/* SPDX-License-Identifier: GPL-2.0-or-later */ /* internal.h: mm/ internal definitions * * Copyright (C) 2004 Red Hat, Inc. All Rights Reserved. * Written by David Howells (dhowells@redhat.com) */ #ifndef __MM_INTERNAL_H #define __MM_INTERNAL_H #include #include #include #include struct folio_batch; /* * The set of flags that only affect watermark checking and reclaim * behaviour. This is used by the MM to obey the caller constraints * about IO, FS and watermark checking while ignoring placement * hints such as HIGHMEM usage. */ #define GFP_RECLAIM_MASK (__GFP_RECLAIM|__GFP_HIGH|__GFP_IO|__GFP_FS|\ __GFP_NOWARN|__GFP_RETRY_MAYFAIL|__GFP_NOFAIL|\ __GFP_NORETRY|__GFP_MEMALLOC|__GFP_NOMEMALLOC|\ __GFP_ATOMIC) /* The GFP flags allowed during early boot */ #define GFP_BOOT_MASK (__GFP_BITS_MASK & ~(__GFP_RECLAIM|__GFP_IO|__GFP_FS)) /* Control allocation cpuset and node placement constraints */ #define GFP_CONSTRAINT_MASK (__GFP_HARDWALL|__GFP_THISNODE) /* Do not use these with a slab allocator */ #define GFP_SLAB_BUG_MASK (__GFP_DMA32|__GFP_HIGHMEM|~__GFP_BITS_MASK) void page_writeback_init(void); static inline void *folio_raw_mapping(struct folio *folio) { unsigned long mapping = (unsigned long)folio->mapping; return (void *)(mapping & ~PAGE_MAPPING_FLAGS); } void __acct_reclaim_writeback(pg_data_t *pgdat, struct folio *folio, int nr_throttled); static inline void acct_reclaim_writeback(struct folio *folio) { pg_data_t *pgdat = folio_pgdat(folio); int nr_throttled = atomic_read(&pgdat->nr_writeback_throttled); if (nr_throttled) __acct_reclaim_writeback(pgdat, folio, nr_throttled); } static inline void wake_throttle_isolated(pg_data_t *pgdat) { wait_queue_head_t *wqh; wqh = &pgdat->reclaim_wait[VMSCAN_THROTTLE_ISOLATED]; if (waitqueue_active(wqh)) wake_up(wqh); } vm_fault_t do_swap_page(struct vm_fault *vmf); void folio_rotate_reclaimable(struct folio *folio); bool __folio_end_writeback(struct folio *folio); void free_pgtables(struct mmu_gather *tlb, struct vm_area_struct *start_vma, unsigned long floor, unsigned long ceiling); void pmd_install(struct mm_struct *mm, pmd_t *pmd, pgtable_t *pte); static inline bool can_madv_lru_vma(struct vm_area_struct *vma) { return !(vma->vm_flags & (VM_LOCKED|VM_HUGETLB|VM_PFNMAP)); } struct zap_details; void unmap_page_range(struct mmu_gather *tlb, struct vm_area_struct *vma, unsigned long addr, unsigned long end, struct zap_details *details); void do_page_cache_ra(struct readahead_control *, unsigned long nr_to_read, unsigned long lookahead_size); void force_page_cache_ra(struct readahead_control *, unsigned long nr); static inline void force_page_cache_readahead(struct address_space *mapping, struct file *file, pgoff_t index, unsigned long nr_to_read) { DEFINE_READAHEAD(ractl, file, &file->f_ra, mapping, index); force_page_cache_ra(&ractl, nr_to_read); } unsigned find_lock_entries(struct address_space *mapping, pgoff_t start, pgoff_t end, struct pagevec *pvec, pgoff_t *indices); unsigned find_get_entries(struct address_space *mapping, pgoff_t start, pgoff_t end, struct folio_batch *fbatch, pgoff_t *indices); void filemap_free_folio(struct address_space *mapping, struct folio *folio); int truncate_inode_folio(struct address_space *mapping, struct folio *folio); /** * folio_evictable - Test whether a folio is evictable. * @folio: The folio to test. * * Test whether @folio is evictable -- i.e., should be placed on * active/inactive lists vs unevictable list. * * Reasons folio might not be evictable: * 1. folio's mapping marked unevictable * 2. One of the pages in the folio is part of an mlocked VMA */ static inline bool folio_evictable(struct folio *folio) { bool ret; /* Prevent address_space of inode and swap