// SPDX-License-Identifier: GPL-2.0 /* * Mellanox BlueField I2C bus driver * * Copyright (C) 2020 Mellanox Technologies, Ltd. */ #include #include #include #include #include #include #include #include #include #include #include #include /* Defines what functionality is present. */ #define MLXBF_I2C_FUNC_SMBUS_BLOCK \ (I2C_FUNC_SMBUS_BLOCK_DATA | I2C_FUNC_SMBUS_BLOCK_PROC_CALL) #define MLXBF_I2C_FUNC_SMBUS_DEFAULT \ (I2C_FUNC_SMBUS_BYTE | I2C_FUNC_SMBUS_BYTE_DATA | \ I2C_FUNC_SMBUS_WORD_DATA | I2C_FUNC_SMBUS_I2C_BLOCK | \ I2C_FUNC_SMBUS_PROC_CALL) #define MLXBF_I2C_FUNC_ALL \ (MLXBF_I2C_FUNC_SMBUS_DEFAULT | MLXBF_I2C_FUNC_SMBUS_BLOCK | \ I2C_FUNC_SMBUS_QUICK | I2C_FUNC_SLAVE) #define MLXBF_I2C_SMBUS_MAX 3 /* Shared resources info in BlueField platforms. */ #define MLXBF_I2C_COALESCE_TYU_ADDR 0x02801300 #define MLXBF_I2C_COALESCE_TYU_SIZE 0x010 #define MLXBF_I2C_GPIO_TYU_ADDR 0x02802000 #define MLXBF_I2C_GPIO_TYU_SIZE 0x100 #define MLXBF_I2C_COREPLL_TYU_ADDR 0x02800358 #define MLXBF_I2C_COREPLL_TYU_SIZE 0x008 #define MLXBF_I2C_COREPLL_YU_ADDR 0x02800c30 #define MLXBF_I2C_COREPLL_YU_SIZE 0x00c #define MLXBF_I2C_SHARED_RES_MAX 3 /* * Note that the following SMBus, CAUSE, GPIO and PLL register addresses * refer to their respective offsets relative to the corresponding * memory-mapped region whose addresses are specified in either the DT or * the ACPI tables or above. */ /* * SMBus Master core clock frequency. Timing configurations are * strongly dependent on the core clock frequency of the SMBus * Master. Default value is set to 400MHz. */ #define MLXBF_I2C_TYU_PLL_OUT_FREQ (400 * 1000 * 1000) /* Reference clock for Bluefield - 156 MHz. */ #define MLXBF_I2C_PLL_IN_FREQ (156 * 1000 * 1000) /* Constant used to determine the PLL frequency. */ #define MLNXBF_I2C_COREPLL_CONST 16384 /* PLL registers. */ #define MLXBF_I2C_CORE_PLL_REG0 0x0 #define MLXBF_I2C_CORE_PLL_REG1 0x4 #define MLXBF_I2C_CORE_PLL_REG2 0x8 /* OR cause register. */ #define MLXBF_I2C_CAUSE_OR_EVTEN0 0x14 #define MLXBF_I2C_CAUSE_OR_CLEAR 0x18 /* Arbiter Cause Register. */ #define MLXBF_I2C_CAUSE_ARBITER 0x1c /* * Cause Status flags. Note that those bits might be considered * as interrupt enabled bits. */ /* Transaction ended with STOP. */ #define MLXBF_I2C_CAUSE_TRANSACTION_ENDED BIT(0) /* Master arbitration lost. */ #define MLXBF_I2C_CAUSE_M_ARBITRATION_LOST BIT(1) /* Unexpected start detected. */ #define MLXBF_I2C_CAUSE_UNEXPECTED_START BIT(2) /* Unexpected stop detected. */ #define MLXBF_I2C_CAUSE_UNEXPECTED_STOP BIT(3) /* Wait for transfer continuation. */ #define MLXBF_I2C_CAUSE_WAIT_FOR_FW_DATA BIT(4) /* Failed to generate STOP. */ #define MLXBF_I2C_CAUSE_PUT_STOP_FAILED BIT(5) /* Failed to generate START. */ #define MLXBF_I2C_CAUSE_PUT_START_FAILED BIT(6) /* Clock toggle completed. */ #define MLXBF_I2C_CAUSE_CLK_TOGGLE_DONE BIT(7) /* Transfer timeout occurred. */ #define MLXBF_I2C_CAUSE_M_FW_TIMEOUT BIT(8) /* Master busy bit reset. */ #define MLXBF_I2C_CAUSE_M_GW_BUSY_FALL BIT(9) #define MLXBF_I2C_CAUSE_MASTER_ARBITER_BITS_MASK GENMASK(9, 0) #define MLXBF_I2C_CAUSE_MASTER_STATUS_ERROR \ (MLXBF_I2C_CAUSE_M_ARBITRATION_LOST | \ MLXBF_I2C_CAUSE_UNEXPECTED_START | \ MLXBF_I2C_CAUSE_UNEXPECTED_STOP | \ MLXBF_I2C_CAUSE_PUT_STOP_FAILED | \ MLXBF_I2C_CAUSE_PUT_START_FAILED | \ MLXBF_I2C_CAUSE_CLK_TOGGLE_DONE | \ MLXBF_I2C_CAUSE_M_FW_TIMEOUT) /* * Slave cause status flags. Note that those bits might be considered * as interrupt enabled bits. */ /* Write transaction received successfully. */ #define MLXBF_I2C_CAUSE_WRITE_SUCCESS BIT(0) /* Read transaction received, waiting for response. */ #define MLXBF_I2C_CAUSE_READ_WAIT_FW_RESPONSE BIT(13) /* Slave busy bit reset. */ #define MLXBF_I2C_CAUSE_S_GW_BUSY_FALL BIT(18) #define MLXBF_I2C_CAUSE_SLAVE_ARBITER_BITS_MASK GENMASK(20, 0) /* Cause coalesce registers. */ #define MLXBF_I2C_CAUSE_COALESCE_0 0x00 #define MLXBF_I2C_CAUSE_COALESCE_1 0x04 #define MLXBF_I2C_CAUSE_COALESCE_2 0x08 #define MLXBF_I2C_CAUSE_TYU_SLAVE_BIT MLXBF_I2C_SMBUS_MAX #define MLXBF_I2C_CAUSE_YU_SLAVE_BIT 1 /* Functional enable register. */ #define MLXBF_I2C_GPIO_0_FUNC_EN_0 0x28 /* Force OE enable register. */ #define MLXBF_I2C_GPIO_0_FORCE_OE_EN 0x30 /* * Note that Smbus GWs are on GPIOs 30:25. Two pins are used to control * SDA/SCL lines: * * SMBUS GW0 -> bits[26:25] * SMBUS GW1 -> bits[28:27] * SMBUS GW2 -> bits[30:29] */ #define MLXBF_I2C_GPIO_SMBUS_GW_PINS(num) (25 + ((num) << 1)) /* Note that gw_id can be 0,1 or 2. */ #define MLXBF_I2C_GPIO_SMBUS_GW_MASK(num) \ (0xffffffff & (~(0x3 << MLXBF_I2C_GPIO_SMBUS_GW_PINS(num)))) #define MLXBF_I2C_GPIO_SMBUS_GW_RESET_PINS(num, val) \ ((val) & MLXBF_I2C_GPIO_SMBUS_GW_MASK(num)) #define MLXBF_I2C_GPIO_SMBUS_GW_ASSERT_PINS(num, val) \ ((val) | (0x3 << MLXBF_I2C_GPIO_SMBUS_GW_PINS(num))) /* SMBus timing parameters. */ #define MLXBF_I2C_SMBUS_TIMER_SCL_LOW_SCL_HIGH 0x00 #define MLXBF_I2C_SMBUS_TIMER_FALL_RISE_SPIKE 0x04 #define MLXBF_I2C_SMBUS_TIMER_THOLD 0x08 #define MLXBF_I2C_SMBUS_TIMER_TSETUP_START_STOP 0x0c #define MLXBF_I2C_SMBUS_TIMER_TSETUP_DATA 0x10 #define MLXBF_I2C_SMBUS_THIGH_MAX_TBUF 0x14 #define MLXBF_I2C_SMBUS_SCL_LOW_TIMEOUT 0x18 /* * Defines SMBus operating frequency and core clock frequency. * According to ADB files, default values are compliant to 100KHz SMBus * @ 400MHz core clock. The driver should be able to calculate core * frequency based on PLL parameters. */ #define MLXBF_I2C_COREPLL_FREQ MLXBF_I2C_TYU_PLL_OUT_FREQ /* Core PLL TYU configuration. */ #define MLXBF_I2C_COREPLL_CORE_F_TYU_MASK GENMASK(12, 0) #define MLXBF_I2C_COREPLL_CORE_OD_TYU_MASK GENMASK(3, 0) #define MLXBF_I2C_COREPLL_CORE_R_TYU_MASK GENMASK(5, 0) #define MLXBF_I2C_COREPLL_CORE_F_TYU_SHIFT 3 #define MLXBF_I2C_COREPLL_CORE_OD_TYU_SHIFT 16 #define MLXBF_I2C_COREPLL_CORE_R_TYU_SHIFT 20 /* Core PLL YU configuration. */ #define MLXBF_I2C_COREPLL_CORE_F_YU_MASK GENMASK(25, 0) #define MLXBF_I2C_COREPLL_CORE_OD_YU_MASK GENMASK(3, 0) #define MLXBF_I2C_COREPLL_CORE_R_YU_MASK GENMASK(5, 0) #define MLXBF_I2C_COREPLL_CORE_F_YU_SHIFT 0 #define MLXBF_I2C_COREPLL_CORE_OD_YU_SHIFT 1 #define MLXBF_I2C_COREPLL_CORE_R_YU_SHIFT 26 /* Core PLL frequency. */ static u64 mlxbf_i2c_corepll_frequency; /* SMBus Master GW. */ #define MLXBF_I2C_SMBUS_MASTER_GW 0x200 /* Number of bytes received and sent. */ #define MLXBF_I2C_SMBUS_RS_BYTES 0x300 /* Packet error check (PEC) value. */ #define MLXBF_I2C_SMBUS_MASTER_PEC 0x304 /* Status bits (ACK/NACK/FW Timeout). */ #define MLXBF_I2C_SMBUS_MASTER_STATUS 0x308 /* SMbus Master Finite State Machine. */ #define MLXBF_I2C_SMBUS_MASTER_FSM 0x310 /* * When enabled, the master will issue a stop condition in case of * timeout while waiting for FW response. */ #define MLXBF_I2C_SMBUS_EN_FW_TIMEOUT 0x31c /* SMBus master GW control bits offset in MLXBF_I2C_SMBUS_MASTER_GW[31:3]. */ #define MLXBF_I2C_MASTER_LOCK_BIT BIT(31) /* Lock bit. */ #define MLXBF_I2C_MASTER_BUSY_BIT BIT(30) /* Busy bit. */ #define MLXBF_I2C_MASTER_START_BIT BIT(29) /* Control start. */ #define MLXBF_I2C_MASTER_CTL_WRITE_BIT BIT(28) /* Control write phase. */ #define MLXBF_I2C_MASTER_CTL_READ_BIT BIT(19) /* Control read phase. */ #define MLXBF_I2C_MASTER_STOP_BIT BIT(3) /* Control stop. */ #define MLXBF_I2C_MASTER_ENABLE \ (MLXBF_I2C_MASTER_LOCK_BIT | MLXBF_I2C_MASTER_BUSY_BIT | \ MLXBF_I2C_MASTER_START_BIT | MLXBF_I2C_MASTER_STOP_BIT) #define MLXBF_I2C_MASTER_ENABLE_WRITE \ (MLXBF_I2C_MASTER_ENABLE | MLXBF_I2C_MASTER_CTL_WRITE_BIT) #define MLXBF_I2C_MASTER_ENABLE_READ \ (MLXBF_I2C_MASTER_ENABLE | MLXBF_I2C_MASTER_CTL_READ_BIT) #define MLXBF_I2C_MASTER_SLV_ADDR_SHIFT 12 /* Slave address shift. */ #define MLXBF_I2C_MASTER_WRITE_SHIFT 21 /* Control write bytes shift. */ #define MLXBF_I2C_MASTER_SEND_PEC_SHIFT 20 /* Send PEC byte shift. */ #define MLXBF_I2C_MASTER_PARSE_EXP_SHIFT 11 /* Parse expected bytes shift. */ #define MLXBF_I2C_MASTER_READ_SHIFT 4 /* Control read bytes shift. */ /* SMBus master GW Data descriptor. */ #define MLXBF_I2C_MASTER_DATA_DESC_ADDR 0x280 #define MLXBF_I2C_MASTER_DATA_DESC_SIZE 0x80 /* Size in bytes. */ /* Maximum bytes to read/write per SMBus transaction. */ #define MLXBF_I2C_MASTER_DATA_R_LENGTH MLXBF_I2C_MASTER_DATA_DESC_SIZE #define MLXBF_I2C_MASTER_DATA_W_LENGTH (MLXBF_I2C_MASTER_DATA_DESC_SIZE - 1) /* All bytes were transmitted. */ #define MLXBF_I2C_SMBUS_STATUS_BYTE_CNT_DONE BIT(0) /* NACK received. */ #define MLXBF_I2C_SMBUS_STATUS_NACK_RCV BIT(1) /* Slave's byte count >128 bytes. */ #define MLXBF_I2C_SMBUS_STATUS_READ_ERR BIT(2) /* Timeout occurred. */ #define MLXBF_I2C_SMBUS_STATUS_FW_TIMEOUT BIT(3) #define MLXBF_I2C_SMBUS_MASTER_STATUS_MASK GENMASK(3, 0) #define MLXBF_I2C_SMBUS_MASTER_STATUS_ERROR \ (MLXBF_I2C_SMBUS_STATUS_NACK_RCV | \ MLXBF_I2C_SMBUS_STATUS_READ_ERR | \ MLXBF_I2C_SMBUS_STATUS_FW_TIMEOUT) #define MLXBF_I2C_SMBUS_MASTER_FSM_STOP_MASK BIT(31) #define MLXBF_I2C_SMBUS_MASTER_FSM_PS_STATE_MASK BIT(15) /* SMBus slave GW. */ #define MLXBF_I2C_SMBUS_SLAVE_GW 0x400 /* Number of bytes received and sent from/to master. */ #define MLXBF_I2C_SMBUS_SLAVE_RS_MASTER_BYTES 0x500 /* Packet error check (PEC) value. */ #define MLXBF_I2C_SMBUS_SLAVE_PEC 0x504 /* SMBus slave Finite State Machine (FSM). */ #define MLXBF_I2C_SMBUS_SLAVE_FSM 0x510 /* * Should be set when all raised causes handled, and cleared by HW on * every new cause. */ #define MLXBF_I2C_SMBUS_SLAVE_READY 0x52c /* SMBus slave GW control bits offset in MLXBF_I2C_SMBUS_SLAVE_GW[31:19]. */ #define MLXBF_I2C_SLAVE_BUSY_BIT BIT(30) /* Busy bit. */ #define MLXBF_I2C_SLAVE_WRITE_BIT BIT(29) /* Control write enable. */ #define MLXBF_I2C_SLAVE_ENABLE \ (MLXBF_I2C_SLAVE_BUSY_BIT | MLXBF_I2C_SLAVE_WRITE_BIT) #define MLXBF_I2C_SLAVE_WRITE_BYTES_SHIFT 22 /* Number of bytes to write. */ #define MLXBF_I2C_SLAVE_SEND_PEC_SHIFT 21 /* Send PEC byte shift. */ /* SMBus slave GW Data descriptor. */ #define MLXBF_I2C_SLAVE_DATA_DESC_ADDR 0x480 #define MLXBF_I2C_SLAVE_DATA_DESC_SIZE 0x80 /* Size in bytes. */ /* SMbus slave configuration registers. */ #define MLXBF_I2C_SMBUS_SLAVE_ADDR_CFG 0x514 #define MLXBF_I2C_SMBUS_SLAVE_ADDR_CNT 16 #define MLXBF_I2C_SMBUS_SLAVE_ADDR_EN_BIT 7 #define MLXBF_I2C_SMBUS_SLAVE_ADDR_MASK GENMASK(6, 0) #define MLXBF_I2C_SLAVE_ADDR_ENABLED(addr) \ ((addr) & (1 << MLXBF_I2C_SMBUS_SLAVE_ADDR_EN_BIT)) /* * Timeout is given in microsends. Note also that timeout handling is not * exact. */ #define MLXBF_I2C_SMBUS_TIMEOUT (300 * 1000) /* 300ms */ /* Encapsulates timing parameters. */ struct mlxbf_i2c_timings { u16 scl_high; /* Clock high period. */ u16 scl_low; /* Clock low period. */ u8 sda_rise; /* Data rise time. */ u8 sda_fall; /* Data fall time. */ u8 scl_rise; /* Clock rise time. */ u8 scl_fall; /* Clock fall time. */ u16 hold_start; /* Hold time after (REPEATED) START. */ u16 hold_data; /* Data hold time. */ u16 setup_start; /* REPEATED START condition setup time. */ u16 setup_stop; /* STOP condition setup time. */ u16 setup_data; /* Data setup time. */ u16 pad; /* Padding. */ u16 buf; /* Bus free time between STOP and START. */ u16 thigh_max; /* Thigh max. */ u32 timeout; /* Detect clock low timeout. */ }; enum { MLXBF_I2C_F_READ = BIT(0), MLXBF_I2C_F_WRITE = BIT(1), MLXBF_I2C_F_NORESTART = BIT(3), MLXBF_I2C_F_SMBUS_OPERATION = BIT(4), MLXBF_I2C_F_SMBUS_BLOCK = BIT(5), MLXBF_I2C_F_SMBUS_PEC = BIT(6), MLXBF_I2C_F_SMBUS_PROCESS_CALL = BIT(7), }; struct mlxbf_i2c_smbus_operation { u32 flags; u32 length; /* Buffer length in bytes. */ u8 *buffer; }; #define MLXBF_I2C_SMBUS_OP_CNT_1 1 #define MLXBF_I2C_SMBUS_OP_CNT_2 2 #define MLXBF_I2C_SMBUS_OP_CNT_3 3 #define MLXBF_I2C_SMBUS_MAX_OP_CNT MLXBF_I2C_SMBUS_OP_CNT_3 struct mlxbf_i2c_smbus_request { u8 slave; u8 operation_cnt; struct mlxbf_i2c_smbus_operation operation[MLXBF_I2C_SMBUS_MAX_OP_CNT]; }; struct mlxbf_i2c_resource { void __iomem *io; struct resource *params; struct mutex *lock; /* Mutex to protect mlxbf_i2c_resource. */ u8 type; }; /* List of chip resources that are being accessed by the driver. */ enum { MLXBF_I2C_SMBUS_RES, MLXBF_I2C_MST_CAUSE_RES, MLXBF_I2C_SLV_CAUSE_RES, MLXBF_I2C_COALESCE_RES, MLXBF_I2C_COREPLL_RES, MLXBF_I2C_GPIO_RES, MLXBF_I2C_END_RES, }; /* Helper macro to define an I2C resource parameters. */ #define MLXBF_I2C_RES_PARAMS(addr, size, str) \ { \ .start = (addr), \ .end = (addr) + (size) - 1, \ .name = (str) \ } static struct resource mlxbf_i2c_coalesce_tyu_params = MLXBF_I2C_RES_PARAMS(MLXBF_I2C_COALESCE_TYU_ADDR, MLXBF_I2C_COALESCE_TYU_SIZE, "COALESCE_MEM"); static struct resource mlxbf_i2c_corepll_tyu_params = MLXBF_I2C_RES_PARAMS(MLXBF_I2C_COREPLL_TYU_ADDR, MLXBF_I2C_COREPLL_TYU_SIZE, "COREPLL_MEM"); static struct resource mlxbf_i2c_corepll_yu_params = MLXBF_I2C_RES_PARAMS(MLXBF_I2C_COREPLL_YU_ADDR, MLXBF_I2C_COREPLL_YU_SIZE, "COREPLL_MEM"); static struct resource mlxbf_i2c_gpio_tyu_params = MLXBF_I2C_RES_PARAMS(MLXBF_I2C_GPIO_TYU_ADDR, MLXBF_I2C_GPIO_TYU_SIZE, "GPIO_MEM"); static struct mutex mlxbf_i2c_coalesce_lock; static struct mutex mlxbf_i2c_corepll_lock; static struct mutex mlxbf_i2c_gpio_lock; /* Mellanox BlueField chip type. */ enum mlxbf_i2c_chip_type { MLXBF_I2C_CHIP_TYPE_1, /* Mellanox BlueField-1 chip. */ MLXBF_I2C_CHIP_TYPE_2, /* Mallanox BlueField-2 chip. */ }; struct mlxbf_i2c_chip_info { enum mlxbf_i2c_chip_type type; /* Chip shared resources that are being used by the I2C controller. */ struct mlxbf_i2c_resource *shared_res[MLXBF_I2C_SHARED_RES_MAX]; /* Callback to calculate the core PLL frequency. */ u64 (*calculate_freq)(struct mlxbf_i2c_resource *corepll_res); }; struct mlxbf_i2c_priv { const struct mlxbf_i2c_chip_info *chip; struct i2c_adapter adap; struct mlxbf_i2c_resource *smbus; struct mlxbf_i2c_resource *mst_cause; struct mlxbf_i2c_resource *slv_cause; struct mlxbf_i2c_resource *coalesce; u64 frequency; /* Core frequency in Hz. */ int bus; /* Physical bus identifier. */ int irq; struct i2c_client *slave; }; static struct mlxbf_i2c_resource mlxbf_i2c_coalesce_res[] = { [MLXBF_I2C_CHIP_TYPE_1] = { .params = &mlxbf_i2c_coalesce_tyu_params, .lock = &mlxbf_i2c_coalesce_lock, .type = MLXBF_I2C_COALESCE_RES }, {} }; static struct mlxbf_i2c_resource mlxbf_i2c_corepll_res[] = { [MLXBF_I2C_CHIP_TYPE_1] = { .params = &mlxbf_i2c_corepll_tyu_params, .lock = &mlxbf_i2c_corepll_lock, .type = MLXBF_I2C_COREPLL_RES }, [MLXBF_I2C_CHIP_TYPE_2] = { .params = &mlxbf_i2c_corepll_yu_params, .lock = &mlxbf_i2c_corepll_lock, .type = MLXBF_I2C_COREPLL_RES, } }; static struct mlxbf_i2c_resource mlxbf_i2c_gpio_res[] = { [MLXBF_I2C_CHIP_TYPE_1] = { .params = &mlxbf_i2c_gpio_tyu_params, .lock = &mlxbf_i2c_gpio_lock, .type = MLXBF_I2C_GPIO_RES }, {} }; static u8 mlxbf_i2c_bus_count; static struct mutex mlxbf_i2c_bus_lock; /* Polling frequency in microseconds. */ #define MLXBF_I2C_POLL_FREQ_IN_USEC 200 #define MLXBF_I2C_SHIFT_0 0 #define MLXBF_I2C_SHIFT_8 8 #define MLXBF_I2C_SHIFT_16 16 #define MLXBF_I2C_SHIFT_24 24 #define MLXBF_I2C_MASK_8 GENMASK(7, 0) #define MLXBF_I2C_MASK_16 GENMASK(15, 0) #define MLXBF_I2C_FREQUENCY_1GHZ 1000000000 /* * Function to poll a set of bits at a specific address; it checks whether * the bits are equal to zero when eq_zero is set to 'true', and not equal * to zero when eq_zero is set to 'false'. * Note that the timeout is given in microseconds. */ static u32 mlxbf_smbus_poll(void __iomem *io, u32 addr, u32 mask, bool eq_zero, u32 timeout) { u32 bits; timeout = (timeout / MLXBF_I2C_POLL_FREQ_IN_USEC) + 1; do { bits = readl(io + addr) & mask; if (eq_zero ? bits == 0 : bits != 0) return eq_zero ? 1 : bits; udelay(MLXBF_I2C_POLL_FREQ_IN_USEC); } while (timeout-- != 0); return 0; } /* * SW must make sure that the SMBus Master GW is idle before starting * a transaction. Accordingly, this function polls the Master FSM stop * bit; it returns false when the bit is asserted, true if not. */ static bool mlxbf_smbus_master_wait_for_idle(struct mlxbf_i2c_priv *priv) { u32 mask = MLXBF_I2C_SMBUS_MASTER_FSM_STOP_MASK; u32 addr = MLXBF_I2C_SMBUS_MASTER_FSM; u32 timeout = MLXBF_I2C_SMBUS_TIMEOUT; if (mlxbf_smbus_poll(priv->smbus->io, addr, mask, true, timeout)) return true; return false; } static bool mlxbf_i2c_smbus_transaction_success(u32 master_status, u32 cause_status) { /* * When transaction ended with STOP, all bytes were transmitted, * and no NACK received, then the transaction ended successfully. * On the other hand, when the GW is configured with the stop bit * de-asserted then the SMBus expects the following GW configuration * for transfer continuation. */ if ((cause_status & MLXBF_I2C_CAUSE_WAIT_FOR_FW_DATA) || ((cause_status & MLXBF_I2C_CAUSE_TRANSACTION_ENDED) && (master_status & MLXBF_I2C_SMBUS_STATUS_BYTE_CNT_DONE) && !