// SPDX-License-Identifier: GPL-2.0 /* XDP sockets * * AF_XDP sockets allows a channel between XDP programs and userspace * applications. * Copyright(c) 2018 Intel Corporation. * * Author(s): Björn Töpel * Magnus Karlsson */ #define pr_fmt(fmt) "AF_XDP: %s: " fmt, __func__ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "xsk_queue.h" #include "xdp_umem.h" #include "xsk.h" #define TX_BATCH_SIZE 32 static DEFINE_PER_CPU(struct list_head, xskmap_flush_list); void xsk_set_rx_need_wakeup(struct xsk_buff_pool *pool) { if (pool->cached_need_wakeup & XDP_WAKEUP_RX) return; pool->fq->ring->flags |= XDP_RING_NEED_WAKEUP; pool->cached_need_wakeup |= XDP_WAKEUP_RX; } EXPORT_SYMBOL(xsk_set_rx_need_wakeup); void xsk_set_tx_need_wakeup(struct xsk_buff_pool *pool) { struct xdp_sock *xs; if (pool->cached_need_wakeup & XDP_WAKEUP_TX) return; rcu_read_lock(); list_for_each_entry_rcu(xs, &pool->xsk_tx_list, tx_list) { xs->tx->ring->flags |= XDP_RING_NEED_WAKEUP; } rcu_read_unlock(); pool->cached_need_wakeup |= XDP_WAKEUP_TX; } EXPORT_SYMBOL(xsk_set_tx_need_wakeup); void xsk_clear_rx_need_wakeup(struct xsk_buff_pool *pool) { if (!(pool->cached_need_wakeup & XDP_WAKEUP_RX)) return; pool->fq->ring->flags &= ~XDP_RING_NEED_WAKEUP; pool->cached_need_wakeup &= ~XDP_WAKEUP_RX; } EXPORT_SYMBOL(xsk_clear_rx_need_wakeup); void xsk_clear_tx_need_wakeup(struct xsk_buff_pool *pool) { struct xdp_sock *xs; if (!(pool->cached_need_wakeup & XDP_WAKEUP_TX)) return; rcu_read_lock(); list_for_each_entry_rcu(xs, &pool->xsk_tx_list, tx_list) { xs->tx->ring->flags &= ~XDP_RING_NEED_WAKEUP; } rcu_read_unlock(); pool->cached_need_wakeup &= ~XDP_WAKEUP_TX; } EXPORT_SYMBOL(xsk_clear_tx_need_wakeup); bool xsk_uses_need_wakeup(struct xsk_buff_pool *pool) { return pool->uses_need_wakeup; } EXPORT_SYMBOL(xsk_uses_need_wakeup); struct xsk_buff_pool *xsk_get_pool_from_qid(struct net_device *dev, u16 queue_id) { if (queue_id < dev->real_num_rx_queues) return dev->_rx[queue_id].pool; if (queue_id < dev->real_num_tx_queues) return dev->_tx[queue_id].pool; return NULL; } EXPORT_SYMBOL(xsk_get_pool_from_qid); void xsk_clear_pool_at_qid(struct net_device *dev, u16 queue_id) { if (queue_id < dev->num_rx_queues) dev->_rx[queue_id].pool = NULL; if (queue_id < dev->num_tx_queues) dev->_tx[queue_id].pool = NULL; } /* The buffer pool is stored both in the _rx struct and the _tx struct as we do * not know if the device has more tx queues than rx, or the opposite. * This might also change during run time. */ int xsk_reg_pool_at_qid(struct net_device *dev, struct xsk_buff_pool *pool, u16 queue_id) { if (queue_id >= max_t(unsigned int, dev->real_num_rx_queues, dev->real_num_tx_queues)) return -EINVAL; if (queue_id < dev->real_num_rx_queues) dev->_rx[queue_id].pool = pool; if (queue_id < dev->real_num_tx_queues) dev->_tx[queue_id].pool = pool; return 0; } static int __xsk_rcv_zc(struct xdp_sock *xs, struct xdp_buff *xdp, u32 len) { struct xdp_buff_xsk *xskb = container_of(xdp, struct xdp_buff_xsk, xdp); u64 addr; int err; addr = xp_get_handle(xskb); err = xskq_prod_reserve_desc(xs->rx, addr, len); if (err) { xs->rx_queue_full++; return err; } xp_release(xskb); return 0; } static void xsk_copy_xdp(struct xdp_buff *to, struct xdp_buff *from, u32 len) { void *from_buf, *to_buf; u32 metalen; if (unlikely(xdp_data_meta_unsupported(from))) { from_buf = from->data; to_buf = to->data; metalen = 0; } else { from_buf = from->data_meta; metalen = from->data - from->data_meta; to_buf = to->data - metalen; } memcpy(to_buf, from_buf, len + metalen); } static int __xsk_rcv(struct xdp_sock *xs, struct xdp_buff *xdp) { struct xdp_buff *xsk_xdp; int err; u32 len; len = xdp->data_end - xdp->data; if (len > xsk_pool_get_rx_frame_size(xs->pool)) { xs->rx_dropped++; return -ENOSPC; } xsk_xdp = xsk_buff_alloc(xs->pool); if (!xsk_xdp) { xs->rx_dropped++; return -ENOSPC; } xsk_copy_xdp(xsk_xdp, xdp, len); err = __xsk_rcv_zc(xs, xsk_xdp, len); if (err) { xsk_buff_free(xsk_xdp); return err; } return 0; } static bool xsk_tx_writeable(struct xdp_sock *xs) { if (xskq_cons_present_entries(xs->tx) > xs->tx->nentries / 2) return false; return true; } static bool xsk_is_bound(struct xdp_sock *xs) { if (READ_ONCE(xs->state) == XSK_BOUND) { /* Matches smp_wmb() in bind(). */ smp_rmb(); return true; } return false; } static int xsk_rcv_check(struct xdp_sock *xs, struct xdp_buff *xdp) { if (!xsk_is_bound(xs)) return -EINVAL; if (xs->dev != xdp->rxq->dev || xs->queue_id != xdp->rxq->queue_index) return -EINVAL; sk_mark_napi_id_once_xdp(&xs->sk, xdp); return 0; } static void xsk_flush(struct xdp_sock *xs) { xskq_prod_submit(xs->rx); __xskq_cons_release(xs->pool->fq); sock_def_readable(&xs->sk); } int xsk_generic_rcv(struct xdp_sock *xs, struct xdp_buff *xdp) { int err; spin_lock_bh(&xs->rx_lock); err = xsk_rcv_check(xs, xdp); if (!err) { err = __xsk_rcv(xs, xdp); xsk_flush(xs); } spin_unlock_bh(&xs->rx_lock); return err; } static int xsk_rcv(struct xdp_sock *xs, struct xdp_buff *xdp) { int err; u32 len; err = xsk_rcv_check(xs, xdp); if (err) return err; if (xdp->rxq->mem.type == MEM_TYPE_XSK_BUFF_POOL) { len = xdp->data_end - xdp->data; return __xsk_rcv_zc(xs, xdp, len); } err = __xsk_rcv(xs, xdp); if (!err) xdp_return_buff(xdp); return err; } int __xsk_map_redirect(struct xdp_sock *xs, struct xdp_buff *xdp) { struct list_head *flush_list = this_cpu_ptr(&xskmap_flush_list); int err; err = xsk_rcv(xs, xdp); if (err) return err; if (!xs->flush_node.prev) list_add(&xs->flush_node, flush_list); return 0; } void __xsk_map_flush(void) { struct list_head *flush_list = this_cpu_ptr(&xskmap_flush_list); struct xdp_sock *xs, *tmp; list_for_each_entry_safe(xs, tmp, flush_list, flush_node) { xsk_flush(xs); __list_del_clearprev(&xs->flush_node); } } void xsk_tx_completed(struct xsk_buff_pool *pool, u32 nb_entries) { xskq_prod_submit_n(pool->cq, nb_entries); } EXPORT_SYMBOL(xsk_tx_completed); void xsk_tx_release(struct xsk_buff_pool *pool) { struct xdp_sock *xs; rcu_read_lock(); list_for_each_entry_rcu(xs, &pool->xsk_tx_list, tx_list) { __xskq_cons_release(xs->tx); if (xsk_tx_writeable(xs)) xs->sk.sk_write_space(&xs->sk); } rcu_read_unlock(); } EXPORT_SYMBOL(xsk_tx_release); bool xsk_tx_peek_desc(struct xsk_buff_pool *pool, struct xdp_desc *desc) { struct xdp_sock *xs; rcu_read_lock(); list_for_each_entry_rcu(xs, &pool->xsk_tx_list, tx_list) { if (!xskq_cons_peek_desc(xs->tx, desc, pool)) { xs->tx->queue_empty_descs++; continue; } /* This is the backpressure mechanism for the Tx path. * Reserve space in the completion queue and only proceed * if there is space in it. This avoids having to implement * any buffering in the Tx path. */ if (xskq_prod_reserve_addr(pool->cq, desc->addr)) goto out; xskq_cons_release(xs->tx); rcu_read_unlock(); return true; } out: rcu_read_unlock(); return false; } EXPORT_SYMBOL(xsk_tx_peek_desc); static u32 xsk_tx_peek_release_fallback(struct xsk_buff_pool *pool, struct xdp_desc *descs, u32 max_entries) { u32 nb_pkts = 0; while (nb_pkts < max_entries && xsk_tx_peek_desc(pool, &descs[nb_pkts])) nb_pkts++; xsk_tx_release(pool); return nb_pkts; } u32 xsk_tx_peek_release_desc_batch(struct xsk_buff_pool *pool, struct xdp_desc *descs, u32 max_entries) { struct xdp_sock *xs; u32 nb_pkts; rcu_read_lock(); if (!list_is_singular(&pool->xsk_tx_list)) { /* Fallback to the non-batched version */ rcu_read_unlock(); return xsk_tx_peek_release_fallback(pool, descs, max_entries); } xs = list_first_or_null_rcu(&pool->xsk_tx_list, struct xdp_sock, tx_list); if (!xs) { nb_pkts = 0; goto out; } nb_pkts = xskq_cons_peek_desc_batch(xs->tx, descs, pool, max_entries); if (!nb_pkts) { xs->tx->queue_empty_descs++; goto out; } /* This is the backpressure mechanism for the Tx