cache from being freed */ rcu_read_lock(); ret = !mapping_unevictable(folio_mapping(folio)) && !folio_test_mlocked(folio); rcu_read_unlock(); return ret; } static inline bool page_evictable(struct page *page) { bool ret; /* Prevent address_space of inode and swap cache from being freed */ rcu_read_lock(); ret = !mapping_unevictable(page_mapping(page)) && !PageMlocked(page); rcu_read_unlock(); return ret; } /* * Turn a non-refcounted page (->_refcount == 0) into refcounted with * a count of one. */ static inline void set_page_refcounted(struct page *page) { VM_BUG_ON_PAGE(PageTail(page), page); VM_BUG_ON_PAGE(page_ref_count(page), page); set_page_count(page, 1); } extern unsigned long highest_memmap_pfn; /* * Maximum number of reclaim retries without progress before the OOM * killer is consider the only way forward. */ #define MAX_RECLAIM_RETRIES 16 /* * in mm/vmscan.c: */ extern int isolate_lru_page(struct page *page); extern void putback_lru_page(struct page *page); extern void reclaim_throttle(pg_data_t *pgdat, enum vmscan_throttle_state reason); /* * in mm/rmap.c: */ extern pmd_t *mm_find_pmd(struct mm_struct *mm, unsigned long address); /* * in mm/memcontrol.c: */ extern bool cgroup_memory_nokmem; /* * in mm/page_alloc.c */ /* * Structure for holding the mostly immutable allocation parameters passed * between functions involved in allocations, including the alloc_pages* * family of functions. * * nodemask, migratetype and highest_zoneidx are initialized only once in * __alloc_pages() and then never change. * * zonelist, preferred_zone and highest_zoneidx are set first in * __alloc_pages() for the fast path, and might be later changed * in __alloc_pages_slowpath(). All other functions pass the whole structure * by a const pointer. */ struct alloc_context { struct zonelist *zonelist; nodemask_t *nodemask; struct zoneref *preferred_zoneref; int migratetype; /* * highest_zoneidx represents highest usable zone index of * the allocation request. Due to the nature of the zone, * memory on lower zone than the highest_zoneidx will be * protected by lowmem_reserve[highest_zoneidx]. * * highest_zoneidx is also used by reclaim/compaction to limit * the target zone since higher zone than this index cannot be * usable for this allocation request. */ enum zone_type highest_zoneidx; bool spread_dirty_pages; }; /* * Locate the struct page for both the matching buddy in our * pair (buddy1) and the combined O(n+1) page they form (page). * * 1) Any buddy B1 will have an order O twin B2 which satisfies * the following equation: * B2 = B1 ^ (1 << O) * For example, if the starting buddy (buddy2) is #8 its order * 1 buddy is #10: * B2 = 8 ^ (1 << 1) = 8 ^ 2 = 10 * * 2) Any buddy B will have an order O+1 parent P which * satisfies the following equation: * P = B & ~(1 << O) * * Assumption: *_mem_map is contiguous at least up to MAX_ORDER */ static inline unsigned long __find_buddy_pfn(unsigned long page_pfn, unsigned int order) { return page_pfn ^ (1 << order); } extern struct page *__pageblock_pfn_to_page(unsigned long start_pfn, unsigned long end_pfn, struct zone *zone); static inline struct page *pageblock_pfn_to_page(unsigned long start_pfn, unsigned long end_pfn, struct zone *zone) { if (zone->contiguous) return pfn_to_page(start_pfn); return __pageblock_pfn_to_page(start_pfn, end_pfn, zone); } extern int __isolate_free_page(struct page *page, unsigned int order); extern void __putback_isolated_page(struct page *page, unsigned int order, int mt); extern void memblock_free_pages(struct page *page, unsigned long pfn, unsigned int order); extern void __free_pages_core(struct page *page, unsigned int order); extern void prep_compound_page(struct page *page, unsigned