#include #include #include #include #include #include #include #include "pci.h" /* * This interrupt-safe spinlock protects all accesses to PCI * configuration space. */ DEFINE_RAW_SPINLOCK(pci_lock); /* * Wrappers for all PCI configuration access functions. They just check * alignment, do locking and call the low-level functions pointed to * by pci_dev->ops. */ #define PCI_byte_BAD 0 #define PCI_word_BAD (pos & 1) #define PCI_dword_BAD (pos & 3) #define PCI_OP_READ(size, type, len) \ int pci_bus_read_config_##size \ (struct pci_bus *bus, unsigned int devfn, int pos, type *value) \ { \ int res; \ unsigned long flags; \ u32 data = 0; \ if (PCI_##size##_BAD) return PCIBIOS_BAD_REGISTER_NUMBER; \ raw_spin_lock_irqsave(&pci_lock, flags); \ res = bus->ops->read(bus, devfn, pos, len, &data); \ *value = (type)data; \ raw_spin_unlock_irqrestore(&pci_lock, flags); \ return res; \ } #define PCI_OP_WRITE(size, type, len) \ int pci_bus_write_config_##size \ (struct pci_bus *bus, unsigned int devfn, int pos, type value) \ { \ int res; \ unsigned long flags; \ if (PCI_##size##_BAD) return PCIBIOS_BAD_REGISTER_NUMBER; \ raw_spin_lock_irqsave(&pci_lock, flags); \ res = bus->ops->write(bus, devfn, pos, len, value); \ raw_spin_unlock_irqrestore(&pci_lock, flags); \ return res; \ } PCI_OP_READ(byte, u8, 1) PCI_OP_READ(word, u16, 2) PCI_OP_READ(dword, u32, 4) PCI_OP_WRITE(byte, u8, 1) PCI_OP_WRITE(word, u16, 2) PCI_OP_WRITE(dword, u32, 4) EXPORT_SYMBOL(pci_bus_read_config_byte); EXPORT_SYMBOL(pci_bus_read_config_word); EXPORT_SYMBOL(pci_bus_read_config_dword); EXPORT_SYMBOL(pci_bus_write_config_byte); EXPORT_SYMBOL(pci_bus_write_config_word); EXPORT_SYMBOL(pci_bus_write_config_dword); int pci_generic_config_read(struct pci_bus *bus, unsigned int devfn, int where, int size, u32 *val) { void __iomem *addr; addr = bus->ops->map_bus(bus, devfn, where); if (!addr) { *val = ~0; return PCIBIOS_DEVICE_NOT_FOUND; } if (size == 1) *val = readb(addr); else if (size == 2) *val = readw(addr); else *val = readl(addr); return PCIBIOS_SUCCESSFUL; } EXPORT_SYMBOL_GPL(pci_generic_config_read); int pci_generic_config_write(struct pci_bus *bus, unsigned int devfn, int where, int size, u32 val) { void __iomem *addr; addr = bus->ops->map_bus(bus, devfn, where); if (!addr) return PCIBIOS_DEVICE_NOT_FOUND; if (size == 1) writeb(val, addr); else if (size == 2) writew(val, addr); else writel(val, addr); return PCIBIOS_SUCCESSFUL; } EXPORT_SYMBOL_GPL(pci_generic_config_write); int pci_generic_config_read32(struct pci_bus *bus, unsigned int devfn, int where, int size, u32 *val) { void __iomem *addr; addr = bus->ops->map_bus(bus, devfn, where & ~0x3); if (!addr) { *val = ~0; return PCIBIOS_DEVICE_NOT_FOUND; } *val = readl(addr); if (size <= 2) *val = (*val >> (8 * (where & 3))) & ((1 << (size * 8)) - 1); return PCIBIOS_SUCCESSFUL; } EXPORT_SYMBOL_GPL(pci_generic_config_read32); int pci_generic_config_write32(struct pci_bus *bus, unsigned int devfn, int where, int size, u32 val) { void __iomem *addr; u32 mask, tmp; addr = bus->ops->map_bus(bus, devfn, where & ~0x3); if (!addr) return PCIBIOS_DEVICE_NOT_FOUND; if (size == 4) { writel(val, addr); return PCIBIOS_SUCCESSFUL; } /* * In general, hardware that supports only 32-bit writes on PCI is * not spec-compliant. For example, software may perform a 16-bit * write. If the hardware only supports 32-bit accesses, we must * do a 32-bit read, merge in the 16 bits we intend to write, * followed by a 32-bit write. If the 16 bits we *don't* intend to * write happen to have any RW1C (write-one-to-clear) bits set, we * just inadvertently cleared something we shouldn't have. */ dev_warn_ratelimited(&bus->dev, "%d-byte config write to %04x:%02x:%02x.