// SPDX-License-Identifier: GPL-2.0 /* * Moving/copying garbage collector * * Copyright 2012 Google, Inc. */ #include "bcachefs.h" #include "alloc_background.h" #include "alloc_foreground.h" #include "btree_iter.h" #include "btree_update.h" #include "btree_write_buffer.h" #include "buckets.h" #include "clock.h" #include "disk_groups.h" #include "errcode.h" #include "error.h" #include "extents.h" #include "eytzinger.h" #include "io.h" #include "keylist.h" #include "lru.h" #include "move.h" #include "movinggc.h" #include "super-io.h" #include "trace.h" #include #include #include #include #include #include static int bch2_bucket_is_movable(struct btree_trans *trans, struct bpos bucket, u64 time, u8 *gen) { struct btree_iter iter; struct bkey_s_c k; struct bch_alloc_v4 _a; const struct bch_alloc_v4 *a; int ret; if (bch2_bucket_is_open(trans->c, bucket.inode, bucket.offset)) return 0; bch2_trans_iter_init(trans, &iter, BTREE_ID_alloc, bucket, 0); k = bch2_btree_iter_peek_slot(&iter); ret = bkey_err(k); bch2_trans_iter_exit(trans, &iter); if (ret) return ret; a = bch2_alloc_to_v4(k, &_a); *gen = a->gen; ret = data_type_movable(a->data_type) && a->fragmentation_lru && a->fragmentation_lru <= time; if (ret) { struct printbuf buf = PRINTBUF; bch2_bkey_val_to_text(&buf, trans->c, k); pr_debug("%s", buf.buf); printbuf_exit(&buf); } return ret; } static int bch2_copygc_next_bucket(struct btree_trans *trans, struct bpos *bucket, u8 *gen, struct bpos *pos) { struct btree_iter iter; struct bkey_s_c k; int ret; ret = for_each_btree_key2_upto(trans, iter, BTREE_ID_lru, bpos_max(*pos, lru_pos(BCH_LRU_FRAGMENTATION_START, 0, 0)), lru_pos(BCH_LRU_FRAGMENTATION_START, U64_MAX, LRU_TIME_MAX), 0, k, ({ *bucket = u64_to_bucket(k.k->p.offset); bch2_bucket_is_movable(trans, *bucket, lru_pos_time(k.k->p), gen); })); *pos = iter.pos; if (ret < 0) return ret; return ret ? 0 : -ENOENT; } static int bch2_copygc(struct bch_fs *c) { struct bch_move_stats move_stats; struct btree_trans trans; struct moving_context ctxt; struct data_update_opts data_opts = { .btree_insert_flags = BTREE_INSERT_USE_RESERVE|JOURNAL_WATERMARK_copygc, }; struct bpos bucket; struct bpos pos; u8 gen = 0; unsigned nr_evacuated; int ret = 0; bch2_move_stats_init(&move_stats, "copygc"); bch2_moving_ctxt_init(&ctxt, c, NULL, &move_stats, writepoint_ptr(&c->copygc_write_point), false); bch2_trans_init(&trans, c, 0, 0); ret = bch2_btree_write_buffer_flush(&trans); BUG_ON(ret); for (nr_evacuated = 0, pos = POS_MIN; nr_evacuated < 32 && !ret; nr_evacuated++, pos = bpos_nosnap_successor(pos)) { ret = bch2_copygc_next_bucket(&trans, &bucket, &gen, &pos) ?: __bch2_evacuate_bucket(&trans, &ctxt, bucket, gen, data_opts); if (bkey_eq(pos, POS_MAX)) break; } bch2_trans_exit(&trans); bch2_moving_ctxt_exit(&ctxt); /* no entries in LRU btree found, or got to end: */ if (ret == -ENOENT) ret = 0; if (ret < 0 && !bch2_err_matches(ret, EROFS)) bch_err(c, "error from bch2_move_data() in copygc: %s", bch2_err_str(ret)); trace_and_count(c, copygc, c, atomic64_read(&move_stats.sectors_moved), 0, 0, 0); return ret; } /* * Copygc runs when the amount of fragmented data is above some arbitrary * threshold: * * The threshold at the limit - when the device is full - is the amount of space * we reserved in bch2_recalc_capacity; we can't have more than that amount of * disk space stranded due to fragmentation and store everything we have * promised to store. * * But we don't want to be running copygc unnecessarily when the device still * has plenty of free space - rather, we want copygc to smoothly run every so * often and continually reduce the amount of fragmented space as the device * fills up. So, we increase the threshold by half the current free space. */ unsigned long bch2_copygc_wait_amount(struct bch_fs *c) { struct bch_dev *ca; unsigned dev_idx; s64 wait = S64_MAX, fragmented_allowed, fragmented; unsigned i; for_each_rw_member(ca, c, dev_idx) { struct bch_dev_usage usage = bch2_dev_usage_read(ca); fragmented_allowed = ((__dev_buckets_available(ca, usage, RESERVE_none) * ca->mi.bucket_size) >> 1); fragmented = 0; for (i = 0; i < BCH_DATA_NR; i++) if (data_type_movable(i)) fragmented += usage.d[i].fragmented; wait = min(wait, max(0LL, fragmented_allowed - fragmented)); } return wait; } void bch2_copygc_wait_to_text(struct printbuf *out, struct bch_fs *c) { prt_printf(out, "Currently waiting for: "); prt_human_readable_u64(out, max(0LL, c->copygc_wait - atomic64_read(&c->io_clock[WRITE].now)) << 9); prt_newline(out); prt_printf(out, "Currently calculated wait: "); prt_human_readable_u64(out, bch2_copygc_wait_amount(c)); prt_newline(out); } static int bch2_copygc_thread(void *arg) { struct bch_fs *c = arg; struct io_clock *clock = &c->io_clock[WRITE]; u64 last, wait; int ret = 0; set_freezable(); while (!ret && !kthread_should_stop()) { cond_resched(); if (kthread_wait_freezable(c->copy_gc_enabled)) break; last = atomic64_read(&clock->now); wait = bch2_copygc_wait_amount(c); if (wait > clock->max_slop) { trace_and_count(c, copygc_wait, c, wait, last + wait); c->copygc_wait = last + wait; bch2_kthread_io_clock_wait(clock, last + wait, MAX_SCHEDULE_TIMEOUT); continue; } c->copygc_wait = 0; c->copygc_running = true; ret = bch2_copygc(c); c->copygc_running = false; wake_up(&c->copygc_running_wq); } return 0; } void bch2_copygc_stop(struct bch_fs *c) { if (c->copygc_thread) { kthread_stop(c->copygc_thread); put_task_struct(c->copygc_thread); } c->copygc_thread = NULL; } int bch2_copygc_start(struct bch_fs *c) { struct task_struct *t; int ret; if (c->copygc_thread) return 0; if (c->opts.nochanges) return 0; if (bch2_fs_init_fault("copygc_start")) return -ENOMEM; t = kthread_create(bch2_copygc_thread, c, "bch-copygc/%s", c->name); ret = PTR_ERR_OR_ZERO(t); if (ret) { bch_err(c, "error creating copygc thread: %s", bch2_err_str(ret)); return ret; } get_task_struct(t); c->copygc_thread = t; wake_up_process(c->copygc_thread); return 0; } void bch2_fs_copygc_init(struct bch_fs *c) { init_waitqueue_head(&c->copygc_running_wq); c->copygc_running = false; }