/* * Davicom DM9601 USB 1.1 10/100Mbps ethernet devices * * Peter Korsgaard * * This file is licensed under the terms of the GNU General Public License * version 2. This program is licensed "as is" without any warranty of any * kind, whether express or implied. */ //#define DEBUG #include #include #include #include #include #include #include #include #include #include #include /* datasheet: http://www.davicom.com.tw/big5/download/Data%20Sheet/DM9601-DS-P01-930914.pdf */ /* control requests */ #define DM_READ_REGS 0x00 #define DM_WRITE_REGS 0x01 #define DM_READ_MEMS 0x02 #define DM_WRITE_REG 0x03 #define DM_WRITE_MEMS 0x05 #define DM_WRITE_MEM 0x07 /* registers */ #define DM_NET_CTRL 0x00 #define DM_RX_CTRL 0x05 #define DM_SHARED_CTRL 0x0b #define DM_SHARED_ADDR 0x0c #define DM_SHARED_DATA 0x0d /* low + high */ #define DM_PHY_ADDR 0x10 /* 6 bytes */ #define DM_MCAST_ADDR 0x16 /* 8 bytes */ #define DM_GPR_CTRL 0x1e #define DM_GPR_DATA 0x1f #define DM_MAX_MCAST 64 #define DM_MCAST_SIZE 8 #define DM_EEPROM_LEN 256 #define DM_TX_OVERHEAD 2 /* 2 byte header */ #define DM_RX_OVERHEAD 7 /* 3 byte header + 4 byte crc tail */ #define DM_TIMEOUT 1000 static int dm_read(struct usbnet *dev, u8 reg, u16 length, void *data) { void *buf; int err = -ENOMEM; devdbg(dev, "dm_read() reg=0x%02x length=%d", reg, length); buf = kmalloc(length, GFP_KERNEL); if (!buf) goto out; err = usb_control_msg(dev->udev, usb_rcvctrlpipe(dev->udev, 0), DM_READ_REGS, USB_DIR_IN | USB_TYPE_VENDOR | USB_RECIP_DEVICE, 0, reg, buf, length, USB_CTRL_SET_TIMEOUT); if (err == length) memcpy(data, buf, length); else if (err >= 0) err = -EINVAL; kfree(buf); out: return err; } static int dm_read_reg(struct usbnet *dev, u8 reg, u8 *value) { return dm_read(dev, reg, 1, value); } static int dm_write(struct usbnet *dev, u8 reg, u16 length, void *data) { void *buf = NULL; int err = -ENOMEM; devdbg(dev, "dm_write() reg=0x%02x, length=%d", reg, length); if (data) { buf = kmalloc(length, GFP_KERNEL); if (!buf) goto out; memcpy(buf, data, length); } err = usb_control_msg(dev->udev, usb_sndctrlpipe(dev->udev, 0), DM_WRITE_REGS, USB_DIR_OUT | USB_TYPE_VENDOR |USB_RECIP_DEVICE, 0, reg, buf, length, USB_CTRL_SET_TIMEOUT); kfree(buf); if (err >= 0 && err < length) err = -EINVAL; out: return err; } static int dm_write_reg(struct usbnet *dev, u8 reg, u8 value) { devdbg(dev, "dm_write_reg() reg=0x%02x, value=0x%02x", reg, value); return usb_control_msg(dev->udev, usb_sndctrlpipe(dev->udev, 0), DM_WRITE_REG, USB_DIR_OUT | USB_TYPE_VENDOR |USB_RECIP_DEVICE, value, reg, NULL, 0, USB_CTRL_SET_TIMEOUT); } static void dm_write_async_callback(struct urb *urb) { struct usb_ctrlrequest *req = (struct usb_ctrlrequest *)urb->context; int status = urb->status; if (status < 0) printk(KERN_DEBUG "dm_write_async_callback() failed with %d\n", status); kfree(req); usb_free_urb(urb); } static void dm_write_async_helper(struct usbnet *dev, u8 reg, u8 value, u16 length, void *data) { struct usb_ctrlrequest *req; struct urb *urb; int status; urb = usb_alloc_urb(0, GFP_ATOMIC); if (!urb) { deverr(dev, "Error allocating URB in dm_write_async_helper!"); return; } req = kmalloc(sizeof(struct usb_ctrlrequest), GFP_ATOMIC); if (!req) { deverr(dev, "Failed to allocate memory for control request"); usb_free_urb(urb); return; } req->bRequestType = USB_DIR_OUT | USB_TYPE_VENDOR | USB_RECIP_DEVICE; req->bRequest = length ? DM_WRITE_REGS : DM_WRITE_REG; req->wValue = cpu_to_le16(value); req->wIndex = cpu_to_le16(reg); req->wLength = cpu_to_le16(length); usb_fill_control_urb(urb, dev->udev, usb_sndctrlpipe(dev->udev, 0), (void *)req, data, length, dm_write_async_callback, req); status = usb_submit_urb(urb, GFP_ATOMIC); if (status < 0) { deverr(dev, "Error submitting the control message: status=%d", status); kfree(req); usb_free_urb(urb); } } static void dm_write_async(struct usbnet *dev, u8 reg, u16 length, void *data) { devdbg(dev, "dm_write_async() reg=0x%02x length=%d", reg, length); dm_write_async_helper(dev, reg, 0, length, data); } static void dm_write_reg_async(struct usbnet *dev, u8 reg, u8 value) { devdbg(dev, "dm_write_reg_async() reg=0x%02x value=0x%02x", reg, value); dm_write_async_helper(dev, reg, value, 0, NULL); } static int dm_read_shared_word(struct usbnet *dev, int phy, u8 reg, __le16 *value) { int ret, i; mutex_lock(&dev->phy_mutex); dm_write_reg(dev, DM_SHARED_ADDR, phy ? (reg | 0x40) : reg); dm_write_reg(dev, DM_SHARED_CTRL, phy ? 0xc : 0x4); for (i = 0; i < DM_TIMEOUT; i++) { u8 tmp; udelay(1); ret = dm_read_reg(dev, DM_SHARED_CTRL, &tmp); if (ret < 0) goto out; /* ready */ if ((tmp & 1) == 0) break; } if (i == DM_TIMEOUT) { deverr(dev, "%s read timed out!", phy ? "phy" : "eeprom"); ret = -EIO; goto out; } dm_write_reg(dev, DM_SHARED_CTRL, 0x0); ret = dm_read(dev, DM_SHARED_DATA, 2, value); devdbg(dev, "read shared %d 0x%02x returned 0x%04x, %d", phy, reg, *value, ret); out: mutex_unlock(&dev->phy_mutex); return ret; } static int dm_write_shared_word(struct usbnet *dev, int phy, u8 reg, __le16 value) { int ret, i; mutex_lock(&dev->phy_mutex); ret = dm_write(dev, DM_SHARED_DATA, 2, &value); if (ret < 0) goto out; dm_write_reg(dev, DM_SHARED_ADDR, phy ? (reg | 0x40) : reg); dm_write_reg(dev, DM_SHARED_CTRL, phy ? 0x1c : 0x14); for (i = 0; i < DM_TIMEOUT; i++) { u8 tmp; udelay(1); ret = dm_read_reg(dev, DM_SHARED_CTRL, &tmp); if (ret < 0) goto out; /* ready */ if ((tmp & 1) == 0) break; } if (i == DM_TIMEOUT) { deverr(dev, "%s write timed out!", phy ? "phy" : "eeprom"); ret = -EIO; goto out; } dm_write_reg(dev, DM_SHARED_CTRL, 0x0); out: mutex_unlock(&dev->phy_mutex); return ret; } static int dm_read_eeprom_word(struct usbnet *dev, u8 offset, void *value) { return dm_read_shared_word(dev, 0, offset, value); } static int dm9601_get_eeprom_len(struct net_device *dev) { return DM_EEPROM_LEN; } static int dm9601_get_eeprom(struct net_device *net, struct ethtool_eeprom *eeprom, u8 * data) { struct usbnet *dev = netdev_priv(net); __le16 *ebuf = (__le16 *) data; int i; /* access is 16bit */ if ((eeprom->offset % 2) || (eeprom->len % 2)) return -EINVAL; for (i = 0; i < eeprom->len / 2; i++) { if (dm_read_eeprom_word(dev, eeprom->offset / 2 + i, &ebuf[i]) < 0) return -EINVAL; } return 0; } static int dm9601_mdio_read(struct net_device *netdev, int phy_id, int loc) { struct usbnet *dev = netdev_priv(netdev); __le16 res; if (phy_id) { devdbg(dev, "Only internal phy supported"); return 0; } dm_read_shared_word(dev, 1, loc, &res); devdbg(dev, "dm9601_mdio_read() phy_id=0x%02x, loc=0x%02x, returns=0x%04x", phy_id, loc, le16_to_cpu(res)); return le16_to_cpu(res); } static void dm9601_mdio_write(struct net_device *netdev, int phy_id, int loc, int val) { struct usbnet *dev = netdev_priv(netdev); __le16 res = cpu_to_le16(val); if (phy_id) { devdbg(dev, "Only internal phy supported"); return; } devdbg(dev,"dm9601_mdio_write() phy_id=0x%02x, loc=0x%02x, val=0x%04x", phy_id, loc, val); dm_write_shared_word(dev, 1, loc, res); } static void dm9601_get_drvinfo(struct