%d offset %#x may corrupt adjacent RW1C bits\n", size, pci_domain_nr(bus), bus->number, PCI_SLOT(devfn), PCI_FUNC(devfn), where); mask = ~(((1 << (size * 8)) - 1) << ((where & 0x3) * 8)); tmp = readl(addr) & mask; tmp |= val << ((where & 0x3) * 8); writel(tmp, addr); return PCIBIOS_SUCCESSFUL; } EXPORT_SYMBOL_GPL(pci_generic_config_write32); /** * pci_bus_set_ops - Set raw operations of pci bus * @bus: pci bus struct * @ops: new raw operations * * Return previous raw operations */ struct pci_ops *pci_bus_set_ops(struct pci_bus *bus, struct pci_ops *ops) { struct pci_ops *old_ops; unsigned long flags; raw_spin_lock_irqsave(&pci_lock, flags); old_ops = bus->ops; bus->ops = ops; raw_spin_unlock_irqrestore(&pci_lock, flags); return old_ops; } EXPORT_SYMBOL(pci_bus_set_ops); /* * The following routines are to prevent the user from accessing PCI config * space when it's unsafe to do so. Some devices require this during BIST and * we're required to prevent it during D-state transitions. * * We have a bit per device to indicate it's blocked and a global wait queue * for callers to sleep on until devices are unblocked. */ static DECLARE_WAIT_QUEUE_HEAD(pci_cfg_wait); static noinline void pci_wait_cfg(struct pci_dev *dev) { DECLARE_WAITQUEUE(wait, current); __add_wait_queue(&pci_cfg_wait, &wait); do { set_current_state(TASK_UNINTERRUPTIBLE); raw_spin_unlock_irq(&pci_lock); schedule(); raw_spin_lock_irq(&pci_lock); } while (dev->block_cfg_access); __remove_wait_queue(&pci_cfg_wait, &wait); } /* Returns 0 on success, negative values indicate error. */ #define PCI_USER_READ_CONFIG(size, type) \ int pci_user_read_config_##size \ (struct pci_dev *dev, int pos, type *val) \ { \ int ret = PCIBIOS_SUCCESSFUL; \ u32 data = -1; \ if (PCI_##size##_BAD) \ return -EINVAL; \ raw_spin_lock_irq(&pci_lock); \ if (unlikely(dev->block_cfg_access)) \ pci_wait_cfg(dev); \ ret = dev->bus->ops->read(dev->bus, dev->devfn, \ pos, sizeof(type), &data); \ raw_spin_unlock_irq(&pci_lock); \ *val = (type)data; \ return pcibios_err_to_errno(ret); \ } \ EXPORT_SYMBOL_GPL(pci_user_read_config_##size); /* Returns 0 on success, negative values indicate error. */ #define PCI_USER_WRITE_CONFIG(size, type) \ int pci_user_write_config_##size \ (struct pci_dev *dev, int pos, type val) \ { \ int ret = PCIBIOS_SUCCESSFUL; \ if (PCI_##size##_BAD) \ return -EINVAL; \ raw_spin_lock_irq(&pci_lock); \ if (unlikely(dev->block_cfg_access)) \ pci_wait_cfg(dev); \ ret = dev->bus->ops->write(dev->bus, dev->devfn, \ pos, sizeof(type), val); \ raw_spin_unlock_irq(&pci_lock); \ return pcibios_err_to_errno(ret); \ } \ EXPORT_SYMBOL_GPL(pci_user_write_config_##size); PCI_USER_READ_CONFIG(byte, u8) PCI_USER_READ_CONFIG(word, u16) PCI_USER_READ_CONFIG(dword, u32) PCI_USER_WRITE_CONFIG(byte, u8) PCI_USER_WRITE_CONFIG(word, u16) PCI_USER_WRITE_CONFIG(dword, u32) /* VPD access through PCI 2.2+ VPD capability */ /** * pci_read_vpd - Read one