path. Try to * reserve space in the completion queue for all packets, but * if there are fewer slots available, just process that many * packets. This avoids having to implement any buffering in * the Tx path. */ nb_pkts = xskq_prod_reserve_addr_batch(pool->cq, descs, nb_pkts); if (!nb_pkts) goto out; xskq_cons_release_n(xs->tx, nb_pkts); __xskq_cons_release(xs->tx); xs->sk.sk_write_space(&xs->sk); out: rcu_read_unlock(); return nb_pkts; } EXPORT_SYMBOL(xsk_tx_peek_release_desc_batch); static int xsk_wakeup(struct xdp_sock *xs, u8 flags) { struct net_device *dev = xs->dev; return dev->netdev_ops->ndo_xsk_wakeup(dev, xs->queue_id, flags); } static void xsk_destruct_skb(struct sk_buff *skb) { u64 addr = (u64)(long)skb_shinfo(skb)->destructor_arg; struct xdp_sock *xs = xdp_sk(skb->sk); unsigned long flags; spin_lock_irqsave(&xs->pool->cq_lock, flags); xskq_prod_submit_addr(xs->pool->cq, addr); spin_unlock_irqrestore(&xs->pool->cq_lock, flags); sock_wfree(skb); } static struct sk_buff *xsk_build_skb_zerocopy(struct xdp_sock *xs, struct xdp_desc *desc) { struct xsk_buff_pool *pool = xs->pool; u32 hr, len, ts, offset, copy, copied; struct sk_buff *skb; struct page *page; void *buffer; int err, i; u64 addr; hr = max(NET_SKB_PAD, L1_CACHE_ALIGN(xs->dev->needed_headroom)); skb = sock_alloc_send_skb(&xs->sk, hr, 1, &err); if (unlikely(!skb)) return ERR_PTR(err); skb_reserve(skb, hr); addr = desc->addr; len = desc->len; ts = pool->unaligned ? len : pool->chunk_size; buffer = xsk_buff_raw_get_data(pool, addr); offset = offset_in_page(buffer); addr = buffer - pool->addrs; for (copied = 0, i = 0; copied < len; i++) { page = pool->umem->pgs[addr >> PAGE_SHIFT]; get_page(page); copy = min_t(u32, PAGE_SIZE - offset, len - copied); skb_fill_page_desc(skb, i, page, offset, copy); copied += copy; addr += copy; offset = 0; } skb->len += len; skb->data_len += len; skb->truesize += ts; refcount_add(ts, &xs->sk.sk_wmem_alloc); return skb; } static struct sk_buff *xsk_build_skb(struct xdp_sock *xs, struct xdp_desc *desc) { struct net_device *dev = xs->dev; struct sk_buff *skb; if (dev->priv_flags & IFF_TX_SKB_NO_LINEAR) { skb = xsk_build_skb_zerocopy(xs, desc); if (IS_ERR(skb)) return skb; } else { u32 hr, tr, len; void *buffer; int err; hr = max(NET_SKB_PAD, L1_CACHE_ALIGN(dev->needed_headroom)); tr = dev->needed_tailroom; len = desc->len; skb = sock_alloc_send_skb(&xs->sk, hr + len + tr, 1, &err); if (unlikely(!skb)) return ERR_PTR(err); skb_reserve(skb, hr); skb_put(skb, len); buffer = xsk_buff_raw_get_data(xs->pool, desc->addr); err = skb_store_bits(skb, 0, buffer, len); if (unlikely(err)) { kfree_skb(skb); return ERR_PTR(err); } } skb->dev = dev; skb->priority = xs->sk.sk_priority; skb->mark = xs->sk.sk_mark; skb_shinfo(skb)->destructor_arg = (void *)(long)desc->addr; skb->destructor = xsk_destruct_skb; return skb; } static int xsk_generic_xmit(struct sock *sk) { struct xdp_sock *xs = xdp_sk(sk); u32 max_batch = TX_BATCH_SIZE; bool sent_frame = false; struct xdp_desc desc; struct sk_buff *skb; unsigned long flags; int err = 0; mutex_lock(&xs->mutex); /* Since we dropped the RCU read lock, the socket state might have changed. */ if (unlikely(!xsk_is_bound(xs))) { err = -ENXIO; goto out; } if (xs->queue_id >= xs->dev->real_num_tx_queues) goto out; while (xskq_cons_peek_desc(xs->tx, &desc, xs->pool)) { if (max_batch-- == 0) { err = -EAGAIN; goto out; } skb = xsk_build_skb(xs, &desc); if (IS_ERR(skb)) { err = PTR_ERR(skb); goto out; } /* This is the backpressure mechanism for the Tx path. * Reserve space in the completion queue and only proceed * if there is space in it. This avoids having to implement * any buffering in the Tx path. */ spin_lock_irqsave(&xs->pool->cq_lock, flags); if (xskq_prod_reserve(xs->pool->cq)) { spin_unlock_irqrestore(&xs->pool->cq_lock, flags); kfree_skb(skb); goto