net_device *net, struct ethtool_drvinfo *info) { /* Inherit standard device info */ usbnet_get_drvinfo(net, info); info->eedump_len = DM_EEPROM_LEN; } static u32 dm9601_get_link(struct net_device *net) { struct usbnet *dev = netdev_priv(net); return mii_link_ok(&dev->mii); } static int dm9601_ioctl(struct net_device *net, struct ifreq *rq, int cmd) { struct usbnet *dev = netdev_priv(net); return generic_mii_ioctl(&dev->mii, if_mii(rq), cmd, NULL); } static struct ethtool_ops dm9601_ethtool_ops = { .get_drvinfo = dm9601_get_drvinfo, .get_link = dm9601_get_link, .get_msglevel = usbnet_get_msglevel, .set_msglevel = usbnet_set_msglevel, .get_eeprom_len = dm9601_get_eeprom_len, .get_eeprom = dm9601_get_eeprom, .get_settings = usbnet_get_settings, .set_settings = usbnet_set_settings, .nway_reset = usbnet_nway_reset, }; static void dm9601_set_multicast(struct net_device *net) { struct usbnet *dev = netdev_priv(net); /* We use the 20 byte dev->data for our 8 byte filter buffer * to avoid allocating memory that is tricky to free later */ u8 *hashes = (u8 *) & dev->data; u8 rx_ctl = 0x31; memset(hashes, 0x00, DM_MCAST_SIZE); hashes[DM_MCAST_SIZE - 1] |= 0x80; /* broadcast address */ if (net->flags & IFF_PROMISC) { rx_ctl |= 0x02; } else if (net->flags & IFF_ALLMULTI || net->mc_count > DM_MAX_MCAST) { rx_ctl |= 0x04; } else if (net->mc_count) { struct dev_mc_list *mc_list = net->mc_list; int i; for (i = 0; i < net->mc_count; i++, mc_list = mc_list->next) { u32 crc = ether_crc(ETH_ALEN, mc_list->dmi_addr) >> 26; hashes[crc >> 3] |= 1 << (crc & 0x7); } } dm_write_async(dev, DM_MCAST_ADDR, DM_MCAST_SIZE, hashes); dm_write_reg_async(dev, DM_RX_CTRL, rx_ctl); } static int dm9601_set_mac_address(struct net_device *net, void *p) { struct sockaddr *addr = p; struct usbnet *dev = netdev_priv(net); if (!is_valid_ether_addr(addr->sa_data)) return -EINVAL; memcpy(net->dev_addr, addr->sa_data, net->addr_len); dm_write_async(dev, DM_PHY_ADDR, net->addr_len, net->dev_addr); return 0; } static int dm9601_bind(struct usbnet *dev, struct usb_interface *intf) { int ret; u8 mac[ETH_ALEN]; ret = usbnet_get_endpoints(dev, intf); if (ret) goto out; dev->net->do_ioctl = dm9601_ioctl; dev->net->set_multicast_list = dm9601_set_multicast; dev->net->set_mac_address = dm9601_set_mac_address; dev->net->ethtool_ops = &dm9601_ethtool_ops; dev->net->hard_header_len += DM_TX_OVERHEAD; dev->hard_mtu = dev->net->mtu + dev->net->hard_header_len; dev->rx_urb_size = dev->net->mtu + ETH_HLEN + DM_RX_OVERHEAD; dev->mii.dev = dev->net; dev->mii.mdio_read = dm9601_mdio_read; dev->mii.mdio_write = dm9601_mdio_write; dev->mii.phy_id_mask = 0x1f; dev->mii.reg_num_mask = 0x1f; /* reset */ dm_write_reg(dev, DM_NET_CTRL, 1); udelay(20); /* read MAC */ if (dm_read(dev, DM_PHY_ADDR, ETH_ALEN, mac) < 0) { printk(KERN_ERR "Error reading MAC address\n"); ret = -ENODEV; goto out; } /* * Overwrite the auto-generated address only with good ones. */ if (is_valid_ether_addr(mac)) memcpy(dev->net->dev_addr, mac, ETH_ALEN); /* power up phy */ dm_write_reg(dev, DM_GPR_CTRL, 1); dm_write_reg(dev, DM_GPR_DATA, 0); /* receive broadcast packets */ dm9601_set_multicast(dev->net); dm9601_mdio_write(dev->net, dev->mii.phy_id, MII_BMCR, BMCR_RESET); dm9601_mdio_write(dev->net, dev->mii.phy_id, MII_ADVERTISE, ADVERTISE_ALL | ADVERTISE_CSMA | ADVERTISE_PAUSE_CAP); mii_nway_restart(&dev->mii); out: return ret; } static int dm9601_rx_fixup(struct usbnet *dev, struct sk_buff *skb) { u8 status; int len; /* format: b0: rx status