(master_status & MLXBF_I2C_SMBUS_STATUS_NACK_RCV))) return true; return false; } /* * Poll SMBus master status and return transaction status, * i.e. whether succeeded or failed. I2C and SMBus fault codes * are returned as negative numbers from most calls, with zero * or some positive number indicating a non-fault return. */ static int mlxbf_i2c_smbus_check_status(struct mlxbf_i2c_priv *priv) { u32 master_status_bits; u32 cause_status_bits; /* * GW busy bit is raised by the driver and cleared by the HW * when the transaction is completed. The busy bit is a good * indicator of transaction status. So poll the busy bit, and * then read the cause and master status bits to determine if * errors occurred during the transaction. */ mlxbf_smbus_poll(priv->smbus->io, MLXBF_I2C_SMBUS_MASTER_GW, MLXBF_I2C_MASTER_BUSY_BIT, true, MLXBF_I2C_SMBUS_TIMEOUT); /* Read cause status bits. */ cause_status_bits = readl(priv->mst_cause->io + MLXBF_I2C_CAUSE_ARBITER); cause_status_bits &= MLXBF_I2C_CAUSE_MASTER_ARBITER_BITS_MASK; /* * Parse both Cause and Master GW bits, then return transaction status. */ master_status_bits = readl(priv->smbus->io + MLXBF_I2C_SMBUS_MASTER_STATUS); master_status_bits &= MLXBF_I2C_SMBUS_MASTER_STATUS_MASK; if (mlxbf_i2c_smbus_transaction_success(master_status_bits, cause_status_bits)) return 0; /* * In case of timeout on GW busy, the ISR will clear busy bit but * transaction ended bits cause will not be set so the transaction * fails. Then, we must check Master GW status bits. */ if ((master_status_bits & MLXBF_I2C_SMBUS_MASTER_STATUS_ERROR) && (cause_status_bits & (MLXBF_I2C_CAUSE_TRANSACTION_ENDED | MLXBF_I2C_CAUSE_M_GW_BUSY_FALL))) return -EIO; if (cause_status_bits & MLXBF_I2C_CAUSE_MASTER_STATUS_ERROR) return -EAGAIN; return -ETIMEDOUT; } static void mlxbf_i2c_smbus_write_data(struct mlxbf_i2c_priv *priv, const u8 *data, u8 length, u32 addr) { u8 offset, aligned_length; u32 data32; aligned_length = round_up(length, 4); /* * Copy data bytes from 4-byte aligned source buffer. * Data copied to the Master GW Data Descriptor MUST be shifted * left so the data starts at the MSB of the descriptor registers * as required by the underlying hardware. Enable byte swapping * when writing data bytes to the 32 * 32-bit HW Data registers * a.k.a Master GW Data Descriptor. */ for (offset = 0; offset < aligned_length; offset += sizeof(u32)) { data32 = *((u32 *)(data + offset)); iowrite32be(data32, priv->smbus->io + addr + offset); } } static void mlxbf_i2c_smbus_read_data(struct mlxbf_i2c_priv *priv, u8 *data, u8 length, u32 addr) { u32 data32, mask; u8 byte, offset; mask = sizeof(u32) - 1; /* * Data bytes in the Master GW Data Descriptor are shifted left * so the data starts at the MSB of the descriptor registers as * set by the underlying hardware. Enable byte swapping while * reading data bytes from the 32 * 32-bit HW Data registers * a.k.a Master GW Data Descriptor. */ for (offset = 0; offset < (length & ~mask); offset += sizeof(u32)) { data32 = ioread32be(priv->smbus->io + addr + offset); *((u32 *)(data + offset)) = data32; } if (!(length & mask)) return; data32 = ioread32be(priv->smbus->io + addr + offset); for (byte = 0; byte < (length & mask); byte++) { data[offset + byte] = data32 & GENMASK(7, 0); data32 = ror32(data32, MLXBF_I2C_SHIFT_8); } } static int mlxbf_i2c_smbus_enable(struct mlxbf_i2c_priv *priv, u8 slave, u8 len, u8 block_en, u8 pec_en, bool read) { u32 command; /* Set Master GW control word. */ if (read) { command = MLXBF_I2C_MASTER_ENABLE_READ; command |= rol32(len, MLXBF_I2C_MASTER_READ_SHIFT); } else { command = MLXBF_I2C_MASTER_ENABLE_WRITE; command |= rol32(len, MLXBF_I2C_MASTER_WRITE_SHIFT); } command |= rol32(slave, MLXBF_I2C_MASTER_SLV_ADDR_SHIFT); command |= rol32(block_en, MLXBF_I2C_MASTER_PARSE_EXP_SHIFT); command |= rol32(pec_en, MLXBF_I2C_MASTER_SEND_PEC_SHIFT); /* Clear status bits. */ writel(0x0, priv->smbus->io + MLXBF_I2C_SMBUS_MASTER_STATUS); /* Set the cause data. */ writel(~0x0, priv->smbus->io + MLXBF_I2C_CAUSE_OR_CLEAR); /* Zero PEC byte. */ writel(0x0, priv->smbus->io + MLXBF_I2C_SMBUS_MASTER_PEC); /* Zero byte count. */ writel(0x0, priv->smbus->io + MLXBF_I2C_SMBUS_RS_BYTES); /* GW activation. */ writel(command, priv->smbus->io + MLXBF_I2C_SMBUS_MASTER_GW); /* * Poll master status and check status bits. An ACK is sent when * completing writing data to the bus (Master 'byte_count_done' bit * is set to 1). */ return mlxbf_i2c_smbus_check_status(priv); } static int mlxbf_i2c_smbus_start_transaction(struct mlxbf_i2c_priv *priv, struct mlxbf_i2c_smbus_request *request) { u8 data_desc[MLXBF_I2C_MASTER_DATA_DESC_SIZE] = { 0 }; u8 op_idx, data_idx, data_len, write_len, read_len; struct mlxbf_i2c_smbus_operation *operation; u8 read_en, write_en, block_en, pec_en; u8 slave, flags, addr; u8 *read_buf; int ret = 0; if (request->operation_cnt > MLXBF_I2C_SMBUS_MAX_OP_CNT) return -EINVAL; read_buf = NULL; data_idx = 0; read_en = 0; write_en = 0; write_len = 0; read_len = 0; block_en = 0; pec_en = 0; slave = request->slave & GENMASK(6, 0); addr = slave << 1; /* First of all, check whether the HW is idle. */ if (WARN_ON(!mlxbf_smbus_master_wait_for_idle(priv))) return -EBUSY; /* Set first byte. */ data_desc[data_idx++] = addr; for (op_idx = 0; op_idx < request->operation_cnt; op_idx++) { operation = &request->operation[op_idx]; flags = operation->flags; /* * Note that read and write operations might be handled by a * single command. If the MLXBF_I2C_F_SMBUS_OPERATION is set * then write command byte and set the optional SMBus specific * bits such as block_en and pec_en. These bits MUST be * submitted by the first operation only. */ if (op_idx == 0 && flags & MLXBF_I2C_F_SMBUS_OPERATION) { block_en = flags & MLXBF_I2C_F_SMBUS_BLOCK; pec_en = flags & MLXBF_I2C_F_SMBUS_PEC; } if (flags & MLXBF_I2C_F_WRITE) { write_en = 1; write_len += operation->length; memcpy(data_desc + data_idx, operation->buffer, operation->length); data_idx += operation->length; } /* * We assume that read operations are performed only once per * SMBus transaction. *TBD* protect this statement so it won't * be executed twice? or return an error if we try to read more * than once? */ if (flags & MLXBF_I2C_F_READ) { read_en = 1; /* Subtract 1 as required by HW. */ read_len = operation->length - 1; read_buf = operation->buffer; } } /* Set Master GW data descriptor. */ data_len = write_len + 1; /* Add one byte of the slave address. */ /* * Note that data_len cannot be 0. Indeed, the slave address byte * must be written to the data registers. */ mlxbf_i2c_smbus_write_data(priv, (const u8 *)data_desc, data_len, MLXBF_I2C_MASTER_DATA_DESC_ADDR); if (write_en) { ret = mlxbf_i2c_smbus_enable(priv, slave, write_len, block_en, pec_en, 0); if (ret) return ret; } if (read_en) { /* Write slave address to Master GW data descriptor. */ mlxbf_i2c_smbus_write_data(priv, (const u8 *)&addr, 1, MLXBF_I2C_MASTER_DATA_DESC_ADDR); ret = mlxbf_i2c_smbus_enable(priv, slave, read_len, block_en, pec_en, 1); if (!ret) { /* Get Master GW data descriptor. */ mlxbf_i2c_smbus_read_data(priv, data_desc, read_len + 1, MLXBF_I2C_MASTER_DATA_DESC_ADDR); /* Get data from Master GW data descriptor. */ memcpy(read_buf, data_desc, read_len + 1); } /* * After a read operation the SMBus FSM ps (present state) * needs to be 'manually' reset. This should be removed in * next tag integration. */ writel(MLXBF_I2C_SMBUS_MASTER_FSM_PS_STATE_MASK, priv->smbus->io + MLXBF_I2C_SMBUS_MASTER_FSM); } return ret; } /* I2C SMBus protocols. */ static void mlxbf_i2c_smbus_quick_command(struct mlxbf_i2c_smbus_request *request, u8 read) { request->operation_cnt = MLXBF_I2C_SMBUS_OP_CNT_1; request->operation[0].length = 0; request->operation[0].flags = MLXBF_I2C_F_WRITE; request->operation[0].flags |= read ? MLXBF_I2C_F_READ : 0; } static void mlxbf_i2c_smbus_byte_func(struct mlxbf_i2c_smbus_request *request, u8 *data, bool read, bool pec_check) { request->operation_cnt = MLXBF_I2C_SMBUS_OP_CNT_1; request->operation[0].length = 1; request->operation[0].length += pec_check; request->operation[0].flags = MLXBF_I2C_F_SMBUS_OPERATION; request->operation[0].flags |= read ? MLXBF_I2C_F_READ : MLXBF_I2C_F_WRITE; request->operation[0].flags |= pec_check ? MLXBF_I2C_F_SMBUS_PEC : 0; request->operation[0].buffer = data; } static void mlxbf_i2c_smbus_data_byte_func(struct mlxbf_i2c_smbus_request *request, u8 *command, u8 *data, bool read, bool pec_check) { request->operation_cnt = MLXBF_I2C_SMBUS_OP_CNT_2; request->operation[0].length = 1; request->operation[0].flags = MLXBF_I2C_F_SMBUS_OPERATION | MLXBF_I2C_F_WRITE; request->operation[0].flags |= pec_check ? MLXBF_I2C_F_SMBUS_PEC : 0; request->operation[0].buffer = command; request->operation[1].length = 1; request->operation[1].length += pec_check; request->operation[1].flags = read ? MLXBF_I2C_F_READ : MLXBF_I2C_F_WRITE; request->operation[1].buffer = data; } static void mlxbf_i2c_smbus_data_word_func(struct mlxbf_i2c_smbus_request *request, u8 *command, u8 *data, bool read, bool pec_check) { request->operation_cnt = MLXBF_I2C_SMBUS_OP_CNT_2; request->operation[0].length = 1; request->operation[0].flags = MLXBF_I2C_F_SMBUS_OPERATION | MLXBF_I2C_F_WRITE; request->operation[0].flags |= pec_check ? MLXBF_I2C_F_SMBUS_PEC : 0; request->operation[0].buffer = command; request->operation[1].length = 2; request->operation[1].length += pec_check; request->operation[1].flags = read ? MLXBF_I2C_F_READ : MLXBF_I2C_F_WRITE; request->operation[1].buffer = data; } static void mlxbf_i2c_smbus_i2c_block_func(struct mlxbf_i2c_smbus_request *request, u8 *command, u8 *data, u8 *data_len, bool read, bool pec_check) { request->operation_cnt = MLXBF_I2C_SMBUS_OP_CNT_2; request->operation[0].length = 1; request->operation[0].flags = MLXBF_I2C_F_SMBUS_OPERATION | MLXBF_I2C_F_WRITE; request->operation[0].flags |= pec_check ? MLXBF_I2C_F_SMBUS_PEC : 0; request->operation[0].buffer = command; /* * As specified in the standard, the max number of bytes to read/write * per block operation is 32 bytes. In Golan code, the controller can * read up to 128 bytes and write up to 127 bytes. */ request->operation[1].length = (*data_len + pec_check > I2C_SMBUS_BLOCK_MAX) ? I2C_SMBUS_BLOCK_MAX : *data_len + pec_check; request->operation[1].flags = read ? MLXBF_I2C_F_READ : MLXBF_I2C_F_WRITE; /* * Skip the first data byte, which corresponds to the number of bytes * to read/write. */ request->operation[1].buffer = data + 1; *data_len = request->operation[1].length; /* Set the number of byte to read. This will be used by userspace. */ if (read) data[0] = *data_len; } static void mlxbf_i2c_smbus_block_func(struct mlxbf_i2c_smbus_request *request, u8 *command, u8 *data, u8 *data_len, bool read, bool pec_check) { request->operation_cnt = MLXBF_I2C_SMBUS_OP_CNT_2; request->operation[0].length = 1; request->operation[0].flags = MLXBF_I2C_F_SMBUS_OPERATION | MLXBF_I2C_F_WRITE; request->operation[0].flags |= MLXBF_I2C_F_SMBUS_BLOCK; request->operation[0].flags |= pec_check ? MLXBF_I2C_F_SMBUS_PEC : 0; request->operation[0].buffer = command; request->operation[1].length = (*data_len + pec_check > I2C_SMBUS_BLOCK_MAX) ? I2C_SMBUS_BLOCK_MAX : *data_len + pec_check; request->operation[1].flags = read ? MLXBF_I2C_F_READ : MLXBF_I2C_F_WRITE; request->operation[1].buffer = data + 1; *data_len = request->operation[1].length; /* Set the number of bytes to read. This will be used by userspace. */ if (read) data[0] = *data_len; } static void mlxbf_i2c_smbus_process_call_func(struct mlxbf_i2c_smbus_request *request, u8 *command, u8 *data, bool pec_check) { request->operation_cnt = MLXBF_I2C_SMBUS_OP_CNT_3; request->operation[0].length = 1; request->operation[0].flags = MLXBF_I2C_F_SMBUS_OPERATION | MLXBF_I2C_F_WRITE; request->operation[0].flags |= MLXBF_I2C_F_SMBUS_BLOCK; request->operation[0].flags |= pec_check ? MLXBF_I2C_F_SMBUS_PEC : 0; request->operation[0].buffer = command; request->operation[1].length = 2; request->operation[1].flags = MLXBF_I2C_F_WRITE; request->operation[1].buffer = data; request->operation[2].length = 3; request->operation[2].flags = MLXBF_I2C_F_READ; request->operation[2].buffer = data; } static void mlxbf_i2c_smbus_blk_process_call_func(struct mlxbf_i2c_smbus_request *request, u8 *command, u8 *data, u8 *data_len, bool pec_check) { u32 length; request->operation_cnt = MLXBF_I2C_SMBUS_OP_CNT_3; request->operation[0].length = 1; request->operation[0].flags = MLXBF_I2C_F_SMBUS_OPERATION | MLXBF_I2C_F_WRITE; request->operation[0].flags |= MLXBF_I2C_F_SMBUS_BLOCK; request->operation[0].flags |= (pec_check) ? MLXBF_I2C_F_SMBUS_PEC : 0; request->operation[0].buffer = command; length = (*data_len + pec_check > I2C_SMBUS_BLOCK_MAX) ? I2C_SMBUS_BLOCK_MAX : *data_len + pec_check; request->operation[1].length = length - pec_check; request->operation[1].flags = MLXBF_I2C_F_WRITE; request->operation[1].buffer = data; request->operation[2].length = length; request->operation[2].flags = MLXBF_I2C_F_READ; request->operation[2].buffer = data; *data_len = length; /* including PEC byte. */ } /* Initialization functions. */ static bool mlxbf_i2c_has_chip_type(struct mlxbf_i2c_priv *priv, u8 type) { return priv->chip->type == type; } static struct mlxbf_i2c_resource * mlxbf_i2c_get_shared_resource(struct mlxbf_i2c_priv *priv, u8 type) { const struct mlxbf_i2c_chip_info *chip = priv->chip; struct mlxbf_i2c_resource *res; u8 res_idx = 0; for (res_idx = 0; res_idx < MLXBF_I2C_SHARED_RES_MAX; res_idx++) { res = chip->shared_res[res_idx]; if (res && res->type == type) return res; } return NULL; } static int mlxbf_i2c_init_resource(struct platform_device *pdev, struct mlxbf_i2c_resource **res, u8 type) { struct mlxbf_i2c_resource *tmp_res; struct device *dev = &pdev->dev; if (!res || *res || type >= MLXBF_I2C_END_RES) return -EINVAL; tmp_res = devm_kzalloc(dev, sizeof(struct mlxbf_i2c_resource), GFP_KERNEL); if (!tmp_res) return -ENOMEM; tmp_res->params = platform_get_resource(pdev, IORESOURCE_MEM, type); if (!tmp_res->params) { devm_kfree(dev, tmp_res); return -EIO; } tmp_res->io = devm_ioremap_resource(dev, tmp_res->params); if (IS_ERR(tmp_res->io)) { devm_kfree(dev, tmp_res); return PTR_ERR(tmp_res->io); } tmp_res->type = type; *res = tmp_res; return 0; } static u32 mlxbf_i2c_get_ticks(struct mlxbf_i2c_priv *priv, u64 nanoseconds, bool minimum) { u64 frequency; u32 ticks; /* * Compute ticks as follow: * * Ticks * Time = --------- x 10^9 => Ticks = Time x Frequency x 10^-9 * Frequency */ frequency = priv->frequency; ticks = (nanoseconds * frequency) / MLXBF_I2C_FREQUENCY_1GHZ; /* * The number of ticks is rounded down and if minimum is equal to 1 * then add one tick. */ if (minimum) ticks++; return ticks; } static u32 mlxbf_i2c_set_timer(struct mlxbf_i2c_priv *priv, u64 nsec, bool opt, u32 mask, u8 shift) { u32 val = (mlxbf_i2c_get_ticks(priv, nsec, opt) & mask) << shift; return val; } static void mlxbf_i2c_set_timings(struct mlxbf_i2c_priv *priv, const struct mlxbf_i2c_timings *timings) { u32 timer; timer = mlxbf_i2c_set_timer(priv, timings->scl_high, false, MLXBF_I2C_MASK_16, MLXBF_I2C_SHIFT_0); timer |= mlxbf_i2c_set_timer(priv, timings->scl_low, false, MLXBF_I2C_MASK_16, MLXBF_I2C_SHIFT_16); writel(timer, priv->smbus->io + MLXBF_I2C_SMBUS_TIMER_SCL_LOW_SCL_HIGH); timer = mlxbf_i2c_set_timer(priv, timings->sda_rise, false, MLXBF_I2C_MASK_8, MLXBF_I2C_SHIFT_0); timer |= mlxbf_i2c_set_timer(priv, timings->sda_fall, false, MLXBF_I2C_MASK_8, MLXBF_I2C_SHIFT_8); timer |= mlxbf_i2c_set_timer(priv, timings->scl_rise, false, MLXBF_I2C_MASK_8, MLXBF_I2C_SHIFT_16); timer |= mlxbf_i2c_set_timer(priv, timings->scl_fall, false, MLXBF_I2C_MASK_8, MLXBF_I2C_SHIFT_24); writel(timer, priv->smbus->io + MLXBF_I2C_SMBUS_TIMER_FALL_RISE_SPIKE); timer = mlxbf_i2c_set_timer(priv, timings->hold_start, true, MLXBF_I2C_MASK_16, MLXBF_I2C_SHIFT_0); timer |= mlxbf_i2c_set_timer(priv, timings->hold_data, true, MLXBF_I2C_MASK_16, MLXBF_I2C_SHIFT_16); writel(timer, priv->smbus->io + MLXBF_I2C_SMBUS_TIMER_THOLD); timer = mlxbf_i2c_set_timer(priv, timings->setup_start, true, MLXBF_I2C_MASK_16, MLXBF_I2C_SHIFT_0); timer |= mlxbf_i2c_set_timer(priv, timings->setup_stop, true, MLXBF_I2C_MASK_16, MLXBF_I2C_SHIFT_16); writel(timer, priv->smbus->io + MLXBF_I2C_SMBUS_TIMER_TSETUP_START_STOP); timer = mlxbf_i2c_set_timer(priv, timings->setup_data, true, MLXBF_I2C_MASK_16, MLXBF_I2C_SHIFT_0); writel(timer, priv->smbus->io + MLXBF_I2C_SMBUS_TIMER_TSETUP_DATA); timer = mlxbf_i2c_set_timer(priv, timings->buf, false, MLXBF_I2C_MASK_16, MLXBF_I2C_SHIFT_0); timer |= mlxbf_i2c_set_timer(priv, timings->thigh_max, false, MLXBF_I2C_MASK_16, MLXBF_I2C_SHIFT_16); writel(timer, priv->smbus->io + MLXBF_I2C_SMBUS_THIGH_MAX_TBUF); timer = timings->timeout; writel(timer, priv->smbus->io + MLXBF_I2C_SMBUS_SCL_LOW_TIMEOUT); } enum mlxbf_i2c_timings_config { MLXBF_I2C_TIMING_CONFIG_100KHZ, MLXBF_I2C_TIMING_CONFIG_400KHZ, MLXBF_I2C_TIMING_CONFIG_1000KHZ, }; /* * Note that the mlxbf_i2c_timings->timeout value is not related to the * bus frequency, it is impacted by the time it takes the driver to * complete data transmission before transaction abort. */ static const struct mlxbf_i2c_timings mlxbf_i2c_timings[] = { [MLXBF_I2C_TIMING_CONFIG_100KHZ] = { .scl_high = 4810, .scl_low = 5000, .hold_start = 4000, .setup_start = 4800, .setup_stop = 4000, .setup_data = 250, .sda_rise = 50, .sda_fall = 50, .scl_rise = 50, .scl_fall = 50, .hold_data = 300, .buf = 20000, .thigh_max = 5000, .timeout = 106500 }, [MLXBF_I2C_TIMING_CONFIG_400KHZ] = { .scl_high = 1011, .scl_low = 1300, .hold_start = 600, .setup_start = 700, .setup_stop = 600, .setup_data = 100, .sda_rise = 50, .sda_fall = 50, .scl_rise = 50, .scl_fall = 50, .hold_data = 300, .buf = 20000, .thigh_max = 5000, .timeout = 106500 }, [MLXBF_I2C_TIMING_CONFIG_1000KHZ] = { .scl_high = 600, .scl_low = 1300, .hold_start = 600, .setup_start = 600, .setup_stop = 600, .setup_data = 100, .sda_rise = 50, .sda_fall = 50, .scl_rise = 50, .scl_fall = 50, .hold_data = 300, .buf = 20000, .thigh_max = 5000, .timeout = 106500 } }; static int mlxbf_i2c_init_timings(struct platform_device *pdev, struct mlxbf_i2c_priv *priv) { enum mlxbf_i2c_timings_config config_idx; struct device *dev = &pdev->dev; u32 config_khz; int ret; ret = device_property_read_u32(dev, "clock-frequency", &config_khz); if (ret < 0) config_khz = I2C_MAX_STANDARD_MODE_FREQ; switch (config_khz) { default: /* Default settings is 100 KHz. */ pr_warn("Illegal value %d: defaulting to 100 KHz\n", config_khz); fallthrough; case I2C_MAX_STANDARD_MODE_FREQ: config_idx = MLXBF_I2C_TIMING_CONFIG_100KHZ; break; case I2C_MAX_FAST_MODE_FREQ: config_idx = MLXBF_I2C_TIMING_CONFIG_400KHZ; break; case I2C_MAX_FAST_MODE_PLUS_FREQ: config_idx = MLXBF_I2C_TIMING_CONFIG_1000KHZ; break; } mlxbf_i2c_set_timings(priv, &mlxbf_i2c_timings[config_idx]); return 0; } static int mlxbf_i2c_get_gpio(struct platform_device *pdev, struct mlxbf_i2c_priv *priv) { struct mlxbf_i2c_resource *gpio_res; struct device *dev = &pdev->dev; struct resource *params; resource_size_t size; gpio_res = mlxbf_i2c_get_shared_resource(priv, MLXBF_I2C_GPIO_RES); if (!gpio_res) return -EPERM; /* * The GPIO region in TYU space is shared among I2C busses. * This function MUST be serialized to avoid racing when * claiming the memory region and/or setting up the GPIO. */ lockdep_assert_held(gpio_res->lock); /* Check whether the memory map exist. */ if (gpio_res->io) return 0; params = gpio_res->params; size = resource_size(params); if (!devm_request_mem_region(dev, params->start, size, params->name)) return -EFAULT; gpio_res->io = devm_ioremap(dev, params->start, size); if (!gpio_res->io) { devm_release_mem_region(dev, params->start, size); return -ENOMEM; } return 0; } static int mlxbf_i2c_release_gpio(struct platform_device *pdev, struct mlxbf_i2c_priv *priv) { struct mlxbf_i2c_resource *gpio_res; struct device *dev = &pdev->dev; struct resource *params; gpio_res = mlxbf_i2c_get_shared_resource(priv, MLXBF_I2C_GPIO_RES); if (!gpio_res) return 0; mutex_lock(gpio_res->lock); if (gpio_res->io) { /* Release the GPIO resource. */ params = gpio_res->params; devm_iounmap(dev, gpio_res->io); devm_release_mem_region(dev, params->start, resource_size(params)); } mutex_unlock(gpio_res->lock); return 0; } static int mlxbf_i2c_get_corepll(struct platform_device *pdev, struct mlxbf_i2c_priv *priv) { struct mlxbf_i2c_resource *corepll_res; struct device *dev = &pdev->dev; struct resource *params; resource_size_t size; corepll_res = mlxbf_i2c_get_shared_resource(priv, MLXBF_I2C_COREPLL_RES); if (!corepll_res) return -EPERM; /* * The COREPLL region in TYU space is shared among I2C busses. * This function MUST be serialized to avoid racing when * claiming the memory region. */ lockdep_assert_held(corepll_res->lock); /* Check whether the memory map exist. */ if (corepll_res->io) return 0; params = corepll_res->params; size = resource_size(params); if (!devm_request_mem_region(dev, params->start, size, params->name)) return -EFAULT; corepll_res->io = devm_ioremap(dev, params->start, size); if (!corepll_res->io) { devm_release_mem_region(dev, params->start, size); return -ENOMEM; } return 0; } static int mlxbf_i2c_release_corepll(struct platform_device *pdev, struct mlxbf_i2c_priv *priv) { struct mlxbf_i2c_resource *corepll_res; struct device *dev = &pdev->dev; struct resource *params; corepll_res = mlxbf_i2c_get_shared_resource(priv, MLXBF_I2C_COREPLL_RES); mutex_lock(corepll_res->lock); if (corepll_res->io) { /* Release the CorePLL resource. */ params = corepll_res->params; devm_iounmap(dev, corepll_res->io); devm_release_mem_region(dev, params->start, resource_size(params)); } mutex_unlock(corepll_res->lock); return 0; } static int mlxbf_i2c_init_master(struct platform_device *pdev, struct mlxbf_i2c_priv *priv) { struct mlxbf_i2c_resource *gpio_res; struct device *dev = &pdev->dev; u32 config_reg; int ret; /* This configuration is only needed for BlueField 1. */ if (!mlxbf_i2c_has_chip_type(priv, MLXBF_I2C_CHIP_TYPE_1)) return 0; gpio_res = mlxbf_i2c_get_shared_resource(priv, MLXBF_I2C_GPIO_RES); if (!gpio_res) return -EPERM; /* * The GPIO region in TYU space is shared among I2C busses. * This function MUST be serialized to avoid racing when * claiming the memory region and/or setting up the GPIO. */ mutex_lock(gpio_res->lock); ret = mlxbf_i2c_get_gpio(pdev, priv); if (ret < 0) { dev_err(dev, "Failed to get gpio resource"); mutex_unlock(gpio_res->lock); return ret; } /* * TYU - Configuration for GPIO pins. Those pins must be asserted in * MLXBF_I2C_GPIO_0_FUNC_EN_0, i.e. GPIO 0 is controlled by HW, and must * be reset in MLXBF_I2C_GPIO_0_FORCE_OE_EN, i.e. GPIO_OE will be driven * instead of HW_OE. * For now, we do not reset the GPIO state when the driver is removed. * First, it is not necessary to disable the bus since we are using * the same busses. Then, some busses might be shared among Linux and * platform firmware; disabling the bus might compromise the system * functionality. */ config_reg = readl(gpio_res->io + MLXBF_I2C_GPIO_0_FUNC_EN_0); config_reg = MLXBF_I2C_GPIO_SMBUS_GW_ASSERT_PINS(priv->bus, config_reg); writel(config_reg, gpio_res->io + MLXBF_I2C_GPIO_0_FUNC_EN_0); config_reg = readl(gpio_res->io + MLXBF_I2C_GPIO_0_FORCE_OE_EN); config_reg = MLXBF_I2C_GPIO_SMBUS_GW_RESET_PINS(priv->bus, config_reg); writel(config_reg, gpio_res->io + MLXBF_I2C_GPIO_0_FORCE_OE_EN); mutex_unlock(gpio_res->lock); return 0; } static u64 mlxbf_calculate_freq_from_tyu(struct mlxbf_i2c_resource *corepll_res) { u64 core_frequency, pad_frequency; u8 core_od, core_r; u32 corepll_val; u16 core_f; pad_frequency = MLXBF_I2C_PLL_IN_FREQ; corepll_val = readl(corepll_res->io + MLXBF_I2C_CORE_PLL_REG1); /* Get Core PLL configuration bits. */ core_f = rol32(corepll_val, MLXBF_I2C_COREPLL_CORE_F_TYU_SHIFT) & MLXBF_I2C_COREPLL_CORE_F_TYU_MASK; core_od = rol32(corepll_val, MLXBF_I2C_COREPLL_CORE_OD_TYU_SHIFT) & MLXBF_I2C_COREPLL_CORE_OD_TYU_MASK; core_r = rol32(corepll_val, MLXBF_I2C_COREPLL_CORE_R_TYU_SHIFT) & MLXBF_I2C_COREPLL_CORE_R_TYU_MASK; /* * Compute PLL output frequency as follow: * * CORE_F + 1 * PLL_OUT_FREQ = PLL_IN_FREQ * ---------------------------- * (CORE_R + 1) * (CORE_OD + 1) * * Where PLL_OUT_FREQ and PLL_IN_FREQ refer to CoreFrequency * and PadFrequency, respectively. */ core_frequency = pad_frequency * (++core_f); core_frequency /= (++core_r) * (++core_od); return core_frequency; } static u64 mlxbf_calculate_freq_from_yu(struct mlxbf_i2c_resource *corepll_res) { u32 corepll_reg1_val, corepll_reg2_val; u64 