/* SPDX-License-Identifier: GPL-2.0 */ #ifndef _BCACHEFS_BSET_H #define _BCACHEFS_BSET_H #include #include #include "bcachefs_format.h" #include "bkey.h" #include "bkey_methods.h" #include "btree_types.h" #include "util.h" /* for time_stats */ #include "vstructs.h" /* * BKEYS: * * A bkey contains a key, a size field, a variable number of pointers, and some * ancillary flag bits. * * We use two different functions for validating bkeys, bkey_invalid and * bkey_deleted(). * * The one exception to the rule that ptr_invalid() filters out invalid keys is * that it also filters out keys of size 0 - these are keys that have been * completely overwritten. It'd be safe to delete these in memory while leaving * them on disk, just unnecessary work - so we filter them out when resorting * instead. * * We can't filter out stale keys when we're resorting, because garbage * collection needs to find them to ensure bucket gens don't wrap around - * unless we're rewriting the btree node those stale keys still exist on disk. * * We also implement functions here for removing some number of sectors from the * front or the back of a bkey - this is mainly used for fixing overlapping * extents, by removing the overlapping sectors from the older key. * * BSETS: * * A bset is an array of bkeys laid out contiguously in memory in sorted order, * along with a header. A btree node is made up of a number of these, written at * different times. * * There could be many of them on disk, but we never allow there to be more than * 4 in memory - we lazily resort as needed. * * We implement code here for creating and maintaining auxiliary search trees * (described below) for searching an individial bset, and on top of that we * implement a btree iterator. * * BTREE ITERATOR: * * Most of the code in bcache doesn't care about an individual bset - it needs * to search entire btree nodes and iterate over them in sorted order. * * The btree iterator code serves both functions; it iterates through the keys * in a btree node in sorted order, starting from either keys after a specific * point (if you pass it a search key) or the start of the btree node. * * AUXILIARY SEARCH TREES: * * Since keys are variable length, we can't use a binary search on a bset - we * wouldn't be able to find the start of the next key. But binary searches are * slow anyways, due to terrible cache behaviour; bcache originally used binary * searches and that code topped out at under 50k lookups/second. * * So we need to construct some sort of lookup table. Since we only insert keys * into the last (unwritten) set, most of the keys within a given btree node are * usually in sets that are mostly constant. We use two different types of * lookup tables to take advantage of this. * * Both lookup tables share in common that they don't index every key in the * set; they index one key every BSET_CACHELINE bytes, and then a linear search * is used for the rest. * * For sets that have been written to disk and are no longer being inserted * into, we construct a binary search tree in an array - traversing a binary * search tree in an array gives excellent locality of reference and is very * fast, since both children of any node are adjacent to each other in memory * (and their grandchildren, and great grandchildren...) - this means * prefetching can be used to great effect. * * It's quite useful performance wise to keep these nodes small - not just * because they're more likely to be in L2, but also because we can prefetch * more nodes on a single cacheline and thus prefetch more iterations in advance * when traversing this tree. * * Nodes in the auxiliary search tree must contain both a key to compare against * (we don't want to fetch the key from the set, that would defeat the purpose), * and a pointer to the key. We use a few tricks to compress both of these. * * To compress the pointer, we take advantage of the fact that one node in the * search tree corresponds to precisely BSET_CACHELINE bytes in the set. We have * a function (to_inorder()) that takes the index of a node in a binary