entry from Vital Product Data * @dev: pci device struct * @pos: offset in vpd space * @count: number of bytes to read * @buf: pointer to where to store result */ ssize_t pci_read_vpd(struct pci_dev *dev, loff_t pos, size_t count, void *buf) { if (!dev->vpd || !dev->vpd->ops) return -ENODEV; return dev->vpd->ops->read(dev, pos, count, buf); } EXPORT_SYMBOL(pci_read_vpd); /** * pci_write_vpd - Write entry to Vital Product Data * @dev: pci device struct * @pos: offset in vpd space * @count: number of bytes to write * @buf: buffer containing write data */ ssize_t pci_write_vpd(struct pci_dev *dev, loff_t pos, size_t count, const void *buf) { if (!dev->vpd || !dev->vpd->ops) return -ENODEV; return dev->vpd->ops->write(dev, pos, count, buf); } EXPORT_SYMBOL(pci_write_vpd); /** * pci_set_vpd_size - Set size of Vital Product Data space * @dev: pci device struct * @len: size of vpd space */ int pci_set_vpd_size(struct pci_dev *dev, size_t len) { if (!dev->vpd || !dev->vpd->ops) return -ENODEV; return dev->vpd->ops->set_size(dev, len); } EXPORT_SYMBOL(pci_set_vpd_size); #define PCI_VPD_MAX_SIZE (PCI_VPD_ADDR_MASK + 1) /** * pci_vpd_size - determine actual size of Vital Product Data * @dev: pci device struct * @old_size: current assumed size, also maximum allowed size */ static size_t pci_vpd_size(struct pci_dev *dev, size_t old_size) { size_t off = 0; unsigned char header[1+2]; /* 1 byte tag, 2 bytes length */ while (off < old_size && pci_read_vpd(dev, off, 1, header) == 1) { unsigned char tag; if (header[0] & PCI_VPD_LRDT) { /* Large Resource Data Type Tag */ tag = pci_vpd_lrdt_tag(header); /* Only read length from known tag items */ if ((tag == PCI_VPD_LTIN_ID_STRING) || (tag == PCI_VPD_LTIN_RO_DATA) || (tag == PCI_VPD_LTIN_RW_DATA)) { if (pci_read_vpd(dev, off+1, 2, &header[1]) != 2) { dev_warn(&dev->dev, "invalid large VPD tag %02x size at offset %zu", tag, off + 1); return 0; } off += PCI_VPD_LRDT_TAG_SIZE + pci_vpd_lrdt_size(header); } } else { /* Short Resource Data Type Tag */ off += PCI_VPD_SRDT_TAG_SIZE + pci_vpd_srdt_size(header); tag = pci_vpd_srdt_tag(header); } if (tag == PCI_VPD_STIN_END) /* End tag descriptor */ return off; if ((tag != PCI_VPD_LTIN_ID_STRING) && (tag != PCI_VPD_LTIN_RO_DATA) && (tag != PCI_VPD_LTIN_RW_DATA)) { dev_warn(&dev->dev, "invalid %s VPD tag %02x at offset %zu", (header[0] & PCI_VPD_LRDT) ? "large" : "short", tag, off); return 0; } } return 0; } /* * Wait for last operation to complete. * This code has to spin since there is no other notification from the PCI * hardware. Since the VPD is often implemented by serial attachment to an * EEPROM, it may take many milliseconds to complete. * * Returns 0 on success, negative values indicate error. */ static int pci_vpd_wait(struct pci_dev *dev) { struct pci_vpd *vpd = dev->vpd; unsigned long timeout = jiffies + msecs_to_jiffies(125); unsigned long max_sleep = 16; u16 status; int ret; if (!vpd->busy) return 0; while (time_before(jiffies, timeout)) { ret = pci_user_read_config_word(dev, vpd->cap + PCI_VPD_ADDR, &status); if (ret < 0) return ret; if ((status & PCI_VPD_ADDR_F) == vpd->flag) { vpd->busy = 0; return 0; } if (fatal_signal_pending(current)) return -EINTR; usleep_range(10, max_sleep); if (max_sleep < 1024) max_sleep *= 2; } dev_warn(&dev->dev, "VPD access failed. This is