct bpos pos = iter->pos; k = bch2_btree_iter_peek(iter); iter->pos = pos; } if (unlikely(bkey_err(k))) return k; next = k.k ? bkey_start_pos(k.k) : POS_MAX; if (bkey_cmp(iter->pos, next) < 0) { bkey_init(&iter->k); iter->k.p = iter->pos; if (iter->flags & BTREE_ITER_IS_EXTENTS) { bch2_key_resize(&iter->k, min_t(u64, KEY_SIZE_MAX, (next.inode == iter->pos.inode ? next.offset : KEY_OFFSET_MAX) - iter->pos.offset)); EBUG_ON(!iter->k.size); } k = (struct bkey_s_c) { &iter->k, NULL }; } } iter->path->should_be_locked = true; bch2_btree_iter_verify_entry_exit(iter); bch2_btree_iter_verify(iter); ret = bch2_btree_iter_verify_ret(iter, k); if (unlikely(ret)) return bkey_s_c_err(ret); return k; } struct bkey_s_c bch2_btree_iter_next_slot(struct btree_iter *iter) { if (!bch2_btree_iter_advance(iter)) return bkey_s_c_null; return bch2_btree_iter_peek_slot(iter); } struct bkey_s_c bch2_btree_iter_prev_slot(struct btree_iter *iter) { if (!bch2_btree_iter_rewind(iter)) return bkey_s_c_null; return bch2_btree_iter_peek_slot(iter); } /* new transactional stuff: */ #ifdef CONFIG_BCACHEFS_DEBUG static void btree_trans_verify_sorted_refs(struct btree_trans *trans) { struct btree_path *path; unsigned i; BUG_ON(trans->nr_sorted != hweight64(trans->paths_allocated)); trans_for_each_path(trans, path) { BUG_ON(path->sorted_idx >= trans->nr_sorted); BUG_ON(trans->sorted[path->sorted_idx] != path->idx); } for (i = 0; i < trans->nr_sorted; i++) { unsigned idx = trans->sorted[i]; EBUG_ON(!(trans->paths_allocated & (1ULL << idx))); BUG_ON(trans->paths[idx].sorted_idx != i); } } static void btree_trans_verify_sorted(struct btree_trans *trans) { struct btree_path *path, *prev = NULL; unsigned i; trans_for_each_path_inorder(trans, path, i) { BUG_ON(prev && btree_path_cmp(prev, path) > 0); prev = path; } } #else static inline void btree_trans_verify_sorted_refs(struct btree_trans *trans) {} static inline void btree_trans_verify_sorted(struct btree_trans *trans) {} #endif void __bch2_btree_trans_sort_paths(struct btree_trans *trans) { int i, l = 0, r = trans->nr_sorted, inc = 1; bool swapped; btree_trans_verify_sorted_refs(trans); if (trans->paths_sorted) goto out; /* * Cocktail shaker sort: this is efficient because iterators will be * mostly sorteda. */ do { swapped = false; for (i = inc > 0 ? l : r - 2; i + 1 < r && i >= l; i += inc) { if (btree_path_cmp(trans->paths + trans->sorted[i], trans->paths + trans->sorted[i + 1]) > 0) { swap(trans->sorted[i], trans->sorted[i + 1]); trans->paths[trans->sorted[i]].sorted_idx = i; trans->paths[trans->sorted[i + 1]].sorted_idx = i + 1; swapped = true; } } if (inc > 0) --r; else l++; inc = -inc; } while (swapped); trans->paths_sorted = true; out: btree_trans_verify_sorted(trans); } static inline void btree_path_list_remove(struct btree_trans *trans, struct btree_path *path) { unsigned i; EBUG_ON(path->sorted_idx >= trans->nr_sorted); #ifdef CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS trans->nr_sorted--; memmove_u64s_down_small(trans->sorted + path->sorted_idx, trans->sorted + path->sorted_idx + 1, DIV_ROUND_UP(trans->nr_sorted - path->sorted_idx, 8)); #else array_remove_item(trans->sorted, trans->nr_sorted, path->sorted_idx); #endif for (i = path->sorted_idx; i < trans->nr_sorted; i++) trans->paths[trans->sorted[i]].sorted_idx = i; path->sorted_idx = U8_MAX; } static inline void btree_path_list_add(struct btree_trans *trans, struct btree_path *pos, struct btree_path *path) { unsigned i; path->sorted_idx = pos ? pos->sorted_idx + 1 : trans->nr_sorted; #ifdef CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS memmove_u64s_up_small(trans->sorted + path->sorted_idx + 1, trans->sorted + path->sorted_idx, DIV_ROUND_UP(trans->nr_sorted - path->sorted_idx, 8)); trans->nr_sorted++; trans->sorted[path->sorted_idx] = path->idx; #else array_insert_item(trans->sorted, trans->nr_sorted, path->sorted_idx, path->idx); #endif for (i = path->sorted_idx; i < trans->nr_sorted; i++) trans->paths[trans->sorted[i]].sorted_idx = i; btree_trans_verify_sorted_refs(trans); } void bch2_trans_iter_exit(struct btree_trans *trans, struct btree_iter *iter) { if (iter->path) bch2_path_put(trans, iter->path, iter->flags & BTREE_ITER_INTENT); iter->path = NULL; } static void __bch2_trans_iter_init(struct btree_trans *trans, struct btree_iter *iter, enum btree_id btree_id, struct bpos pos, unsigned locks_want, unsigned depth, unsigned flags) { EBUG_ON(trans->restarted); if (!(flags & (BTREE_ITER_ALL_SNAPSHOTS|BTREE_ITER_NOT_EXTENTS)) && btree_node_type_is_extents(btree_id)) flags |= BTREE_ITER_IS_EXTENTS; if (!(flags & __BTREE_ITER_ALL_SNAPSHOTS) && !btree_type_has_snapshots(btree_id)) flags &= ~BTREE_ITER_ALL_SNAPSHOTS; if (!(flags & BTREE_ITER_ALL_SNAPSHOTS) && btree_type_has_snapshots(btree_id)) flags |= BTREE_ITER_FILTER_SNAPSHOTS; iter->trans = trans; iter->path = NULL; iter->btree_id = btree_id; iter->min_depth = depth; iter->flags = flags; iter->snapshot = pos.snapshot; iter->pos = pos; iter->k.type = KEY_TYPE_deleted; iter->k.p = pos; iter->k.size = 0; iter->path = bch2_path_get(trans, flags & BTREE_ITER_CACHED, btree_id, iter->pos, locks_want, depth, flags & BTREE_ITER_INTENT); } void bch2_trans_iter_init(struct btree_trans *trans, struct btree_iter *iter, unsigned btree_id, struct bpos pos, unsigned flags) { __bch2_trans_iter_init(trans, iter, btree_id, pos, 0, 0, flags); } void bch2_trans_node_iter_init(struct btree_trans *trans, struct btree_iter *iter, enum btree_id btree_id, struct bpos pos, unsigned locks_want, unsigned depth, unsigned flags) { __bch2_trans_iter_init(trans, iter, btree_id, pos, locks_want, depth, BTREE_ITER_NOT_EXTENTS| __BTREE_ITER_ALL_SNAPSHOTS| BTREE_ITER_ALL_SNAPSHOTS| flags); BUG_ON(iter->path->locks_want < min(locks_want, BTREE_MAX_DEPTH)); BUG_ON(iter->path->level != depth); BUG_ON(iter->min_depth != depth); } void bch2_trans_copy_iter(struct btree_iter *dst, struct btree_iter *src) { *dst = *src; if (src->path) __btree_path_get(src->path, src->flags & BTREE_ITER_INTENT); } void *bch2_trans_kmalloc(struct btree_trans *trans, size_t size) { size_t new_top = trans->mem_top + size; void *p; if (new_top > trans->mem_bytes) { size_t old_bytes = trans->mem_bytes; size_t new_bytes = roundup_pow_of_two(new_top); void *new_mem; WARN_ON_ONCE(new_bytes > BTREE_TRANS_MEM_MAX); new_mem = krealloc(trans->mem, new_bytes, GFP_NOFS); if (!new_mem && new_bytes <= BTREE_TRANS_MEM_MAX) { new_mem = mempool_alloc(&trans->c->btree_trans_mem_pool, GFP_KERNEL); new_bytes = BTREE_TRANS_MEM_MAX; kfree(trans->mem); } if (!new_mem) return ERR_PTR(-ENOMEM); trans->mem = new_mem; trans->mem_bytes = new_bytes; if (old_bytes) { trace_trans_restart_mem_realloced(trans->ip, _RET_IP_, new_bytes); btree_trans_restart(trans); return ERR_PTR(-EINTR); } } p = trans->mem + trans->mem_top; trans->mem_top += size; memset(p, 0, size); return p; } /** * bch2_trans_begin() - reset a transaction after a interrupted attempt * @trans: transaction to reset * * While iterating over nodes or updating nodes a attempt to lock a btree * node may return EINTR when the trylock fails. When this occurs * bch2_trans_begin() should be called and the transaction retried. */ void bch2_trans_begin(struct btree_trans *trans) { struct btree_insert_entry *i; struct btree_path *path; trans_for_each_update(trans, i) __btree_path_put(i->path, true); memset(&trans->journal_res, 0, sizeof(trans->journal_res)); trans->extra_journal_res = 0; trans->nr_updates = 0; trans->mem_top = 0; trans->hooks = NULL; trans->extra_journal_entries = NULL; trans->extra_journal_entry_u64s = 0; if (trans->fs_usage_deltas) { trans->fs_usage_deltas->used = 0; memset((void *) trans->fs_usage_deltas + offsetof(struct replicas_delta_list, memset_start), 0, (void *) &trans->fs_usage_deltas->memset_end - (void *) &trans->fs_usage_deltas->memset_start); } trans_for_each_path(trans, path) { /* * XXX: we probably shouldn't be doing this if the transaction * was restarted, but currently we still overflow transaction * iterators if we do that */ if (!path->ref && !path->preserve) __bch2_path_free(trans, path); else path->preserve = path->should_be_locked = false; } bch2_trans_cond_resched(trans); if (trans->restarted) bch2_btree_path_traverse_all(trans); trans->restarted = false; } static void bch2_trans_alloc_paths(struct btree_trans *trans, struct bch_fs *c) { size_t paths_bytes = sizeof(struct btree_path) * BTREE_ITER_MAX; size_t updates_bytes = sizeof(struct btree_insert_entry) * BTREE_ITER_MAX; void *p = NULL; BUG_ON(trans->used_mempool); #ifdef __KERNEL__ p = this_cpu_xchg(c->btree_paths_bufs->path , NULL); #endif if (!p) p = mempool_alloc(&trans->c->btree_paths_pool, GFP_NOFS); trans->paths = p; p += paths_bytes; trans->updates = p; p += updates_bytes; } void bch2_trans_init(struct btree_trans *trans, struct bch_fs *c, unsigned expected_nr_iters, size_t expected_mem_bytes) __acquires(&c->btree_trans_barrier) { memset(trans, 0, sizeof(*trans)); trans->c = c; trans->ip = _RET_IP_; bch2_trans_alloc_paths(trans, c); if (expected_mem_bytes) { expected_mem_bytes = roundup_pow_of_two(expected_mem_bytes); trans->mem = kmalloc(expected_mem_bytes, GFP_KERNEL); if (!unlikely(trans->mem)) { trans->mem = mempool_alloc(&c->btree_trans_mem_pool, GFP_KERNEL); trans->mem_bytes = BTREE_TRANS_MEM_MAX; } else { trans->mem_bytes = expected_mem_bytes; } } trans->srcu_idx = srcu_read_lock(&c->btree_trans_barrier); #ifdef CONFIG_BCACHEFS_DEBUG trans->pid = current->pid; mutex_lock(&c->btree_trans_lock); list_add(&trans->list, &c->btree_trans_list); mutex_unlock(&c->btree_trans_lock); #endif } static void check_btree_paths_leaked(struct btree_trans *trans) { #ifdef CONFIG_BCACHEFS_DEBUG struct bch_fs *c = trans->c; struct btree_path *path; trans_for_each_path(trans, path) if (path->ref) goto leaked; return; leaked: bch_err(c, "btree paths leaked from %pS!", (void *) trans->ip); trans_for_each_path(trans, path) if (path->ref) printk(KERN_ERR " btree %s %pS\n", bch2_btree_ids[path->btree_id], (void *) path->ip_allocated); /* Be noisy about this: */ bch2_fatal_error(c); #endif } void bch2_trans_exit(struct btree_trans *trans) __releases(&c->btree_trans_barrier) { struct btree_insert_entry *i; struct bch_fs *c = trans->c; bch2_trans_unlock(trans); trans_for_each_update(trans, i) __btree_path_put(i->path, true); trans->nr_updates = 0; check_btree_paths_leaked(trans); #ifdef CONFIG_BCACHEFS_DEBUG mutex_lock(&c->btree_trans_lock); list_del(&trans->list); mutex_unlock(&c->btree_trans_lock); #endif srcu_read_unlock(&c->btree_trans_barrier, trans->srcu_idx); bch2_journal_preres_put(&c->journal, &trans->journal_preres); if (trans->fs_usage_deltas) { if (trans->fs_usage_deltas->size + sizeof(trans->fs_usage_deltas) == REPLICAS_DELTA_LIST_MAX) mempool_free(trans->fs_usage_deltas, &c->replicas_delta_pool); else kfree(trans->fs_usage_deltas); } if (trans->mem_bytes == BTREE_TRANS_MEM_MAX) mempool_free(trans->mem, &c->btree_trans_mem_pool); else kfree(trans->mem); #ifdef __KERNEL__ /* * Userspace doesn't have a real percpu implementation: */ trans->paths = this_cpu_xchg(c->btree_paths_bufs->path, trans->paths); #endif if (trans->paths) mempool_free(trans->paths, &c->btree_paths_pool); trans->mem = (void *) 0x1; trans->paths = (void *) 0x1; } static void __maybe_unused bch2_btree_path_node_to_text(struct printbuf *out, struct btree_bkey_cached_common *_b, bool cached) { pr_buf(out, " l=%u %s:", _b->level, bch2_btree_ids[_b->btree_id]); bch2_bpos_to_text(out, btree_node_pos(_b, cached)); } #ifdef CONFIG_BCACHEFS_DEBUG static bool trans_has_locks(struct btree_trans *trans) { struct btree_path *path; trans_for_each_path(trans, path) if (path->nodes_locked) return true; return false; } #endif void bch2_btree_trans_to_text(struct printbuf *out, struct bch_fs *c) { #ifdef CONFIG_BCACHEFS_DEBUG struct btree_trans *trans; struct btree_path *path; struct btree *b; unsigned l; mutex_lock(&c->btree_trans_lock); list_for_each_entry(trans, &c->btree_trans_list, list) { if (!trans_has_locks(trans)) continue; pr_buf(out, "%i %ps\n", trans->pid, (void *) trans->ip); trans_for_each_path(trans, path) { if (!path->nodes_locked) continue; pr_buf(out, " path %u %c l=%u %s:", path->idx, path->cached ? 'c' : 'b', path->level, bch2_btree_ids[path->btree_id]); bch2_bpos_to_text(out, path->pos); pr_buf(out, "\n"); for (l = 0; l < BTREE_MAX_DEPTH; l++) { if (btree_node_locked(path, l)) { pr_buf(out, " %s l=%u ", btree_node_intent_locked(path, l) ? "i" : "r", l); bch2_btree_path_node_to_text(out, (void *) path->l[l].b, path->cached); pr_buf(out, "\n"); } } } b = READ_ONCE(trans->locking); if (b) { path = &trans->paths[trans->locking_path_idx]; pr_buf(out, " locking path %u %c l=%u %s:", trans->locking_path_idx, path->cached ? 'c' : 'b', trans->locking_level, bch2_btree_ids[trans->locking_btree_id]); bch2_bpos_to_text(out, trans->locking_pos); pr_buf(out, " node "); bch2_btree_path_node_to_text(out, (void *) b, path->cached); pr_buf(out, "\n"); } } mutex_unlock(&c->btree_trans_lock); #endif } void bch2_fs_btree_iter_exit(struct bch_fs *c) { mempool_exit(&c->btree_trans_mem_pool); mempool_exit(&c->btree_paths_pool); cleanup_srcu_struct(&c->btree_trans_barrier); } int bch2_fs_btree_iter_init(struct bch_fs *c) { unsigned nr = BTREE_ITER_MAX; INIT_LIST_HEAD(&c->btree_trans_list); mutex_init(&c->btree_trans_lock); return init_srcu_struct(&c->btree_trans_barrier) ?: mempool_init_kmalloc_pool(&c->btree_paths_pool, 1, sizeof(struct btree_path) * nr + sizeof(struct btree_insert_entry) * nr) ?: mempool_init_kmalloc_pool(&c->btree_trans_mem_pool, 1, BTREE_TRANS_MEM_MAX); }