out; } spin_unlock_irqrestore(&xs->pool->cq_lock, flags); err = __dev_direct_xmit(skb, xs->queue_id); if (err == NETDEV_TX_BUSY) { /* Tell user-space to retry the send */ skb->destructor = sock_wfree; spin_lock_irqsave(&xs->pool->cq_lock, flags); xskq_prod_cancel(xs->pool->cq); spin_unlock_irqrestore(&xs->pool->cq_lock, flags); /* Free skb without triggering the perf drop trace */ consume_skb(skb); err = -EAGAIN; goto out; } xskq_cons_release(xs->tx); /* Ignore NET_XMIT_CN as packet might have been sent */ if (err == NET_XMIT_DROP) { /* SKB completed but not sent */ err = -EBUSY; goto out; } sent_frame = true; } xs->tx->queue_empty_descs++; out: if (sent_frame) if (xsk_tx_writeable(xs)) sk->sk_write_space(sk); mutex_unlock(&xs->mutex); return err; } static int xsk_xmit(struct sock *sk) { struct xdp_sock *xs = xdp_sk(sk); int ret; if (unlikely(!(xs->dev->flags & IFF_UP))) return -ENETDOWN; if (unlikely(!xs->tx)) return -ENOBUFS; if (xs->zc) return xsk_wakeup(xs, XDP_WAKEUP_TX); /* Drop the RCU lock since the SKB path might sleep. */ rcu_read_unlock(); ret = xsk_generic_xmit(sk); /* Reaquire RCU lock before going into common code. */ rcu_read_lock(); return ret; } static bool xsk_no_wakeup(struct sock *sk) { #ifdef CONFIG_NET_RX_BUSY_POLL /* Prefer busy-polling, skip the wakeup. */ return READ_ONCE(sk->sk_prefer_busy_poll) && READ_ONCE(sk->sk_ll_usec) && READ_ONCE(sk->sk_napi_id) >= MIN_NAPI_ID; #else return false; #endif } static int __xsk_sendmsg(struct socket *sock, struct msghdr *m, size_t total_len) { bool need_wait = !(m->msg_flags & MSG_DONTWAIT); struct sock *sk = sock->sk; struct xdp_sock *xs = xdp_sk(sk); struct xsk_buff_pool *pool; if (unlikely(!xsk_is_bound(xs))) return -ENXIO; if (unlikely(need_wait)) return -EOPNOTSUPP; if (sk_can_busy_loop(sk)) sk_busy_loop(sk, 1); /* only support non-blocking sockets */ if (xsk_no_wakeup(sk)) return 0; pool = xs->pool; if (pool->cached_need_wakeup & XDP_WAKEUP_TX) return xsk_xmit(sk); return 0; } static int xsk_sendmsg(struct socket *sock, struct msghdr *m, size_t total_len) { int ret; rcu_read_lock(); ret = __xsk_sendmsg(sock, m, total_len); rcu_read_unlock(); return ret; } static int __xsk_recvmsg(struct socket *sock, struct msghdr *m, size_t len, int flags) { bool need_wait = !(flags & MSG_DONTWAIT); struct sock *sk = sock->sk; struct xdp_sock *xs = xdp_sk(sk); if (unlikely(!xsk_is_bound(xs))) return -ENXIO; if (unlikely(!(xs->dev->flags & IFF_UP))) return -ENETDOWN; if (unlikely(!xs->rx)) return -ENOBUFS; if (unlikely(need_wait)) return -EOPNOTSUPP; if (sk_can_busy_loop(sk)) sk_busy_loop(sk, 1); /* only support non-blocking sockets */ if (xsk_no_wakeup(sk)) return 0; if (xs->pool->cached_need_wakeup & XDP_WAKEUP_RX && xs->zc) return xsk_wakeup(xs, XDP_WAKEUP_RX); return 0; } static int xsk_recvmsg(struct socket *sock, struct msghdr *m, size_t len, int flags) { int ret; rcu_read_lock(); ret = __xsk_recvmsg(sock, m, len, flags); rcu_read_unlock(); return ret; } static __poll_t xsk_poll(struct file *file, struct socket *sock, struct poll_table_struct *wait) { __poll_t mask = 0; struct sock *sk = sock->sk; struct xdp_sock *xs = xdp_sk(sk); struct xsk_buff_pool *pool; sock_poll_wait(file, sock, wait); rcu_read_lock(); if (unlikely(!xsk_is_bound(xs))) { rcu_read_unlock(); return mask; } pool = xs->pool; if (pool->cached_need_wakeup) { if (xs->zc) xsk_wakeup(xs, pool->cached_need_wakeup); else /* Poll needs to drive Tx also in copy mode */ xsk_xmit(sk); } if (xs->rx && !xskq_prod_is_empty(xs->rx)) mask |= EPOLLIN | EPOLLRDNORM; if (xs->tx && xsk_tx_writeable(xs)) mask |= EPOLLOUT | EPOLLWRNORM; rcu_read_unlock(); return mask; } static int xsk_init_queue(u32 entries, struct xsk_queue **queue, bool umem_queue) { struct xsk_queue *q; if (entries == 0 || *queue || !is_power_of_2(entries)) return -EINVAL; q = xskq_create(entries, umem_queue); if (!q) return -ENOMEM; /* Make sure queue is ready before it can be seen by others */ smp_wmb(); WRITE_ONCE(*queue, q); return 0; } static void xsk_unbind_dev(struct xdp_sock *xs) { struct net_device *dev = xs->dev; if (xs->state != XSK_BOUND) return; WRITE_ONCE(xs->state, XSK_UNBOUND); /* Wait for driver to stop using the xdp socket. */ xp_del_xsk(xs->pool, xs); synchronize_net(); dev_put(dev); } static struct xsk_map *xsk_get_map_list_entry(struct xdp_sock *xs, struct xdp_sock __rcu ***map_entry) { struct xsk_map *map = NULL; struct xsk_map_node *node; *map_entry = NULL; spin_lock_bh(&xs->map_list_lock); node = list_first_entry_or_null(&xs->map_list, struct xsk_map_node, node); if (node) { bpf_map_inc(&node->map->map); map = node->map; *map_entry = node->map_entry; } spin_unlock_bh(&xs->map_list_lock); return map; } static void xsk_delete_from_maps(struct xdp_sock *xs) { /* This function removes the current XDP socket from all the * maps it resides in. We need to take extra care here, due to * the two locks involved. Each map has a lock synchronizing * updates to the entries, and each socket has a lock that * synchronizes access to the list of maps (map_list). For * deadlock avoidance the locks need to be taken in the order * "map lock"->"socket map list lock". We start off by * accessing the socket map list, and take a reference to the * map to guarantee existence between the * xsk_get_map_list_entry() and xsk_map_try_sock_delete() * calls. Then we ask the map to remove the socket, which * tries to remove the socket from the map. Note that there * might be updates to the map between * xsk_get_map_list_entry() and xsk_map_try_sock_delete(). */ struct xdp_sock __rcu **map_entry = NULL; struct xsk_map *map; while ((map = xsk_get_map_list_entry(xs, &map_entry))) { xsk_map_try_sock_delete(map, xs, map_entry); bpf_map_put(&map->map); } } static int xsk_release(struct socket *sock) { struct sock *sk = sock->sk; struct xdp_sock *xs = xdp_sk(sk); struct net *net; if (!sk) return 0; net = sock_net(sk); mutex_lock(&net->xdp.lock); sk_del_node_init_rcu(sk); mutex_unlock(&net->xdp.lock); sock_prot_inuse_add(net, sk->sk_prot, -1); xsk_delete_from_maps(xs); mutex_lock(&xs->mutex); xsk_unbind_dev(xs); mutex_unlock(&xs->mutex); xskq_destroy(xs->rx); xskq_destroy(xs->tx); xskq_destroy(xs->fq_tmp); xskq_destroy(xs->cq_tmp); sock_orphan(sk); sock->sk = NULL; sk_refcnt_debug_release(sk); sock_put(sk); return 0; } static struct socket *xsk_lookup_xsk_from_fd(int fd) { struct socket *sock; int err; sock = sockfd_lookup(fd, &err); if (!sock) return ERR_PTR(-ENOTSOCK); if (sock->sk->sk_family != PF_XDP) { sockfd_put(sock); return ERR_PTR(-ENOPROTOOPT); } return sock; } static bool xsk_validate_queues(struct xdp_sock *xs) { return xs->fq_tmp && xs->cq_tmp; } static int xsk_bind(struct socket *sock, struct sockaddr *addr, int addr_len) { struct sockaddr_xdp *sxdp = (struct sockaddr_xdp *)addr; struct sock *sk = sock->sk; struct xdp_sock *xs = xdp_sk(sk); struct net_device *dev; u32 flags, qid; int err = 0; if (addr_len < sizeof(struct sockaddr_xdp)) return -EINVAL; if (sxdp->sxdp_family != AF_XDP) return -EINVAL; flags = sxdp->sxdp_flags; if (flags & ~(XDP_SHARED_UMEM | XDP_COPY | XDP_ZEROCOPY | XDP_USE_NEED_WAKEUP)) return -EINVAL; rtnl_lock(); mutex_lock(&xs->mutex); if (xs->state != XSK_READY) { err = -EBUSY; goto out_release; } dev = dev_get_by_index(sock_net(sk), sxdp->sxdp_ifindex); if (!dev) { err = -ENODEV; goto out_release; } if (!xs->rx && !xs->tx) { err = -EINVAL; goto out_unlock; } qid = sxdp->sxdp_queue_id; if (flags & XDP_SHARED_UMEM) { struct xdp_sock *umem_xs; struct socket *sock; if ((flags & XDP_COPY) || (flags & XDP_ZEROCOPY) || (flags & XDP_USE_NEED_WAKEUP)) { /* Cannot specify flags for shared sockets. */ err = -EINVAL; goto out_unlock; } if (xs->umem) { /* We have already our own. */ err = -EINVAL; goto