int order); extern void post_alloc_hook(struct page *page, unsigned int order, gfp_t gfp_flags); extern int user_min_free_kbytes; extern void free_unref_page(struct page *page, unsigned int order); extern void free_unref_page_list(struct list_head *list); extern void zone_pcp_update(struct zone *zone, int cpu_online); extern void zone_pcp_reset(struct zone *zone); extern void zone_pcp_disable(struct zone *zone); extern void zone_pcp_enable(struct zone *zone); extern void *memmap_alloc(phys_addr_t size, phys_addr_t align, phys_addr_t min_addr, int nid, bool exact_nid); #if defined CONFIG_COMPACTION || defined CONFIG_CMA /* * in mm/compaction.c */ /* * compact_control is used to track pages being migrated and the free pages * they are being migrated to during memory compaction. The free_pfn starts * at the end of a zone and migrate_pfn begins at the start. Movable pages * are moved to the end of a zone during a compaction run and the run * completes when free_pfn <= migrate_pfn */ struct compact_control { struct list_head freepages; /* List of free pages to migrate to */ struct list_head migratepages; /* List of pages being migrated */ unsigned int nr_freepages; /* Number of isolated free pages */ unsigned int nr_migratepages; /* Number of pages to migrate */ unsigned long free_pfn; /* isolate_freepages search base */ /* * Acts as an in/out parameter to page isolation for migration. * isolate_migratepages uses it as a search base. * isolate_migratepages_block will update the value to the next pfn * after the last isolated one. */ unsigned long migrate_pfn; unsigned long fast_start_pfn; /* a pfn to start linear scan from */ struct zone *zone; unsigned long total_migrate_scanned; unsigned long total_free_scanned; unsigned short fast_search_fail;/* failures to use free list searches */ short search_order; /* order to start a fast search at */ const gfp_t gfp_mask; /* gfp mask of a direct compactor */ int order; /* order a direct compactor needs */ int migratetype; /* migratetype of direct compactor */ const unsigned int alloc_flags; /* alloc flags of a direct compactor */ const int highest_zoneidx; /* zone index of a direct compactor */ enum migrate_mode mode; /* Async or sync migration mode */ bool ignore_skip_hint; /* Scan blocks even if marked skip */ bool no_set_skip_hint; /* Don't mark blocks for skipping */ bool ignore_block_suitable; /* Scan blocks considered unsuitable */ bool direct_compaction; /* False from kcompactd or /proc/... */ bool proactive_compaction; /* kcompactd proactive compaction */ bool whole_zone; /* Whole zone should/has been scanned */ bool contended; /* Signal lock or sched contention */ bool rescan; /* Rescanning the same pageblock */ bool alloc_contig; /* alloc_contig_range allocation */ }; /* * Used in direct compaction when a page should be taken from the freelists * immediately when one is created during the free path. */ struct capture_control { struct compact_control *cc; struct page *page; }; unsigned long isolate_freepages_range(struct compact_control *cc, unsigned long start_pfn, unsigned long end_pfn); int isolate_migratepages_range(struct compact_control *cc, unsigned long low_pfn, unsigned long end_pfn); #endif int find_suitable_fallback(struct free_area *area, unsigned int order, int migratetype, bool only_stealable, bool *can_steal); /* * This function returns the order of a free page in the buddy system. In * general, page_zone(page)->lock must be held by the caller to prevent the * page from being allocated in parallel and returning garbage as the order. * If a caller does not hold page_zone(page)->lock, it must guarantee that the * page cannot be allocated or merged in parallel. Alternatively, it must * handle invalid values gracefully, and use buddy_order_unsafe() below. */ static inline unsigned int buddy_order(struct page *page) { /* PageBuddy() must be checked by the caller */ return page_private(page); } /* * Like buddy_order(), but for callers who cannot afford to hold the zone lock. * PageBuddy() should be checked first by the caller to minimize race window, * and invalid values must be handled gracefully. * * READ_ONCE is used so that if the caller assigns the result into a local * variable and e.g. tests it for valid range before using, the compiler cannot * decide to remove the variable and inline the page_private(page) multiple * times, potentially observing different values in the tests and the actual * use of the result. */ #define buddy_order_unsafe(page) READ_ONCE(page_private(page)) /* * These three helpers classifies VMAs for virtual memory accounting. */ /* * Executable code area - executable, not writable, not stack */ static inline bool is_exec_mapping(vm_flags_t flags) { return (flags & (VM_EXEC | VM_WRITE | VM_STACK)) == VM_EXEC; } /* * Stack area - automatically grows in one direction * * VM_GROWSUP / VM_GROWSDOWN VMAs are always private anonymous: * do_mmap() forbids all other combinations. */ static inline bool is_stack_mapping(vm_flags_t flags) { return (flags & VM_STACK) == VM_STACK; } /* * Data area - private, writable, not stack */ static inline bool is_data_mapping(vm_flags_t flags) { return (flags & (VM_WRITE | VM_SHARED | VM_STACK)) == VM_WRITE; } /* mm/util.c */ void __vma_link_list(struct mm_struct *mm, struct vm_area_struct *vma, struct vm_area_struct *prev); void __vma_unlink_list(struct mm_struct *mm, struct vm_area_struct *vma); #ifdef CONFIG_MMU void unmap_mapping_folio(struct folio *folio); extern long populate_vma_page_range(struct vm_area_struct *vma, unsigned long start, unsigned long end, int *locked); extern long faultin_vma_page_range(struct vm_area_struct *vma, unsigned long start, unsigned long end, bool write, int *locked); extern void munlock_vma_pages_range(struct vm_area_struct *vma, unsigned long start, unsigned long end); static inline void munlock_vma_pages_all(struct vm_area_struct *vma) { munlock_vma_pages_range(vma, vma->vm_start, vma->vm_end); } /* * must be called with vma's mmap_lock held for read or write, and page locked. */ extern void mlock_vma_page(struct page *page); extern unsigned int munlock_vma_page(struct page *page); extern int mlock_future_check(struct mm_struct *mm, unsigned long flags, unsigned long len); /* * Clear the page's PageMlocked(). This can be useful in a situation where * we want to unconditionally remove a page from the pagecache -- e.g., * on truncation or freeing. * * It is legal to call this function for any page, mlocked or not. * If called for a page that is still mapped by mlocked vmas, all we do * is revert to lazy LRU behaviour -- semantics are not broken. */ extern void clear_page_mlock(struct page *page); extern pmd_t maybe_pmd_mkwrite(pmd_t pmd, struct vm_area_struct *vma); /* * At what user virtual address is page expected in vma? * Returns -EFAULT if all of the page is outside the range of vma. * If page is a compound head, the entire compound page is considered. */ static inline unsigned long vma_address(struct page *page, struct vm_area_struct *vma) { pgoff_t pgoff; unsigned long address; VM_BUG_ON_PAGE(PageKsm(page), page); /* KSM page->index unusable */ pgoff = page_to_pgoff(page); if (pgoff >= vma->vm_pgoff) { address = vma->vm_start + ((pgoff - vma->vm_pgoff) << PAGE_SHIFT); /* Check for address beyond vma (or wrapped through 0?) */ if (address < vma->vm_start || address >= vma->vm_end) address = -EFAULT; } else if (PageHead(page) && pgoff + compound_nr(page) - 1 >= vma->vm_pgoff) { /* Test above avoids possibility of wrap to 0 on 32-bit */ address = vma->vm_start; } else { address = -EFAULT; } return address; } /* * Then at what user virtual address will none of the page be found in vma? * Assumes that vma_address() already returned a good starting address. * If page is a compound head, the entire compound page is considered. */ static inline unsigned long vma_address_end(struct page *page, struct vm_area_struct *vma) { pgoff_t pgoff; unsigned long address; VM_BUG_ON_PAGE(PageKsm(page), page); /* KSM page->index unusable */ pgoff = page_to_pgoff(page) + compound_nr(page); address = vma->vm_start + ((pgoff - vma->vm_pgoff) << PAGE_SHIFT); /* Check for address beyond vma (or wrapped through 0?) */ if (address < vma->vm_start || address > vma->vm_end) address = vma->vm_end; return address; } static inline struct file *maybe_unlock_mmap_for_io(struct vm_fault *vmf, struct file *fpin) { int flags = vmf->flags; if (fpin) return fpin; /* * FAULT_FLAG_RETRY_NOWAIT means we don't want to wait on page locks or * anything, so we only pin the file and drop the mmap_lock if only * FAULT_FLAG_ALLOW_RETRY is set, while this is the first attempt. */ if (fault_flag_allow_retry_first(flags) && !(flags & FAULT_FLAG_RETRY_NOWAIT)) { fpin = get_file(vmf->vma->vm_file); mmap_read_unlock(vmf->vma->vm_mm); } return fpin; } #else /* !CONFIG_MMU */ static inline void unmap_mapping_folio(struct folio *folio) { } static inline void clear_page_mlock(struct page *page) { } static inline void mlock_vma_page(struct page *page) { } static inline void vunmap_range_noflush(unsigned long start, unsigned long end) { } #endif /* !CONFIG_MMU */ /* * Return the mem_map entry representing the 'offset' subpage within * the maximally aligned gigantic page 'base'. Handle any discontiguity * in the mem_map at MAX_ORDER_NR_PAGES boundaries. */ static inline struct page *mem_map_offset(struct page *base, int offset) { if (unlikely(offset >= MAX_ORDER_NR_PAGES)) return nth_page(base, offset); return base + offset; } /* * Iterator over all subpages within the maximally aligned gigantic * page 'base'. Handle any discontiguity in the mem_map. */ static inline struct page *mem_map_next(struct page *iter, struct page *base, int offset) { if (unlikely((offset & (MAX_ORDER_NR_PAGES - 1)) == 0)) { unsigned long pfn = page_to_pfn(base) + offset; if (!pfn_valid(pfn)) return NULL; return pfn_to_page(pfn); } return iter + 1; } /* Memory initialisation debug and verification */ enum mminit_level { MMINIT_WARNING, MMINIT_VERIFY, MMINIT_TRACE }; #ifdef CONFIG_DEBUG_MEMORY_INIT extern int mminit_loglevel; #define mminit_dprintk(level, prefix, fmt, arg...) \ do { \ if (level < mminit_loglevel) { \ if (level <= MMINIT_WARNING) \ pr_warn("mminit::" prefix " " fmt, ##arg); \ else \ printk(KERN_DEBUG "mminit::" prefix " " fmt, ##arg); \ } \ } while (0) extern void mminit_verify_pageflags_layout(void); extern void mminit_verify_zonelist(void); #else static inline void mminit_dprintk(enum mminit_level level, const char *prefix, const char *fmt, ...) { } static inline void mminit_verify_pageflags_layout(void) { } static inline void mminit_verify_zonelist(void) { } #endif /* CONFIG_DEBUG_MEMORY_INIT */ /* mminit_validate_memmodel_limits is independent of CONFIG_DEBUG_MEMORY_INIT */ #if defined(CONFIG_SPARSEMEM) extern void mminit_validate_memmodel_limits(unsigned long *start_pfn, unsigned long *end_pfn); #else static inline void mminit_validate_memmodel_limits(unsigned long *start_pfn, unsigned long *end_pfn) { } #endif /* CONFIG_SPARSEMEM */ #define NODE_RECLAIM_NOSCAN -2 #define NODE_RECLAIM_FULL -1 #define NODE_RECLAIM_SOME 0 #define NODE_RECLAIM_SUCCESS 