corepll_frequency, pad_frequency; u8 core_od, core_r; u32 core_f; pad_frequency = MLXBF_I2C_PLL_IN_FREQ; corepll_reg1_val = readl(corepll_res->io + MLXBF_I2C_CORE_PLL_REG1); corepll_reg2_val = readl(corepll_res->io + MLXBF_I2C_CORE_PLL_REG2); /* Get Core PLL configuration bits */ core_f = rol32(corepll_reg1_val, MLXBF_I2C_COREPLL_CORE_F_YU_SHIFT) & MLXBF_I2C_COREPLL_CORE_F_YU_MASK; core_r = rol32(corepll_reg1_val, MLXBF_I2C_COREPLL_CORE_R_YU_SHIFT) & MLXBF_I2C_COREPLL_CORE_R_YU_MASK; core_od = rol32(corepll_reg2_val, MLXBF_I2C_COREPLL_CORE_OD_YU_SHIFT) & MLXBF_I2C_COREPLL_CORE_OD_YU_MASK; /* * Compute PLL output frequency as follow: * * CORE_F / 16384 * PLL_OUT_FREQ = PLL_IN_FREQ * ---------------------------- * (CORE_R + 1) * (CORE_OD + 1) * * Where PLL_OUT_FREQ and PLL_IN_FREQ refer to CoreFrequency * and PadFrequency, respectively. */ corepll_frequency = (pad_frequency * core_f) / MLNXBF_I2C_COREPLL_CONST; corepll_frequency /= (++core_r) * (++core_od); return corepll_frequency; } static int mlxbf_i2c_calculate_corepll_freq(struct platform_device *pdev, struct mlxbf_i2c_priv *priv) { const struct mlxbf_i2c_chip_info *chip = priv->chip; struct mlxbf_i2c_resource *corepll_res; struct device *dev = &pdev->dev; u64 *freq = &priv->frequency; int ret; corepll_res = mlxbf_i2c_get_shared_resource(priv, MLXBF_I2C_COREPLL_RES); if (!corepll_res) return -EPERM; /* * First, check whether the TYU core Clock frequency is set. * The TYU core frequency is the same for all I2C busses; when * the first device gets probed the frequency is determined and * stored into a globally visible variable. So, first of all, * check whether the frequency is already set. Here, we assume * that the frequency is expected to be greater than 0. */ mutex_lock(corepll_res->lock); if (!mlxbf_i2c_corepll_frequency) { if (!chip->calculate_freq) { mutex_unlock(corepll_res->lock); return -EPERM; } ret = mlxbf_i2c_get_corepll(pdev, priv); if (ret < 0) { dev_err(dev, "Failed to get corePLL resource"); mutex_unlock(corepll_res->lock); return ret; } mlxbf_i2c_corepll_frequency = chip->calculate_freq(corepll_res); } mutex_unlock(corepll_res->lock); *freq = mlxbf_i2c_corepll_frequency; return 0; } static int mlxbf_slave_enable(struct mlxbf_i2c_priv *priv, u8 addr) { u32 slave_reg, slave_reg_tmp, slave_reg_avail, slave_addr_mask; u8 reg, reg_cnt, byte, addr_tmp, reg_avail, byte_avail; bool avail, disabled; disabled = false; avail = false; if (!priv) return -EPERM; reg_cnt = MLXBF_I2C_SMBUS_SLAVE_ADDR_CNT >> 2; slave_addr_mask = MLXBF_I2C_SMBUS_SLAVE_ADDR_MASK; /* * Read the slave registers. There are 4 * 32-bit slave registers. * Each slave register can hold up to 4 * 8-bit slave configuration * (7-bit address, 1 status bit (1 if enabled, 0 if not)). */ for (reg = 0; reg < reg_cnt; reg++) { slave_reg = readl(priv->smbus->io + MLXBF_I2C_SMBUS_SLAVE_ADDR_CFG + reg * 0x4); /* * Each register holds 4 slave addresses. So, we have to keep * the byte order consistent with the value read in order to * update the register correctly, if needed. */ slave_reg_tmp = slave_reg; for (byte = 0; byte < 4; byte++) { addr_tmp = slave_reg_tmp & GENMASK(7, 0); /* * Mark the first available slave address slot, i.e. its * enabled bit should be unset. This slot might be used * later on to register our slave. */ if (!avail && !MLXBF_I2C_SLAVE_ADDR_ENABLED(addr_tmp)) { avail = true; reg_avail = reg; byte_avail = byte; slave_reg_avail = slave_reg; } /* * Parse slave address bytes and check whether the * slave address already exists and it's enabled, * i.e. most significant bit is set. */ if ((addr_tmp & slave_addr_mask) == addr) { if (MLXBF_I2C_SLAVE_ADDR_ENABLED(addr_tmp)) return 0; disabled = true; break; } /* Parse next byte. */ slave_reg_tmp >>= 8; } /* Exit the loop if the slave address is found. */ if (disabled) break; } if (!avail && !disabled) return -EINVAL; /* No room for a new slave address. */ if (avail && !disabled) { reg = reg_avail; byte = byte_avail; /* Set the slave address. */ slave_reg_avail &= ~(slave_addr_mask << (byte * 8)); slave_reg_avail |= addr << (byte * 8); slave_reg = slave_reg_avail; } /* Enable the slave address and update the register. */ slave_reg |= (1 << MLXBF_I2C_SMBUS_SLAVE_ADDR_EN_BIT) << (byte * 8); writel(slave_reg, priv->smbus->io + MLXBF_I2C_SMBUS_SLAVE_ADDR_CFG + reg * 0x4); return 0; } static int mlxbf_slave_disable(struct mlxbf_i2c_priv *priv) { u32 slave_reg, slave_reg_tmp, slave_addr_mask; u8 addr, addr_tmp, reg, reg_cnt, slave_byte; struct i2c_client *client = priv->slave; bool exist; exist = false; addr = client->addr; reg_cnt = MLXBF_I2C_SMBUS_SLAVE_ADDR_CNT >> 2; slave_addr_mask = MLXBF_I2C_SMBUS_SLAVE_ADDR_MASK; /* * Read the slave registers. There are 4 * 32-bit slave registers. * Each slave register can hold up to 4 * 8-bit slave configuration * (7-bit address, 1 status bit (1 if enabled, 0 if not)). */ for (reg = 0; reg < reg_cnt; reg++) { slave_reg = readl(priv->smbus->io + MLXBF_I2C_SMBUS_SLAVE_ADDR_CFG + reg * 0x4); /* Check whether the address slots are empty. */ if (slave_reg == 0) continue; /* * Each register holds 4 slave addresses. So, we have to keep * the byte order consistent with the value read in order to * update the register correctly, if needed. */ slave_reg_tmp = slave_reg; slave_byte = 0; while (slave_reg_tmp != 0) { addr_tmp = slave_reg_tmp & slave_addr_mask; /* * Parse slave address bytes and check whether the * slave address already exists. */ if (addr_tmp == addr) { exist = true; break; } /* Parse next byte. */ slave_reg_tmp >>= 8; slave_byte += 1; } /* Exit the loop if the slave address is found. */ if (exist) break; } if (!exist) return 0; /* Slave is not registered, nothing to do. */ /* Cleanup the slave address slot. */ slave_reg &= ~(GENMASK(7, 0) << (slave_byte * 8)); writel(slave_reg, priv->smbus->io + MLXBF_I2C_SMBUS_SLAVE_ADDR_CFG + reg * 0x4); return 0; } static int mlxbf_i2c_init_coalesce(struct platform_device *pdev, struct mlxbf_i2c_priv *priv) { struct mlxbf_i2c_resource *coalesce_res; struct resource *params; resource_size_t size; int ret = 0; /* * Unlike BlueField-1 platform, the coalesce registers is a dedicated * resource in the next generations of BlueField. */ if (mlxbf_i2c_has_chip_type(priv, MLXBF_I2C_CHIP_TYPE_1)) { coalesce_res = mlxbf_i2c_get_shared_resource(priv, MLXBF_I2C_COALESCE_RES); if (!coalesce_res) return -EPERM; /* * The Cause Coalesce group in TYU space is shared among * I2C busses. This function MUST be serialized to avoid * racing when claiming the memory region. */ lockdep_assert_held(mlxbf_i2c_gpio_res->lock); /* Check whether the memory map exist. */ if (coalesce_res->io) { priv->coalesce = coalesce_res; return 0; } params = coalesce_res->params; size = resource_size(params); if (!request_mem_region(params->start, size, params->name)) return -EFAULT; coalesce_res->io = ioremap(params->start, size); if (!coalesce_res->io) { release_mem_region(params->start, size); return -ENOMEM; } priv->coalesce = coalesce_res; } else { ret = mlxbf_i2c_init_resource(pdev, &priv->coalesce, MLXBF_I2C_COALESCE_RES); } return ret; } static int mlxbf_i2c_release_coalesce(struct platform_device *pdev, struct mlxbf_i2c_priv *priv) { struct mlxbf_i2c_resource *coalesce_res; struct device *dev = &pdev->dev; struct resource *params; resource_size_t size; coalesce_res = priv->coalesce; if (coalesce_res->io) { params = coalesce_res->params; size = resource_size(params); if (mlxbf_i2c_has_chip_type(priv, MLXBF_I2C_CHIP_TYPE_1)) { mutex_lock(coalesce_res->lock); iounmap(coalesce_res->io); release_mem_region(params->start, size); mutex_unlock(coalesce_res->lock); } else { devm_release_mem_region(dev, params->start, size); } } return 0; } static int mlxbf_i2c_init_slave(struct platform_device *pdev, struct mlxbf_i2c_priv *priv) { struct device *dev = &pdev->dev; u32 int_reg; int ret; /* Reset FSM. */ writel(0, priv->smbus->io + MLXBF_I2C_SMBUS_SLAVE_FSM); /* * Enable slave cause interrupt bits. Drive * MLXBF_I2C_CAUSE_READ_WAIT_FW_RESPONSE and * MLXBF_I2C_CAUSE_WRITE_SUCCESS, these are enabled when an external * masters issue a Read and Write, respectively. But, clear all * interrupts first. */ writel(~0, priv->slv_cause->io + MLXBF_I2C_CAUSE_OR_CLEAR); int_reg = MLXBF_I2C_CAUSE_READ_WAIT_FW_RESPONSE; int_reg |= MLXBF_I2C_CAUSE_WRITE_SUCCESS; writel(int_reg, priv->slv_cause->io + MLXBF_I2C_CAUSE_OR_EVTEN0); /* Finally, set the 'ready' bit to start handling transactions. */ writel(0x1, priv->smbus->io + MLXBF_I2C_SMBUS_SLAVE_READY); /* Initialize the cause coalesce resource. */ ret = mlxbf_i2c_init_coalesce(pdev, priv); if (ret < 0) { dev_err(dev, "failed to initialize cause coalesce\n"); return ret; } return 0; } static bool mlxbf_i2c_has_coalesce(struct mlxbf_i2c_priv *priv, bool *read, bool *write) { const struct mlxbf_i2c_chip_info *chip = priv->chip; u32 coalesce0_reg, cause_reg; u8 slave_shift, is_set; *write = false; *read = false; slave_shift = chip->type != MLXBF_I2C_CHIP_TYPE_1 ? MLXBF_I2C_CAUSE_YU_SLAVE_BIT : priv->bus + MLXBF_I2C_CAUSE_TYU_SLAVE_BIT; coalesce0_reg = readl(priv->coalesce->io + MLXBF_I2C_CAUSE_COALESCE_0); is_set = coalesce0_reg & (1 << slave_shift); if (!is_set) return false; /* Check the source of the interrupt, i.e. whether a Read or Write. */ cause_reg = readl(priv->slv_cause->io + MLXBF_I2C_CAUSE_ARBITER); if (cause_reg & MLXBF_I2C_CAUSE_READ_WAIT_FW_RESPONSE) *read = true; else if (cause_reg & MLXBF_I2C_CAUSE_WRITE_SUCCESS) *write = true; /* Clear cause bits. */ writel(~0x0, priv->slv_cause->io + MLXBF_I2C_CAUSE_OR_CLEAR); return true; } static bool mlxbf_smbus_slave_wait_for_idle(struct mlxbf_i2c_priv *priv, u32 timeout) { u32 mask = MLXBF_I2C_CAUSE_S_GW_BUSY_FALL; u32 addr = MLXBF_I2C_CAUSE_ARBITER; if (mlxbf_smbus_poll(priv->slv_cause->io, addr, mask, false, timeout)) return true; return false; } /* Send byte to 'external' smbus master. */ static int mlxbf_smbus_irq_send(struct mlxbf_i2c_priv *priv, u8 recv_bytes) { u8 data_desc[MLXBF_I2C_SLAVE_DATA_DESC_SIZE] = { 0 }; u8 write_size, pec_en, addr, byte, value, byte_cnt, desc_size; struct i2c_client *slave = priv->slave; u32 control32, data32; int ret; if (!slave) return -EINVAL; addr = 0; byte = 0; desc_size = MLXBF_I2C_SLAVE_DATA_DESC_SIZE; /* * Read bytes received from the external master. These bytes should * be located in the first data descriptor register of the slave GW. * These bytes are the slave address byte and the internal register * address, if supplied. */ if (recv_bytes > 0) { data32 = ioread32be(priv->smbus->io + MLXBF_I2C_SLAVE_DATA_DESC_ADDR); /* Parse the received bytes. */ switch (recv_bytes) { case 2: byte = (data32 >> 8) & GENMASK(7, 0); fallthrough; case 1: addr = (data32 & GENMASK(7, 0)) >> 1; } /* Check whether it's our slave address. */ if (slave->addr != addr) return -EINVAL; } /* * I2C read transactions may start by a WRITE followed by a READ. * Indeed, most slave devices would expect the internal address * following the slave address byte. So, write that byte first, * and then, send the requested data bytes to the master. */ if (recv_bytes > 1) { i2c_slave_event(slave, I2C_SLAVE_WRITE_REQUESTED, &value); value = byte; ret = i2c_slave_event(slave, I2C_SLAVE_WRITE_RECEIVED, &value); i2c_slave_event(slave, I2C_SLAVE_STOP, &value); if (ret < 0) return ret; } /* * Now, send data to the master; currently, the driver supports * READ_BYTE, READ_WORD and BLOCK READ protocols. Note that the * hardware can send up to 128 bytes per transfer. That is the * size of its data registers. */ i2c_slave_event(slave, I2C_SLAVE_READ_REQUESTED, &value); for (byte_cnt = 0; byte_cnt < desc_size; byte_cnt++) { data_desc[byte_cnt] = value; i2c_slave_event(slave, I2C_SLAVE_READ_PROCESSED, &value); } /* Send a stop condition to the backend. */ i2c_slave_event(slave, I2C_SLAVE_STOP, &value); /* Handle the actual transfer. */ /* Set the number of bytes to write to master. */ write_size = (byte_cnt - 1) & 0x7f; /* Write data to Slave GW data descriptor. */ mlxbf_i2c_smbus_write_data(priv, data_desc, byte_cnt, MLXBF_I2C_SLAVE_DATA_DESC_ADDR); pec_en = 0; /* Disable PEC since it is not supported. */ /* Prepare control word. */ control32 = MLXBF_I2C_SLAVE_ENABLE; control32 |= rol32(write_size, MLXBF_I2C_SLAVE_WRITE_BYTES_SHIFT); control32 |= rol32(pec_en, MLXBF_I2C_SLAVE_SEND_PEC_SHIFT); writel(control32, priv->smbus->io + MLXBF_I2C_SMBUS_SLAVE_GW); /* * Wait until the transfer is completed; the driver will wait * until the GW is idle, a cause will rise on fall of GW busy. */ mlxbf_smbus_slave_wait_for_idle(priv, MLXBF_I2C_SMBUS_TIMEOUT); /* Release the Slave GW. */ writel(0x0, priv->smbus->io + MLXBF_I2C_SMBUS_SLAVE_RS_MASTER_BYTES); writel(0x0, priv->smbus->io + MLXBF_I2C_SMBUS_SLAVE_PEC); writel(0x1, priv->smbus->io + MLXBF_I2C_SMBUS_SLAVE_READY); return 0; } /* Receive bytes from 'external' smbus master. */ static int mlxbf_smbus_irq_recv(struct mlxbf_i2c_priv *priv, u8 recv_bytes) { u8 data_desc[MLXBF_I2C_SLAVE_DATA_DESC_SIZE] = { 0 }; struct i2c_client *slave = priv->slave; u8 value, byte, addr; int ret = 0; if (!slave) return -EINVAL; /* Read data from Slave GW data descriptor. */ mlxbf_i2c_smbus_read_data(priv, data_desc, recv_bytes, MLXBF_I2C_SLAVE_DATA_DESC_ADDR); /* Check whether its our slave address. */ addr = data_desc[0] >> 1; if (slave->addr != addr) return -EINVAL; /* * Notify the slave backend; another I2C master wants to write data * to us. This event is sent once the slave address and the write bit * is detected. */ i2c_slave_event(slave, I2C_SLAVE_WRITE_REQUESTED, &value); /* Send the received data to the slave backend. */ for (byte = 1; byte < recv_bytes; byte++) { value = data_desc[byte]; ret = i2c_slave_event(slave, I2C_SLAVE_WRITE_RECEIVED, &value); if (ret < 0) break; } /* Send a stop condition to the backend. */ i2c_slave_event(slave, I2C_SLAVE_STOP, &value); /* Release the Slave GW. */ writel(0x0, priv->smbus->io + MLXBF_I2C_SMBUS_SLAVE_RS_MASTER_BYTES); writel(0x0, priv->smbus->io + MLXBF_I2C_SMBUS_SLAVE_PEC); writel(0x1, priv->smbus->io + MLXBF_I2C_SMBUS_SLAVE_READY); return ret; } static irqreturn_t mlxbf_smbus_irq(int irq, void *ptr) { struct mlxbf_i2c_priv *priv = ptr; bool read, write, irq_is_set; u32 rw_bytes_reg; u8 recv_bytes; /* * Read TYU interrupt register and determine the source of the * interrupt. Based on the source of the interrupt one of the * following actions are performed: * - Receive data and send response to master. * - Send data and release slave GW. * * Handle read/write transaction only. CRmaster and Iarp requests * are ignored for now. */ irq_is_set = mlxbf_i2c_has_coalesce(priv, &read, &write); if (!irq_is_set || (!read && !write)) { /* Nothing to do here, interrupt was not from this device. */ return IRQ_NONE; } /* * The MLXBF_I2C_SMBUS_SLAVE_RS_MASTER_BYTES includes the number of * bytes from/to master. These are defined by 8-bits each. If the lower * 8 bits are set, then the master expect to read N bytes from the * slave, if the higher 8 bits are sent then the slave expect N bytes * from the master. */ rw_bytes_reg = readl(priv->smbus->io + MLXBF_I2C_SMBUS_SLAVE_RS_MASTER_BYTES); recv_bytes = (rw_bytes_reg >> 8) & GENMASK(7, 0); /* * For now, the slave supports 128 bytes transfer. Discard remaining * data bytes if the master wrote more than * MLXBF_I2C_SLAVE_DATA_DESC_SIZE, i.e, the actual size of the slave * data descriptor. * * Note that we will never expect to transfer more than 128 bytes; as * specified in the SMBus standard, block transactions cannot exceed * 32 bytes. */ recv_bytes = recv_bytes > MLXBF_I2C_SLAVE_DATA_DESC_SIZE ? MLXBF_I2C_SLAVE_DATA_DESC_SIZE : recv_bytes; if (read) mlxbf_smbus_irq_send(priv, recv_bytes); else mlxbf_smbus_irq_recv(priv, recv_bytes); return IRQ_HANDLED; } /* Return negative errno on error. */ static s32 mlxbf_i2c_smbus_xfer(struct i2c_adapter *adap, u16 addr, unsigned short flags, char read_write, u8 command, int size, union i2c_smbus_data *data) { struct mlxbf_i2c_smbus_request request = { 0 }; struct mlxbf_i2c_priv *priv; bool read, pec; u8 byte_cnt; request.slave = addr; read = (read_write == I2C_SMBUS_READ); pec = flags & I2C_FUNC_SMBUS_PEC; switch (size) { case I2C_SMBUS_QUICK: mlxbf_i2c_smbus_quick_command(&request, read); dev_dbg(&adap->dev, "smbus quick, slave 0x%02x\n", addr); break; case I2C_SMBUS_BYTE: mlxbf_i2c_smbus_byte_func(&request, read ? &data->byte : &command, read, pec); dev_dbg(&adap->dev, "smbus %s byte, slave 0x%02x.