out_unlock; } sock = xsk_lookup_xsk_from_fd(sxdp->sxdp_shared_umem_fd); if (IS_ERR(sock)) { err = PTR_ERR(sock); goto out_unlock; } umem_xs = xdp_sk(sock->sk); if (!xsk_is_bound(umem_xs)) { err = -EBADF; sockfd_put(sock); goto out_unlock; } if (umem_xs->queue_id != qid || umem_xs->dev != dev) { /* Share the umem with another socket on another qid * and/or device. */ xs->pool = xp_create_and_assign_umem(xs, umem_xs->umem); if (!xs->pool) { err = -ENOMEM; sockfd_put(sock); goto out_unlock; } err = xp_assign_dev_shared(xs->pool, umem_xs->umem, dev, qid); if (err) { xp_destroy(xs->pool); xs->pool = NULL; sockfd_put(sock); goto out_unlock; } } else { /* Share the buffer pool with the other socket. */ if (xs->fq_tmp || xs->cq_tmp) { /* Do not allow setting your own fq or cq. */ err = -EINVAL; sockfd_put(sock); goto out_unlock; } xp_get_pool(umem_xs->pool); xs->pool = umem_xs->pool; } xdp_get_umem(umem_xs->umem); WRITE_ONCE(xs->umem, umem_xs->umem); sockfd_put(sock); } else if (!xs->umem || !xsk_validate_queues(xs)) { err = -EINVAL; goto out_unlock; } else { /* This xsk has its own umem. */ xs->pool = xp_create_and_assign_umem(xs, xs->umem); if (!xs->pool) { err = -ENOMEM; goto out_unlock; } err = xp_assign_dev(xs->pool, dev, qid, flags); if (err) { xp_destroy(xs->pool); xs->pool = NULL; goto out_unlock; } } /* FQ and CQ are now owned by the buffer pool and cleaned up with it. */ xs->fq_tmp = NULL; xs->cq_tmp = NULL; xs->dev = dev; xs->zc = xs->umem->zc; xs->queue_id = qid; xp_add_xsk(xs->pool, xs); out_unlock: if (err) { dev_put(dev); } else { /* Matches smp_rmb() in bind() for shared umem * sockets, and xsk_is_bound(). */ smp_wmb(); WRITE_ONCE(xs->state, XSK_BOUND); } out_release: mutex_unlock(&xs->mutex); rtnl_unlock(); return err; } struct xdp_umem_reg_v1 { __u64 addr; /* Start of packet data area */ __u64 len; /* Length of packet data area */ __u32 chunk_size; __u32 headroom; }; static int xsk_setsockopt(struct socket *sock, int level, int optname, sockptr_t optval, unsigned int optlen) { struct sock *sk = sock->sk; struct xdp_sock *xs = xdp_sk(sk); int err; if (level != SOL_XDP) return -ENOPROTOOPT; switch (optname) { case XDP_RX_RING: case XDP_TX_RING: { struct xsk_queue **q; int entries; if (optlen < sizeof(entries)) return -EINVAL; if (copy_from_sockptr(&entries, optval, sizeof(entries))) return -EFAULT; mutex_lock(&xs->mutex); if (xs->state != XSK_READY) { mutex_unlock(&xs->mutex); return -EBUSY; } q = (optname == XDP_TX_RING) ? &xs->tx : &xs->rx; err = xsk_init_queue(entries, q, false); if (!err && optname == XDP_TX_RING) /* Tx needs to be explicitly woken up the first time */ xs->tx->ring->flags |= XDP_RING_NEED_WAKEUP; mutex_unlock(&xs->mutex); return err; } case XDP_UMEM_REG: { size_t mr_size = sizeof(struct xdp_umem_reg); struct xdp_umem_reg mr = {}; struct xdp_umem *umem; if (optlen < sizeof(struct xdp_umem_reg_v1)) return -EINVAL; else if (optlen < sizeof(mr)) mr_size = sizeof(struct xdp_umem_reg_v1); if (copy_from_sockptr(&mr, optval, mr_size)) return -EFAULT; mutex_lock(&xs->mutex); if (xs->state != XSK_READY || xs->umem) { mutex_unlock(&xs->mutex); return -EBUSY; } umem = xdp_umem_create(&mr); if (IS_ERR(umem)) { mutex_unlock(&xs->mutex); return PTR_ERR(umem); } /* Make sure umem is ready before it can be seen by others */ smp_wmb(); WRITE_ONCE(xs->umem, umem); mutex_unlock(&xs->mutex); return 0; } case XDP_UMEM_FILL_RING: case XDP_UMEM_COMPLETION_RING: { struct xsk_queue **q; int entries; if (copy_from_sockptr(&entries, optval, sizeof(entries))) return -EFAULT; mutex_lock(&xs->mutex); if (xs->state != XSK_READY) { mutex_unlock(&xs->mutex); return -EBUSY; } q = (optname == XDP_UMEM_FILL_RING) ? &xs->fq_tmp : &xs->cq_tmp; err = xsk_init_queue(entries, q, true); mutex_unlock(&xs->mutex); return err; } default: break; } return -ENOPROTOOPT; } static void