likely a firmware bug on this device. Contact the card vendor for a firmware update\n"); return -ETIMEDOUT; } static ssize_t pci_vpd_read(struct pci_dev *dev, loff_t pos, size_t count, void *arg) { struct pci_vpd *vpd = dev->vpd; int ret; loff_t end = pos + count; u8 *buf = arg; if (pos < 0) return -EINVAL; if (!vpd->valid) { vpd->valid = 1; vpd->len = pci_vpd_size(dev, vpd->len); } if (vpd->len == 0) return -EIO; if (pos > vpd->len) return 0; if (end > vpd->len) { end = vpd->len; count = end - pos; } if (mutex_lock_killable(&vpd->lock)) return -EINTR; ret = pci_vpd_wait(dev); if (ret < 0) goto out; while (pos < end) { u32 val; unsigned int i, skip; ret = pci_user_write_config_word(dev, vpd->cap + PCI_VPD_ADDR, pos & ~3); if (ret < 0) break; vpd->busy = 1; vpd->flag = PCI_VPD_ADDR_F; ret = pci_vpd_wait(dev); if (ret < 0) break; ret = pci_user_read_config_dword(dev, vpd->cap + PCI_VPD_DATA, &val); if (ret < 0) break; skip = pos & 3; for (i = 0; i < sizeof(u32); i++) { if (i >= skip) { *buf++ = val; if (++pos == end) break; } val >>= 8; } } out: mutex_unlock(&vpd->lock); return ret ? ret : count; } static ssize_t pci_vpd_write(struct pci_dev *dev, loff_t pos, size_t count, const void *arg) { struct pci_vpd *vpd = dev->vpd; const u8 *buf = arg; loff_t end = pos + count; int ret = 0; if (pos < 0 || (pos & 3) || (count & 3)) return -EINVAL; if (!vpd->valid) { vpd->valid = 1; vpd->len = pci_vpd_size(dev, vpd->len); } if (vpd->len == 0) return -EIO; if (end > vpd->len) return -EINVAL; if (mutex_lock_killable(&vpd->lock)) return -EINTR; ret = pci_vpd_wait(dev); if (ret < 0) goto out; while (pos < end) { u32 val; val = *buf++; val |= *buf++ << 8; val |= *buf++ << 16; val |= *buf++ << 24; ret = pci_user_write_config_dword(dev, vpd->cap + PCI_VPD_DATA, val); if (ret < 0) break; ret = pci_user_write_config_word(dev, vpd->cap + PCI_VPD_ADDR, pos | PCI_VPD_ADDR_F); if (ret < 0) break; vpd->busy = 1; vpd->flag = 0; ret = pci_vpd_wait(dev); if (ret < 0) break; pos += sizeof(u32); } out: mutex_unlock(&vpd->lock); return ret ? ret : count; } static int pci_vpd_set_size(struct pci_dev *dev, size_t len) { struct pci_vpd *vpd = dev->vpd; if (len == 0 || len > PCI_VPD_MAX_SIZE) return -EIO; vpd->valid = 1; vpd->len = len; return 0; } static const struct pci_vpd_ops pci_vpd_ops = { .read = pci_vpd_read, .write = pci_vpd_write, .set_size = pci_vpd_set_size, }; static ssize_t pci_vpd_f0_read(struct pci_dev *dev, loff_t pos, size_t count, void *arg) { struct pci_dev *tdev = pci_get_slot(dev->bus, PCI_DEVFN(PCI_SLOT(dev->devfn), 0)); ssize_t ret; if (!tdev) return -ENODEV; ret = pci_read_vpd(tdev, pos, count, arg); pci_dev_put(tdev); return ret; } static ssize_t pci_vpd_f0_write(struct pci_dev *dev, loff_t pos, size_t count, const void *arg) { struct pci_dev *tdev = pci_get_slot(dev->bus, PCI_DEVFN(PCI_SLOT(dev->devfn), 0)); ssize_t ret; if (!tdev) return -ENODEV; ret = pci_write_vpd(tdev, pos, count, arg); pci_dev_put(tdev); return ret; } static int pci_vpd_f0_set_size(struct pci_dev *dev, size_t len) { struct pci_dev *tdev = pci_get_slot(dev->bus, PCI_DEVFN(PCI_SLOT(dev->devfn), 0)); int ret; if (!tdev) return -ENODEV; ret = pci_set_vpd_size(tdev, len); pci_dev_put(tdev); return ret; } static const struct pci_vpd_ops pci_vpd_f0_ops = { .read = pci_vpd_f0_read, .write = pci_vpd_f0_write, .set_size = pci_vpd_f0_set_size, }; int pci_vpd_init(struct pci_dev *dev) { struct pci_vpd *vpd; u8 cap; cap = pci_find_capability(dev, PCI_CAP_ID_VPD); if (!cap) return -ENODEV; vpd = kzalloc(sizeof(*vpd), GFP_ATOMIC); if (!vpd) return -ENOMEM; vpd->len = PCI_VPD_MAX_SIZE; if (dev->dev_flags & PCI_DEV_FLAGS_VPD_REF_F0) vpd->ops = &pci_vpd_f0_ops; else vpd->ops = &pci_vpd_ops; mutex_init(&vpd->lock); vpd->cap = cap; vpd->busy = 0; vpd->valid = 0; dev->vpd = vpd; return 0; } void pci_vpd_release(struct pci_dev *dev) { kfree(dev->vpd); } /** * pci_cfg_access_lock - Lock PCI config reads/writes * @dev: pci device struct * * When access is locked, any userspace reads or writes to config * space and concurrent lock requests will sleep until access is * allowed via pci_cfg_access_unlock() again. */ void pci_cfg_access_lock(struct pci_dev *dev) { might_sleep(); raw_spin_lock_irq(&pci_lock); if (dev->block_cfg_access) pci_wait_cfg(dev); dev->block_cfg_access = 1; raw_spin_unlock_irq(&pci_lock); } EXPORT_SYMBOL_GPL(pci_cfg_access_lock); /** * pci_cfg_access_trylock - try to lock PCI config reads/writes * @dev: pci device struct * * Same as pci_cfg_access_lock, but will return 0 if access is * already locked, 1 otherwise. This function can be used from * atomic contexts. */ bool pci_cfg_access_trylock(struct pci_dev *dev) { unsigned long flags; bool locked = true; raw_spin_lock_irqsave(&pci_lock, flags); if (dev->block_cfg_access) locked = false; else dev->block_cfg_access = 1; raw_spin_unlock_irqrestore(&pci_lock, flags); return locked; } EXPORT_SYMBOL_GPL(pci_cfg_access_trylock); /** * pci_cfg_access_unlock - Unlock PCI config reads/writes * @dev: pci device struct * * This function allows PCI config accesses to resume. */ void pci_cfg_access_unlock(struct pci_dev *dev) { unsigned long flags; raw_spin_lock_irqsave(&pci_lock, flags); /* This indicates a problem in the caller, but we don't need * to kill them, unlike a double-block above. */ WARN_ON(!dev->block_cfg_access); dev->block_cfg_access = 0; raw_spin_unlock_irqrestore(&pci_lock, flags); wake_up_all(&pci_cfg_wait); } EXPORT_SYMBOL_GPL(pci_cfg_access_unlock); static inline int pcie_cap_version(const struct pci_dev *dev) { return pcie_caps_reg(dev) & PCI_EXP_FLAGS_VERS; } static bool pcie_downstream_port(const struct pci_dev *dev) { int type = pci_pcie_type(dev); return type == PCI_EXP_TYPE_ROOT_PORT || type == PCI_EXP_TYPE_DOWNSTREAM; } bool pcie_cap_has_lnkctl(const struct pci_dev *dev) { int type = pci_pcie_type(dev); return type == PCI_EXP_TYPE_ENDPOINT || type == PCI_EXP_TYPE_LEG_END || type == PCI_EXP_TYPE_ROOT_PORT || type == PCI_EXP_TYPE_UPSTREAM || type == PCI_EXP_TYPE_DOWNSTREAM || type == PCI_EXP_TYPE_PCI_BRIDGE || type == PCI_EXP_TYPE_PCIE_BRIDGE; } static inline bool pcie_cap_has_sltctl(const struct pci_dev *dev) { return pcie_downstream_port(dev) && pcie_caps_reg(dev) & PCI_EXP_FLAGS_SLOT; } static inline bool pcie_cap_has_rtctl(const struct pci_dev *dev) { int type = pci_pcie_type(dev); return type == PCI_EXP_TYPE_ROOT_PORT || type == PCI_EXP_TYPE_RC_EC; } static bool pcie_capability_reg_implemented(struct pci_dev *dev, int pos) { if (!pci_is_pcie(dev)) return false; switch (pos) { case PCI_EXP_FLAGS: return true; case PCI_EXP_DEVCAP: case PCI_EXP_DEVCTL: case PCI_EXP_DEVSTA: return