tree and * returns what its index would be in an inorder traversal, so we only have to * store the low bits of the offset. * * The key is 84 bits (KEY_DEV + key->key, the offset on the device). To * compress that, we take advantage of the fact that when we're traversing the * search tree at every iteration we know that both our search key and the key * we're looking for lie within some range - bounded by our previous * comparisons. (We special case the start of a search so that this is true even * at the root of the tree). * * So we know the key we're looking for is between a and b, and a and b don't * differ higher than bit 50, we don't need to check anything higher than bit * 50. * * We don't usually need the rest of the bits, either; we only need enough bits * to partition the key range we're currently checking. Consider key n - the * key our auxiliary search tree node corresponds to, and key p, the key * immediately preceding n. The lowest bit we need to store in the auxiliary * search tree is the highest bit that differs between n and p. * * Note that this could be bit 0 - we might sometimes need all 80 bits to do the * comparison. But we'd really like our nodes in the auxiliary search tree to be * of fixed size. * * The solution is to make them fixed size, and when we're constructing a node * check if p and n differed in the bits we needed them to. If they don't we * flag that node, and when doing lookups we fallback to comparing against the * real key. As long as this doesn't happen to often (and it seems to reliably * happen a bit less than 1% of the time), we win - even on failures, that key * is then more likely to be in cache than if we were doing binary searches all * the way, since we're touching so much less memory. * * The keys in the auxiliary search tree are stored in (software) floating * point, with an exponent and a mantissa. The exponent needs to be big enough * to address all the bits in the original key, but the number of bits in the * mantissa is somewhat arbitrary; more bits just gets us fewer failures. * * We need 7 bits for the exponent and 3 bits for the key's offset (since keys * are 8 byte aligned); using 22 bits for the mantissa means a node is 4 bytes. * We need one node per 128 bytes in the btree node, which means the auxiliary * search trees take up 3% as much memory as the btree itself. * * Constructing these auxiliary search trees is moderately expensive, and we * don't want to be constantly rebuilding the search tree for the last set * whenever we insert another key into it. For the unwritten set, we use a much * simpler lookup table - it's just a flat array, so index i in the lookup table * corresponds to the i range of BSET_CACHELINE bytes in the set. Indexing * within each byte range works the same as with the auxiliary search trees. * * These are much easier to keep up to date when we insert a key - we do it * somewhat lazily; when we shift a key up we usually just increment the pointer * to it, only when it would overflow do we go to the trouble of finding the * first key in that range of bytes again. */ extern bool bch2_expensive_debug_checks; static inline bool btree_keys_expensive_checks(const struct btree *b) { #ifdef CONFIG_BCACHEFS_DEBUG return bch2_expensive_debug_checks || *b->expensive_debug_checks; #else return false; #endif } enum bset_aux_tree_type { BSET_NO_AUX_TREE, BSET_RO_AUX_TREE, BSET_RW_AUX_TREE, }; #define BSET_TREE_NR_TYPES 3 #define BSET_NO_AUX_TREE_VAL (U16_MAX) #define BSET_RW_AUX_TREE_VAL (U16_MAX - 1) static inline enum bset_aux_tree_type bset_aux_tree_type(const struct bset_tree *t) { switch (t->extra) { case BSET_NO_AUX_TREE_VAL: EBUG_ON(t->size); return BSET_NO_AUX_TREE; case BSET_RW_AUX_TREE_VAL: EBUG_ON(!t->size); return BSET_RW_AUX_TREE; default: EBUG_ON(!t->size); return BSET_RO_AUX_TREE; } } typedef void (*compiled_unpack_fn)(struct bkey *, const struct bkey_packed *); static inline void __bkey_unpack_key_format_checked(const struct btree *b, struct bkey *dst, const struct bkey_packed *src) { #ifdef HAVE_BCACHEFS_COMPILED_UNPACK { compiled_unpack_fn unpack_fn = b->aux_data; unpack_fn(dst, src); if (btree_keys_expensive_checks(b)) { struct bkey dst2 = __bch2_bkey_unpack_key(&b->format, src); /* * hack around a harmless race when compacting whiteouts * for a write: */ dst2.needs_whiteout = dst->needs_whiteout; BUG_ON(memcmp(dst, &dst2, sizeof(*dst))); } } #else *dst = __bch2_bkey_unpack_key(&b->format, src); #endif } static inline struct bkey bkey_unpack_key_format_checked(const struct btree *b, const struct bkey_packed *src) { struct bkey dst; __bkey_unpack_key_format_checked(b, &dst, src); return dst; } static inline void __bkey_unpack_key(const struct btree *b, struct bkey *dst, const struct bkey_packed *src) { if (likely(bkey_packed(src))) __bkey_unpack_key_format_checked(b, dst, src); else *dst = *packed_to_bkey_c(src); } /** * bkey_unpack_key -- unpack just the key, not the value */ static inline struct bkey bkey_unpack_key(const struct btree *b, const struct bkey_packed *src) { return likely(bkey_packed(src)) ? bkey_unpack_key_format_checked(b, src) : *packed_to_bkey_c(src); } static inline struct bpos bkey_unpack_pos_format_checked(const struct btree *b, const struct bkey_packed *src) { #ifdef HAVE_BCACHEFS_COMPILED_UNPACK return bkey_unpack_key_format_checked(b, src).p; #else return __bkey_unpack_pos(&b->format, src); #endif } static inline struct bpos bkey_unpack_pos(const struct btree *b, const struct bkey_packed *src) { return likely(bkey_packed(src)) ? bkey_unpack_pos_format_checked(b, src) : packed_to_bkey_c(src)->p; } /* Disassembled bkeys */ static inline struct bkey_s_c bkey_disassemble(struct btree *b, const struct bkey_packed *k, struct bkey *u) { __bkey_unpack_key(b, u, k); return (struct bkey_s_c) { u, bkeyp_val(&b->format, k), }; } /* non const version: */ static inline struct bkey_s __bkey_disassemble(struct btree *b, struct bkey_packed *k, struct bkey *u) { __bkey_unpack_key(b, u, k); return (struct bkey_s) { .k = u, .v = bkeyp_val(&b->format, k), }; } #define for_each_bset(_b, _t) \ for (_t = (_b)->set; _t < (_b)->set + (_b)->nsets; _t++) static inline bool bset_has_ro_aux_tree(struct bset_tree *t) { return bset_aux_tree_type(t) == BSET_RO_AUX_TREE; } static inline bool bset_has_rw_aux_tree(struct bset_tree *t) { return bset_aux_tree_type(t) == BSET_RW_AUX_TREE; } static inline void bch2_bset_set_no_aux_tree(struct btree *b, struct bset_tree *t) { BUG_ON(t < b->set); for (; t < b->set + ARRAY_SIZE(b->set); t++) { t->size = 0; t->extra = BSET_NO_AUX_TREE_VAL; t->aux_data_offset = U16_MAX; } } static inline void btree_node_set_format(struct btree *b, struct bkey_format f) { int len; b->format = f; b->nr_key_bits = bkey_format_key_bits(&f); len = bch2_compile_bkey_format(&b->format, b->aux_data); BUG_ON(len < 0 || len > U8_MAX); b->unpack_fn_len = len; bch2_bset_set_no_aux_tree(b, b->set); } static inline struct bset *bset_next_set(struct btree *b, unsigned block_bytes) { struct bset *i = btree_bset_last(b); EBUG_ON(!is_power_of_2(block_bytes)); return ((void *) i) + round_up(vstruct_bytes(i), block_bytes); } void bch2_btree_keys_free(struct btree *); int bch2_btree_keys_alloc(struct btree *, unsigned, gfp_t); void bch2_btree_keys_init(struct btree *, bool *); void bch2_bset_init_first(struct btree *, struct bset *); void bch2_bset_init_next(struct bch_fs *, struct btree *, struct btree_node_entry *); void bch2_bset_build_aux_tree(struct btree *, struct bset_tree *, bool); void bch2_bset_fix_invalidated_key(struct btree *, struct bset_tree *, struct bkey_packed *); void bch2_bset_insert(struct btree *, struct btree_node_iter *, struct bkey_packed *, struct bkey_i *, unsigned); void bch2_bset_delete(struct btree *, struct bkey_packed *, unsigned); /* Bkey utility code */ /* packed or unpacked */ static inline int bkey_cmp_p_or_unp(const struct btree *b, const struct bkey_packed *l, const struct bkey_packed *r_packed, struct bpos *r) { EBUG_ON(r_packed && !bkey_packed(r_packed)); if (unlikely(!bkey_packed(l))) return bkey_cmp(packed_to_bkey_c(l)->p, *r); if (likely(r_packed)) return __bch2_bkey_cmp_packed_format_checked(l, r_packed, b); return __bch2_bkey_cmp_left_packed_format_checked(b, l, r); } /* Returns true if @k is after iterator position @pos */ static inline bool btree_iter_pos_cmp_packed(const struct btree *b, struct bpos *pos, const struct bkey_packed *k, bool strictly_greater) { int cmp = bkey_cmp_left_packed(b, k, pos); return cmp > 0 || (cmp == 0 && !strictly_greater && !bkey_deleted(k)); } static inline bool btree_iter_pos_cmp_p_or_unp(const struct btree *b, struct bpos pos, const struct bkey_packed *pos_packed, const struct bkey_packed *k, bool strictly_greater) { int cmp = bkey_cmp_p_or_unp(b, k, pos_packed, &pos); return cmp > 0 || (cmp == 0 && !strictly_greater && !bkey_deleted(k)); } struct bset_tree *bch2_bkey_to_bset(struct btree *, struct bkey_packed *); struct bkey_packed *bch2_bkey_prev_filter(struct btree *, struct bset_tree *, struct bkey_packed *, unsigned); static inline struct bkey_packed * bch2_bkey_prev_all(struct btree *b, struct bset_tree *t, struct bkey_packed *k) { return bch2_bkey_prev_filter(b, t, k, 0); } static inline struct bkey_packed * bch2_bkey_prev(struct btree *b, struct bset_tree *t, struct bkey_packed *k) { return bch2_bkey_prev_filter(b, t, k, KEY_TYPE_DISCARD + 1); } enum bch_extent_overlap { BCH_EXTENT_OVERLAP_ALL = 0, BCH_EXTENT_OVERLAP_BACK = 1, BCH_EXTENT_OVERLAP_FRONT = 2, BCH_EXTENT_OVERLAP_MIDDLE = 3, }; /* Returns how k overlaps with m */ static inline enum bch_extent_overlap bch2_extent_overlap(const struct bkey *k, const struct bkey *m) { int cmp1 = bkey_cmp(k->p, m->p) < 0; int cmp2 = bkey_cmp(bkey_start_pos(k), bkey_start_pos(m)) > 0; return (cmp1 << 1) + cmp2; } /* Btree key iteration */ static inline void __bch2_btree_node_iter_init(struct btree_node_iter *iter, bool is_extents) { iter->is_extents = is_extents; memset(iter->data, 0, sizeof(iter->data)); } void bch2_btree_node_iter_push(struct btree_node_iter *, struct btree *, const struct bkey_packed *, const struct bkey_packed *); void bch2_btree_node_iter_init(struct btree_node_iter *, struct btree *, struct bpos, bool, bool); void bch2_btree_node_iter_init_from_start(struct btree_node_iter *, struct btree *, bool); struct bkey_packed *bch2_btree_node_iter_bset_pos(struct btree_node_iter *, struct btree *, struct bset_tree *); void bch2_btree_node_iter_sort(struct btree_node_iter *, struct btree *); void bch2_btree_node_iter_set_drop(struct btree_node_iter *, struct btree_node_iter_set *); void bch2_btree_node_iter_advance(struct btree_node_iter *, struct btree *); #define btree_node_iter_for_each(_iter, _set) \ for (_set = (_iter)->data; \ _set < (_iter)->data + ARRAY_SIZE((_iter)->data) && \ (_set)->k != (_set)->end; \ _set++) static inline bool __btree_node_iter_set_end(struct btree_node_iter *iter, unsigned i) { return iter->data[i].k == iter->data[i].end; } static inline bool bch2_btree_node_iter_end(struct btree_node_iter *iter) { return __btree_node_iter_set_end(iter, 0); } static inline int __btree_node_iter_cmp(bool is_extents, struct btree *b, struct bkey_packed *l, struct bkey_packed *r) { /* * For non extents, when keys compare equal the deleted keys have to * come first - so that bch2_btree_node_iter_next_check() can detect * duplicate nondeleted keys (and possibly other reasons?) * * For extents, bkey_deleted() is used as a proxy for k->size == 0, so * deleted keys have to sort last. */ return bkey_cmp_packed(b, l, r) ?: (is_extents ? (int) bkey_deleted(l) - (int) bkey_deleted(r) : (int) bkey_deleted(r) - (int) bkey_deleted(l)) ?: (l > r) - (l < r); } static inline int btree_node_iter_cmp(struct btree_node_iter *iter, struct btree *b, struct btree_node_iter_set l, struct btree_node_iter_set r) { return __btree_node_iter_cmp(iter->is_extents, b, __btree_node_offset_to_key(b, l.k), __btree_node_offset_to_key(b, r.k)); } static inline void __bch2_btree_node_iter_push(struct btree_node_iter *iter, struct btree *b, const struct bkey_packed *k, const struct bkey_packed *end) { if (k != end) { struct btree_node_iter_set *pos; btree_node_iter_for_each(iter, pos) ; BUG_ON(pos >= iter->data + ARRAY_SIZE(iter->data)); *pos = (struct btree_node_iter_set) { __btree_node_key_to_offset(b, k), __btree_node_key_to_offset(b, end) }; } } static inline struct bkey_packed * __bch2_btree_node_iter_peek_all(struct btree_node_iter *iter, struct btree *b) { return __btree_node_offset_to_key(b, iter->data->k); } static inline struct bkey_packed * bch2_btree_node_iter_peek_filter(struct btree_node_iter *iter, struct btree *b, unsigned min_key_type) { while (!bch2_btree_node_iter_end(iter)) { struct bkey_packed *k = __bch2_btree_node_iter_peek_all(iter, b); if (k->type >= min_key_type) return k; bch2_btree_node_iter_advance(iter, b); } return NULL; } static inline struct bkey_packed * bch2_btree_node_iter_peek_all(struct btree_node_iter *iter, struct btree *b) { return bch2_btree_node_iter_peek_filter(iter, b, 0); } static inline struct bkey_packed * bch2_btree_node_iter_peek(struct btree_node_iter *iter, struct btree *b) { return bch2_btree_node_iter_peek_filter(iter, b, KEY_TYPE_DISCARD + 1); } static inline struct bkey_packed * bch2_btree_node_iter_next_all(struct btree_node_iter *iter, struct btree *b) { struct bkey_packed *ret = bch2_btree_node_iter_peek_all(iter, b); if (ret) bch2_btree_node_iter_advance(iter, b); return ret; } struct bkey_packed *bch2_btree_node_iter_prev_filter(struct btree_node_iter *, struct btree *, unsigned); static inline struct bkey_packed * bch2_btree_node_iter_prev_all(struct btree_node_iter *iter, struct btree *b) { return bch2_btree_node_iter_prev_filter(iter, b, 0); } static inline struct bkey_packed * bch2_btree_node_iter_prev(struct btree_node_iter *iter, struct btree *b) { return bch2_btree_node_iter_prev_filter(iter, b, KEY_TYPE_DISCARD + 1); } /* * Iterates over all _live_ keys - skipping deleted (and potentially * overlapping) keys */ #define for_each_btree_node_key(b, k, iter, _is_extents) \ for (bch2_btree_node_iter_init_from_start((iter), (b), (_is_extents));\ ((k) = bch2_btree_node_iter_peek(iter, b)); \ bch2_btree_node_iter_advance(iter, b)) struct bkey_s_c bch2_btree_node_iter_peek_unpack(struct btree_node_iter *, struct btree *, struct bkey *); #define for_each_btree_node_key_unpack(b, k, iter, _is_extents, unpacked)\ for (bch2_btree_node_iter_init_from_start((iter), (b), (_is_extents));\ (k = bch2_btree_node_iter_peek_unpack((iter), (b), (unpacked))).k;\ bch2_btree_node_iter_advance(iter, b)) /* Accounting: */ static inline void btree_keys_account_key(struct btree_nr_keys *n, unsigned bset, struct bkey_packed *k, int sign) { n->live_u64s += k->u64s * sign; n->bset_u64s[bset] += k->u64s * sign; if (bkey_packed(k)) n->packed_keys += sign; else n->unpacked_keys += sign; } #define btree_keys_account_key_add(_nr, _bset_idx, _k) \ btree_keys_account_key(_nr, _bset_idx, _k, 1) #define btree_keys_account_key_drop(_nr, _bset_idx, _k) \ btree_keys_account_key(_nr, _bset_idx, _k, -1) struct bset_stats { struct { size_t nr, bytes; } sets[BSET_TREE_NR_TYPES]; size_t floats; size_t failed_unpacked; size_t failed_prev; size_t failed_overflow; }; void bch2_btree_keys_stats(struct btree *, struct bset_stats *); int bch2_bkey_print_bfloat(struct btree *, struct bkey_packed *, char *, size_t); /* Debug stuff */ void bch2_dump_bset(struct btree *, struct bset *, unsigned); void bch2_dump_btree_node(struct btree *); void bch2_dump_btree_node_iter(struct btree *, struct btree_node_iter *); #ifdef CONFIG_BCACHEFS_DEBUG void __bch2_verify_btree_nr_keys(struct btree *); void bch2_btree_node_iter_verify(struct btree_node_iter *, struct btree *); void bch2_verify_key_order(struct btree *, struct btree_node_iter *, struct bkey_packed *); #else static inline void __bch2_verify_btree_nr_keys(struct btree *b) {} static inline void bch2_btree_node_iter_verify(struct btree_node_iter *iter, struct btree *b) {} static inline void bch2_verify_key_order(struct btree *b, struct btree_node_iter *iter, struct bkey_packed *where) {} #endif static inline void bch2_verify_btree_nr_keys(struct btree *b) { if (btree_keys_expensive_checks(b)) __bch2_verify_btree_nr_keys(b); } #endif /* _BCACHEFS_BSET_H */