1 #ifdef CONFIG_NUMA extern int node_reclaim(struct pglist_data *, gfp_t, unsigned int); extern int find_next_best_node(int node, nodemask_t *used_node_mask); #else static inline int node_reclaim(struct pglist_data *pgdat, gfp_t mask, unsigned int order) { return NODE_RECLAIM_NOSCAN; } static inline int find_next_best_node(int node, nodemask_t *used_node_mask) { return NUMA_NO_NODE; } #endif extern int hwpoison_filter(struct page *p); extern u32 hwpoison_filter_dev_major; extern u32 hwpoison_filter_dev_minor; extern u64 hwpoison_filter_flags_mask; extern u64 hwpoison_filter_flags_value; extern u64 hwpoison_filter_memcg; extern u32 hwpoison_filter_enable; extern unsigned long __must_check vm_mmap_pgoff(struct file *, unsigned long, unsigned long, unsigned long, unsigned long, unsigned long); extern void set_pageblock_order(void); unsigned int reclaim_clean_pages_from_list(struct zone *zone, struct list_head *page_list); /* The ALLOC_WMARK bits are used as an index to zone->watermark */ #define ALLOC_WMARK_MIN WMARK_MIN #define ALLOC_WMARK_LOW WMARK_LOW #define ALLOC_WMARK_HIGH WMARK_HIGH #define ALLOC_NO_WATERMARKS 0x04 /* don't check watermarks at all */ /* Mask to get the watermark bits */ #define ALLOC_WMARK_MASK (ALLOC_NO_WATERMARKS-1) /* * Only MMU archs have async oom victim reclaim - aka oom_reaper so we * cannot assume a reduced access to memory reserves is sufficient for * !MMU */ #ifdef CONFIG_MMU #define ALLOC_OOM 0x08 #else #define ALLOC_OOM ALLOC_NO_WATERMARKS #endif #define ALLOC_HARDER 0x10 /* try to alloc harder */ #define ALLOC_HIGH 0x20 /* __GFP_HIGH set */ #define ALLOC_CPUSET 0x40 /* check for correct cpuset */ #define ALLOC_CMA 0x80 /* allow allocations from CMA areas */ #ifdef CONFIG_ZONE_DMA32 #define ALLOC_NOFRAGMENT 0x100 /* avoid mixing pageblock types */ #else #define ALLOC_NOFRAGMENT 0x0 #endif #define ALLOC_KSWAPD 0x800 /* allow waking of kswapd, __GFP_KSWAPD_RECLAIM set */ enum ttu_flags; struct tlbflush_unmap_batch; /* * only for MM internal work items which do not depend on * any allocations or locks which might depend on allocations */ extern struct workqueue_struct *mm_percpu_wq; #ifdef CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH void try_to_unmap_flush(void); void try_to_unmap_flush_dirty(void); void flush_tlb_batched_pending(struct mm_struct *mm); #else static inline void try_to_unmap_flush(void) { } static inline void try_to_unmap_flush_dirty(void) { } static inline void flush_tlb_batched_pending(struct mm_struct *mm) { } #endif /* CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH */ extern const struct trace_print_flags pageflag_names[]; extern const struct trace_print_flags vmaflag_names[]; extern const struct trace_print_flags gfpflag_names[]; static inline bool is_migrate_highatomic(enum migratetype migratetype) { return migratetype == MIGRATE_HIGHATOMIC; } static inline bool is_migrate_highatomic_page(struct page *page) { return get_pageblock_migratetype(page) == MIGRATE_HIGHATOMIC; } void setup_zone_pageset(struct zone *zone); struct migration_target_control { int nid; /* preferred node id */ nodemask_t *nmask; gfp_t gfp_mask; }; /* * mm/vmalloc.c */ #ifdef CONFIG_MMU int vmap_pages_range_noflush(unsigned long addr, unsigned long end, pgprot_t prot, struct page **pages, unsigned int page_shift); #else static inline int vmap_pages_range_noflush(unsigned long addr, unsigned long end, pgprot_t prot, struct page **pages, unsigned int page_shift) { return -EINVAL; } #endif void vunmap_range_noflush(unsigned long start, unsigned long end); int numa_migrate_prep(struct page *page, struct vm_area_struct *vma, unsigned long addr, int page_nid, int *flags); #endif /* __MM_INTERNAL_H */