true; case PCI_EXP_LNKCAP: case PCI_EXP_LNKCTL: case PCI_EXP_LNKSTA: return pcie_cap_has_lnkctl(dev); case PCI_EXP_SLTCAP: case PCI_EXP_SLTCTL: case PCI_EXP_SLTSTA: return pcie_cap_has_sltctl(dev); case PCI_EXP_RTCTL: case PCI_EXP_RTCAP: case PCI_EXP_RTSTA: return pcie_cap_has_rtctl(dev); case PCI_EXP_DEVCAP2: case PCI_EXP_DEVCTL2: case PCI_EXP_LNKCAP2: case PCI_EXP_LNKCTL2: case PCI_EXP_LNKSTA2: return pcie_cap_version(dev) > 1; default: return false; } } /* * Note that these accessor functions are only for the "PCI Express * Capability" (see PCIe spec r3.0, sec 7.8). They do not apply to the * other "PCI Express Extended Capabilities" (AER, VC, ACS, MFVC, etc.) */ int pcie_capability_read_word(struct pci_dev *dev, int pos, u16 *val) { int ret; *val = 0; if (pos & 1) return -EINVAL; if (pcie_capability_reg_implemented(dev, pos)) { ret = pci_read_config_word(dev, pci_pcie_cap(dev) + pos, val); /* * Reset *val to 0 if pci_read_config_word() fails, it may * have been written as 0xFFFF if hardware error happens * during pci_read_config_word(). */ if (ret) *val = 0; return ret; } /* * For Functions that do not implement the Slot Capabilities, * Slot Status, and Slot Control registers, these spaces must * be hardwired to 0b, with the exception of the Presence Detect * State bit in the Slot Status register of Downstream Ports, * which must be hardwired to 1b. (PCIe Base Spec 3.0, sec 7.8) */ if (pci_is_pcie(dev) && pcie_downstream_port(dev) && pos == PCI_EXP_SLTSTA) *val = PCI_EXP_SLTSTA_PDS; return 0; } EXPORT_SYMBOL(pcie_capability_read_word); int pcie_capability_read_dword(struct pci_dev *dev, int pos, u32 *val) { int ret; *val = 0; if (pos & 3) return -EINVAL; if (pcie_capability_reg_implemented(dev, pos)) { ret = pci_read_config_dword(dev, pci_pcie_cap(dev) + pos, val); /* * Reset *val to 0 if pci_read_config_dword() fails, it may * have been written as 0xFFFFFFFF if hardware error happens * during pci_read_config_dword(). */ if (ret) *val = 0; return ret; } if (pci_is_pcie(dev) && pcie_downstream_port(dev) && pos == PCI_EXP_SLTSTA) *val = PCI_EXP_SLTSTA_PDS; return 0; } EXPORT_SYMBOL(pcie_capability_read_dword); int pcie_capability_write_word(struct pci_dev *dev, int pos, u16 val) { if (pos & 1) return -EINVAL; if (!pcie_capability_reg_implemented(dev, pos)) return 0; return pci_write_config_word(dev, pci_pcie_cap(dev) + pos, val); } EXPORT_SYMBOL(pcie_capability_write_word); int pcie_capability_write_dword(struct pci_dev *dev, int pos, u32 val) { if (pos & 3) return -EINVAL; if (!pcie_capability_reg_implemented(dev, pos)) return 0; return pci_write_config_dword(dev, pci_pcie_cap(dev) + pos, val); } EXPORT_SYMBOL(pcie_capability_write_dword); int pcie_capability_clear_and_set_word(struct pci_dev *dev, int pos, u16 clear, u16 set) { int ret; u16 val; ret = pcie_capability_read_word(dev, pos, &val); if (!ret) { val &= ~clear; val |= set; ret = pcie_capability_write_word(dev, pos, val); } return ret; } EXPORT_SYMBOL(pcie_capability_clear_and_set_word); int pcie_capability_clear_and_set_dword(struct pci_dev *dev, int pos, u32 clear, u32 set) { int ret; u32 val; ret = pcie_capability_read_dword(dev, pos, &val); if (!ret) { val &= ~clear; val |= set; ret = pcie_capability_write_dword(dev, pos, val); } return ret; } EXPORT_SYMBOL(pcie_capability_clear_and_set_dword);