b1: packet length (incl crc) low b2: packet length (incl crc) high b3..n-4: packet data bn-3..bn: ethernet crc */ if (unlikely(skb->len < DM_RX_OVERHEAD)) { dev_err(&dev->udev->dev, "unexpected tiny rx frame\n"); return 0; } status = skb->data[0]; len = (skb->data[1] | (skb->data[2] << 8)) - 4; if (unlikely(status & 0xbf)) { if (status & 0x01) dev->stats.rx_fifo_errors++; if (status & 0x02) dev->stats.rx_crc_errors++; if (status & 0x04) dev->stats.rx_frame_errors++; if (status & 0x20) dev->stats.rx_missed_errors++; if (status & 0x90) dev->stats.rx_length_errors++; return 0; } skb_pull(skb, 3); skb_trim(skb, len); return 1; } static struct sk_buff *dm9601_tx_fixup(struct usbnet *dev, struct sk_buff *skb, gfp_t flags) { int len; /* format: b0: packet length low b1: packet length high b3..n: packet data */ len = skb->len; if (skb_headroom(skb) < DM_TX_OVERHEAD) { struct sk_buff *skb2; skb2 = skb_copy_expand(skb, DM_TX_OVERHEAD, 0, flags); dev_kfree_skb_any(skb); skb = skb2; if (!skb) return NULL; } __skb_push(skb, DM_TX_OVERHEAD); /* usbnet adds padding if length is a multiple of packet size if so, adjust length value in header */ if ((skb->len % dev->maxpacket) == 0) len++; skb->data[0] = len; skb->data[1] = len >> 8; return skb; } static void dm9601_status(struct usbnet *dev, struct urb *urb) { int link; u8 *buf; /* format: b0: net status b1: tx status 1 b2: tx status 2 b3: rx status b4: rx overflow b5: rx count b6: tx count b7: gpr */ if (urb->actual_length < 8) return; buf = urb->transfer_buffer; link = !!(buf[0] & 0x40); if (netif_carrier_ok(dev->net) != link) { if (link) { netif_carrier_on(dev->net); usbnet_defer_kevent (dev, EVENT_LINK_RESET); } else netif_carrier_off(dev->net); devdbg(dev, "Link Status is: %d", link); } } static int dm9601_link_reset(struct usbnet *dev) { struct ethtool_cmd ecmd; mii_check_media(&dev->mii, 1, 1); mii_ethtool_gset(&dev->mii, &ecmd); devdbg(dev, "link_reset() speed: %d duplex: %d", ecmd.speed, ecmd.duplex); return 0; } static const struct driver_info dm9601_info = { .description = "Davicom DM9601 USB Ethernet", .flags = FLAG_ETHER, .bind = dm9601_bind, .rx_fixup = dm9601_rx_fixup, .tx_fixup = dm9601_tx_fixup, .status = dm9601_status, .link_reset = dm9601_link_reset, .reset = dm9601_link_reset, }; static const struct usb_device_id products[] = { { USB_DEVICE(0x07aa, 0x9601), /* Corega FEther USB-TXC */ .driver_info = (unsigned long)&dm9601_info, }, { USB_DEVICE(0x0a46, 0x9601), /* Davicom USB-100 */ .driver_info = (unsigned long)&dm9601_info, }, { USB_DEVICE(0x0a46, 0x6688), /* ZT6688 USB NIC */ .driver_info = (unsigned long)&dm9601_info, }, { USB_DEVICE(0x0a46, 0x0268), /* ShanTou ST268 USB NIC */ .driver_info = (unsigned long)&dm9601_info, }, { USB_DEVICE(0x0a46, 0x8515), /* ADMtek ADM8515 USB NIC */ .driver_info = (unsigned long)&dm9601_info, }, { USB_DEVICE(0x0a47, 0x9601), /* Hirose USB-100 */ .driver_info = (unsigned long)&dm9601_info, }, {}, // END }; MODULE_DEVICE_TABLE(usb, products); static struct usb_driver dm9601_driver = { .name = "dm9601", .id_table = products, .probe = usbnet_probe, .disconnect = usbnet_disconnect, .suspend = usbnet_suspend, .resume = usbnet_resume, }; static int __init dm9601_init(void) { return usb_register(&dm9601_driver); } static void __exit dm9601_exit(void) { usb_deregister(&dm9601_driver); } module_init(dm9601_init); module_exit(dm9601_exit); MODULE_AUTHOR("Peter Korsgaard "); MODULE_DESCRIPTION("Davicom DM9601 USB 1.1 ethernet devices"); MODULE_LICENSE("GPL");