xsk_enter_rxtx_offsets(struct xdp_ring_offset_v1 *ring) { ring->producer = offsetof(struct xdp_rxtx_ring, ptrs.producer); ring->consumer = offsetof(struct xdp_rxtx_ring, ptrs.consumer); ring->desc = offsetof(struct xdp_rxtx_ring, desc); } static void xsk_enter_umem_offsets(struct xdp_ring_offset_v1 *ring) { ring->producer = offsetof(struct xdp_umem_ring, ptrs.producer); ring->consumer = offsetof(struct xdp_umem_ring, ptrs.consumer); ring->desc = offsetof(struct xdp_umem_ring, desc); } struct xdp_statistics_v1 { __u64 rx_dropped; __u64 rx_invalid_descs; __u64 tx_invalid_descs; }; static int xsk_getsockopt(struct socket *sock, int level, int optname, char __user *optval, int __user *optlen) { struct sock *sk = sock->sk; struct xdp_sock *xs = xdp_sk(sk); int len; if (level != SOL_XDP) return -ENOPROTOOPT; if (get_user(len, optlen)) return -EFAULT; if (len < 0) return -EINVAL; switch (optname) { case XDP_STATISTICS: { struct xdp_statistics stats = {}; bool extra_stats = true; size_t stats_size; if (len < sizeof(struct xdp_statistics_v1)) { return -EINVAL; } else if (len < sizeof(stats)) { extra_stats = false; stats_size = sizeof(struct xdp_statistics_v1); } else { stats_size = sizeof(stats); } mutex_lock(&xs->mutex); stats.rx_dropped = xs->rx_dropped; if (extra_stats) { stats.rx_ring_full = xs->rx_queue_full; stats.rx_fill_ring_empty_descs = xs->pool ? xskq_nb_queue_empty_descs(xs->pool->fq) : 0; stats.tx_ring_empty_descs = xskq_nb_queue_empty_descs(xs->tx); } else { stats.rx_dropped += xs->rx_queue_full; } stats.rx_invalid_descs = xskq_nb_invalid_descs(xs->rx); stats.tx_invalid_descs = xskq_nb_invalid_descs(xs->tx); mutex_unlock(&xs->mutex); if (copy_to_user(optval, &stats, stats_size)) return -EFAULT; if (put_user(stats_size, optlen)) return -EFAULT; return 0; } case XDP_MMAP_OFFSETS: { struct xdp_mmap_offsets off; struct xdp_mmap_offsets_v1 off_v1; bool flags_supported = true; void *to_copy; if (len < sizeof(off_v1)) return -EINVAL; else if (len < sizeof(off)) flags_supported = false; if (flags_supported) { /* xdp_ring_offset is identical to xdp_ring_offset_v1 * except for the flags field added to the end. */ xsk_enter_rxtx_offsets((struct xdp_ring_offset_v1 *) &off.rx); xsk_enter_rxtx_offsets((struct xdp_ring_offset_v1 *) &off.tx); xsk_enter_umem_offsets((struct xdp_ring_offset_v1 *) &off.fr); xsk_enter_umem_offsets((struct xdp_ring_offset_v1 *) &off.cr); off.rx.flags = offsetof(struct xdp_rxtx_ring, ptrs.flags); off.tx.flags = offsetof(struct xdp_rxtx_ring, ptrs.flags); off.fr.flags = offsetof(struct xdp_umem_ring, ptrs.flags); off.cr.flags = offsetof(struct xdp_umem_ring, ptrs.flags); len = sizeof(off); to_copy = &off; } else { xsk_enter_rxtx_offsets(&off_v1.rx); xsk_enter_rxtx_offsets(&off_v1.tx); xsk_enter_umem_offsets(&off_v1.fr); xsk_enter_umem_offsets(&off_v1.cr); len = sizeof(off_v1); to_copy = &off_v1; } if (copy_to_user(optval, to_copy, len)) return -EFAULT; if (put_user(len, optlen)) return -EFAULT; return 0; } case XDP_OPTIONS: { struct xdp_options opts = {}; if (len < sizeof(opts)) return -EINVAL; mutex_lock(&xs->mutex); if (xs->zc) opts.flags |= XDP_OPTIONS_ZEROCOPY; mutex_unlock(&xs->mutex); len = sizeof(opts); if (copy_to_user(optval, &opts, len)) return -EFAULT; if (put_user(len, optlen)) return -EFAULT; return 0; } default: break; } return -EOPNOTSUPP; } static int xsk_mmap(struct file *file, struct socket *sock, struct vm_area_struct *vma) { loff_t offset = (loff_t)vma->vm_pgoff << PAGE_SHIFT; unsigned long size = vma->vm_end - vma->vm_start; struct xdp_sock *xs = xdp_sk(sock->sk); struct xsk_queue *q = NULL; unsigned long pfn; struct page *qpg; if (READ_ONCE(xs->state) != XSK_READY) return -EBUSY; if (offset == XDP_PGOFF_RX_RING) { q = READ_ONCE(xs->rx); } else if (offset == XDP_PGOFF_TX_RING) { q = READ_ONCE(xs->tx); } else { /* Matches the smp_wmb() in XDP_UMEM_REG */ smp_rmb(); if (offset == XDP_UMEM_PGOFF_FILL_RING) q = READ_ONCE(xs->fq_tmp); else if (offset == XDP_UMEM_PGOFF_COMPLETION_RING) q = READ_ONCE(xs->cq_tmp); } if (!q) return -EINVAL; /* Matches the smp_wmb() in xsk_init_queue */ smp_rmb(); qpg = virt_to_head_page(q->ring); if (size > page_size(qpg)) return -EINVAL; pfn = virt_to_phys(q->ring) >> PAGE_SHIFT; return remap_pfn_range(vma, vma->vm_start, pfn, size, vma->vm_page_prot); } static int xsk_notifier(struct notifier_block *this, unsigned long msg, void *ptr) { struct net_device *dev = netdev_notifier_info_to_dev(ptr); struct net *net = dev_net(dev); struct sock *sk; switch (msg) { case NETDEV_UNREGISTER: mutex_lock(&net->xdp.lock); sk_for_each(sk, &net->xdp.list) { struct xdp_sock *xs = xdp_sk(sk); mutex_lock(&xs->mutex); if (xs->dev == dev) { sk->sk_err = ENETDOWN; if (!sock_flag(sk, SOCK_DEAD)) sk_error_report(sk); xsk_unbind_dev(xs); /* Clear device references. */ xp_clear_dev(xs->pool); } mutex_unlock(&xs->mutex); } mutex_unlock(&net->xdp.lock); break; } return NOTIFY_DONE; } static struct proto xsk_proto = { .name = "XDP", .owner = THIS_MODULE, .obj_size = sizeof(struct xdp_sock), }; static const struct proto_ops xsk_proto_ops = { .family = PF_XDP, .owner = THIS_MODULE, .release = xsk_release, .bind = xsk_bind, .connect = sock_no_connect, .socketpair = sock_no_socketpair, .accept = sock_no_accept, .getname = sock_no_getname, .poll = xsk_poll, .ioctl = sock_no_ioctl, .listen = sock_no_listen, .shutdown = sock_no_shutdown, .setsockopt = xsk_setsockopt, .getsockopt = xsk_getsockopt, .sendmsg = xsk_sendmsg, .recvmsg = xsk_recvmsg, .mmap = xsk_mmap, .sendpage = sock_no_sendpage, }; static void xsk_destruct(struct sock *sk) { struct xdp_sock *xs = xdp_sk(sk); if (!sock_flag(sk, SOCK_DEAD)) return; if (!xp_put_pool(xs->pool)) xdp_put_umem(xs->umem, !xs->pool); sk_refcnt_debug_dec(sk); } static int xsk_create(struct net *net, struct socket *sock, int protocol, int kern) { struct xdp_sock *xs; struct sock *sk; if (!ns_capable(net->user_ns, CAP_NET_RAW)) return -EPERM; if (sock->type != SOCK_RAW) return -ESOCKTNOSUPPORT; if (protocol) return -EPROTONOSUPPORT; sock->state = SS_UNCONNECTED; sk = sk_alloc(net, PF_XDP, GFP_KERNEL, &xsk_proto, kern); if (!sk) return -ENOBUFS; sock->ops = &xsk_proto_ops; sock_init_data(sock, sk); sk->sk_family = PF_XDP; sk->sk_destruct = xsk_destruct; sk_refcnt_debug_inc(sk); sock_set_flag(sk, SOCK_RCU_FREE); xs = xdp_sk(sk); xs->state = XSK_READY; mutex_init(&xs->mutex); spin_lock_init(&xs->rx_lock); INIT_LIST_HEAD(&xs->map_list); spin_lock_init(&xs->map_list_lock); mutex_lock(&net->xdp.lock); sk_add_node_rcu(sk, &net->xdp.list); mutex_unlock(&net->xdp.lock); sock_prot_inuse_add(net, &xsk_proto, 1); return 0; } static const struct net_proto_family xsk_family_ops = { .family = PF_XDP, .create = xsk_create, .owner = THIS_MODULE, }; static struct notifier_block xsk_netdev_notifier = { .notifier_call = xsk_notifier, }; static int __net_init xsk_net_init(struct net *net) { mutex_init(&net->xdp.lock); INIT_HLIST_HEAD(&net->xdp.list); return 0; } static void __net_exit xsk_net_exit(struct net *net) { WARN_ON_ONCE(!hlist_empty(&net->xdp.list)); } static struct pernet_operations xsk_net_ops = { .init = xsk_net_init, .exit = xsk_net_exit, }; static int __init xsk_init(void) { int err, cpu; err = proto_register(&xsk_proto, 0 /* no slab */); if (err) goto out; err = sock_register(&xsk_family_ops); if (err) goto out_proto; err = register_pernet_subsys(&xsk_net_ops); if (err) goto out_sk; err = register_netdevice_notifier(&xsk_netdev_notifier); if (err) goto out_pernet; for_each_possible_cpu(cpu) INIT_LIST_HEAD(&per_cpu(xskmap_flush_list, cpu)); return 0; out_pernet: unregister_pernet_subsys(&xsk_net_ops); out_sk: sock_unregister(PF_XDP); out_proto: proto_unregister(&xsk_proto); out: return err; } fs_initcall(xsk_init);