\n", read ? "read" : "write", addr); break; case I2C_SMBUS_BYTE_DATA: mlxbf_i2c_smbus_data_byte_func(&request, &command, &data->byte, read, pec); dev_dbg(&adap->dev, "smbus %s byte data at 0x%02x, slave 0x%02x.\n", read ? "read" : "write", command, addr); break; case I2C_SMBUS_WORD_DATA: mlxbf_i2c_smbus_data_word_func(&request, &command, (u8 *)&data->word, read, pec); dev_dbg(&adap->dev, "smbus %s word data at 0x%02x, slave 0x%02x.\n", read ? "read" : "write", command, addr); break; case I2C_SMBUS_I2C_BLOCK_DATA: byte_cnt = data->block[0]; mlxbf_i2c_smbus_i2c_block_func(&request, &command, data->block, &byte_cnt, read, pec); dev_dbg(&adap->dev, "i2c %s block data, %d bytes at 0x%02x, slave 0x%02x.\n", read ? "read" : "write", byte_cnt, command, addr); break; case I2C_SMBUS_BLOCK_DATA: byte_cnt = read ? I2C_SMBUS_BLOCK_MAX : data->block[0]; mlxbf_i2c_smbus_block_func(&request, &command, data->block, &byte_cnt, read, pec); dev_dbg(&adap->dev, "smbus %s block data, %d bytes at 0x%02x, slave 0x%02x.\n", read ? "read" : "write", byte_cnt, command, addr); break; case I2C_FUNC_SMBUS_PROC_CALL: mlxbf_i2c_smbus_process_call_func(&request, &command, (u8 *)&data->word, pec); dev_dbg(&adap->dev, "process call, wr/rd at 0x%02x, slave 0x%02x.\n", command, addr); break; case I2C_FUNC_SMBUS_BLOCK_PROC_CALL: byte_cnt = data->block[0]; mlxbf_i2c_smbus_blk_process_call_func(&request, &command, data->block, &byte_cnt, pec); dev_dbg(&adap->dev, "block process call, wr/rd %d bytes, slave 0x%02x.\n", byte_cnt, addr); break; default: dev_dbg(&adap->dev, "Unsupported I2C/SMBus command %d\n", size); return -EOPNOTSUPP; } priv = i2c_get_adapdata(adap); return mlxbf_i2c_smbus_start_transaction(priv, &request); } static int mlxbf_i2c_reg_slave(struct i2c_client *slave) { struct mlxbf_i2c_priv *priv = i2c_get_adapdata(slave->adapter); int ret; if (priv->slave) return -EBUSY; /* * Do not support ten bit chip address and do not use Packet Error * Checking (PEC). */ if (slave->flags & (I2C_CLIENT_TEN | I2C_CLIENT_PEC)) return -EAFNOSUPPORT; ret = mlxbf_slave_enable(priv, slave->addr); if (ret < 0) return ret; priv->slave = slave; return 0; } static int mlxbf_i2c_unreg_slave(struct i2c_client *slave) { struct mlxbf_i2c_priv *priv = i2c_get_adapdata(slave->adapter); int ret; WARN_ON(!priv->slave); /* Unregister slave, i.e. disable the slave address in hardware. */ ret = mlxbf_slave_disable(priv); if (ret < 0) return ret; priv->slave = NULL; return 0; } static u32 mlxbf_i2c_functionality(struct i2c_adapter *adap) { return MLXBF_I2C_FUNC_ALL; } static struct mlxbf_i2c_chip_info mlxbf_i2c_chip[] = { [MLXBF_I2C_CHIP_TYPE_1] = { .type = MLXBF_I2C_CHIP_TYPE_1, .shared_res = { [0] = &mlxbf_i2c_coalesce_res[MLXBF_I2C_CHIP_TYPE_1], [1] = &mlxbf_i2c_corepll_res[MLXBF_I2C_CHIP_TYPE_1], [2] = &mlxbf_i2c_gpio_res[MLXBF_I2C_CHIP_TYPE_1] }, .calculate_freq = mlxbf_calculate_freq_from_tyu }, [MLXBF_I2C_CHIP_TYPE_2] = { .type = MLXBF_I2C_CHIP_TYPE_2, .shared_res = { [0] = &mlxbf_i2c_corepll_res[MLXBF_I2C_CHIP_TYPE_2] }, .calculate_freq = mlxbf_calculate_freq_from_yu } }; static const struct i2c_algorithm mlxbf_i2c_algo = { .smbus_xfer = mlxbf_i2c_smbus_xfer, .functionality = mlxbf_i2c_functionality, .reg_slave = mlxbf_i2c_reg_slave, .unreg_slave = mlxbf_i2c_unreg_slave, }; static struct i2c_adapter_quirks mlxbf_i2c_quirks = { .max_read_len = MLXBF_I2C_MASTER_DATA_R_LENGTH, .max_write_len = MLXBF_I2C_MASTER_DATA_W_LENGTH, }; static const struct of_device_id mlxbf_i2c_dt_ids[] = { { .compatible = "mellanox,i2c-mlxbf1", .data = &mlxbf_i2c_chip[MLXBF_I2C_CHIP_TYPE_1] }, { .compatible = "mellanox,i2c-mlxbf2", .data = &mlxbf_i2c_chip[MLXBF_I2C_CHIP_TYPE_2] }, {}, }; MODULE_DEVICE_TABLE(of, mlxbf_i2c_dt_ids); #ifdef CONFIG_ACPI static const struct acpi_device_id mlxbf_i2c_acpi_ids[] = { { "MLNXBF03", (kernel_ulong_t)&mlxbf_i2c_chip[MLXBF_I2C_CHIP_TYPE_1] }, { "MLNXBF23", (kernel_ulong_t)&mlxbf_i2c_chip[MLXBF_I2C_CHIP_TYPE_2] }, {}, }; MODULE_DEVICE_TABLE(acpi, mlxbf_i2c_acpi_ids); static int mlxbf_i2c_acpi_probe(struct device *dev, struct mlxbf_i2c_priv *priv) { const struct acpi_device_id *aid; struct acpi_device *adev; unsigned long bus_id = 0; const char *uid; int ret; if (acpi_disabled) return -ENOENT; adev = ACPI_COMPANION(dev); if (!adev) return -ENXIO; aid = acpi_match_device(mlxbf_i2c_acpi_ids, dev); if (!aid) return -ENODEV; priv->chip = (struct mlxbf_i2c_chip_info *)aid->driver_data; uid = acpi_device_uid(adev); if (!uid || !(*uid)) { dev_err(dev, "Cannot retrieve UID\n"); return -ENODEV; } ret = kstrtoul(uid, 0, &bus_id); if (!ret) priv->bus = bus_id; return ret; } #else static int mlxbf_i2c_acpi_probe(struct device *dev, struct mlxbf_i2c_priv *priv) { return -ENOENT; } #endif /* CONFIG_ACPI */ static int mlxbf_i2c_of_probe(struct device *dev, struct mlxbf_i2c_priv *priv) { const struct of_device_id *oid; int bus_id = -1; if (IS_ENABLED(CONFIG_OF) && dev->of_node) { oid = of_match_node(mlxbf_i2c_dt_ids, dev->of_node); if (!oid) return -ENODEV; priv->chip = oid->data; bus_id = of_alias_get_id(dev->of_node, "i2c"); if (bus_id >= 0) priv->bus = bus_id; } if (bus_id < 0) { dev_err(dev, "Cannot get bus id"); return bus_id; } return 0; } static int mlxbf_i2c_probe(struct platform_device *pdev) { struct device *dev = &pdev->dev; struct mlxbf_i2c_priv *priv; struct i2c_adapter *adap; int irq, ret; priv = devm_kzalloc(dev, sizeof(struct mlxbf_i2c_priv), GFP_KERNEL); if (!priv) return -ENOMEM; ret = mlxbf_i2c_acpi_probe(dev, priv); if (ret < 0 && ret != -ENOENT && ret != -ENXIO) ret = mlxbf_i2c_of_probe(dev, priv); if (ret < 0) return ret; ret = mlxbf_i2c_init_resource(pdev, &priv->smbus, MLXBF_I2C_SMBUS_RES); if (ret < 0) { dev_err(dev, "Cannot fetch smbus resource info"); return ret; } ret = mlxbf_i2c_init_resource(pdev, &priv->mst_cause, MLXBF_I2C_MST_CAUSE_RES); if (ret < 0) { dev_err(dev, "Cannot fetch cause master resource info"); return ret; } ret = mlxbf_i2c_init_resource(pdev, &priv->slv_cause, MLXBF_I2C_SLV_CAUSE_RES); if (ret < 0) { dev_err(dev, "Cannot fetch cause slave resource info"); return ret; } adap = &priv->adap; adap->owner = THIS_MODULE; adap->class = I2C_CLASS_HWMON; adap->algo = &mlxbf_i2c_algo; adap->quirks = &mlxbf_i2c_quirks; adap->dev.parent = dev; adap->dev.of_node = dev->of_node; adap->nr = priv->bus; snprintf(adap->name, sizeof(adap->name), "i2c%d", adap->nr); i2c_set_adapdata(adap, priv); /* Read Core PLL frequency. */ ret = mlxbf_i2c_calculate_corepll_freq(pdev, priv); if (ret < 0) { dev_err(dev, "cannot get core clock frequency\n"); /* Set to default value. */ priv->frequency = MLXBF_I2C_COREPLL_FREQ; } /* * Initialize master. * Note that a physical bus might be shared among Linux and firmware * (e.g., ATF). Thus, the bus should be initialized and ready and * bus initialization would be unnecessary. This requires additional * knowledge about physical busses. But, since an extra initialization * does not really hurt, then keep the code as is. */ ret = mlxbf_i2c_init_master(pdev, priv); if (ret < 0) { dev_err(dev, "failed to initialize smbus master %d", priv->bus); return ret; } mlxbf_i2c_init_timings(pdev, priv); mlxbf_i2c_init_slave(pdev, priv); irq = platform_get_irq(pdev, 0); ret = devm_request_irq(dev, irq, mlxbf_smbus_irq, IRQF_ONESHOT | IRQF_SHARED | IRQF_PROBE_SHARED, dev_name(dev), priv); if (ret < 0) { dev_err(dev, "Cannot get irq %d\n", irq); return ret; } priv->irq = irq; platform_set_drvdata(pdev, priv); ret = i2c_add_numbered_adapter(adap); if (ret < 0) return ret; mutex_lock(&mlxbf_i2c_bus_lock); mlxbf_i2c_bus_count++; mutex_unlock(&mlxbf_i2c_bus_lock); return 0; } static int mlxbf_i2c_remove(struct platform_device *pdev) { struct mlxbf_i2c_priv *priv = platform_get_drvdata(pdev); struct device *dev = &pdev->dev; struct resource *params; params = priv->smbus->params; devm_release_mem_region(dev, params->start, resource_size(params)); params = priv->mst_cause->params; devm_release_mem_region(dev, params->start, resource_size(params)); params = priv->slv_cause->params; devm_release_mem_region(dev, params->start, resource_size(params)); /* * Release shared resources. This should be done when releasing * the I2C controller. */ mutex_lock(&mlxbf_i2c_bus_lock); if (--mlxbf_i2c_bus_count == 0) { mlxbf_i2c_release_coalesce(pdev, priv); mlxbf_i2c_release_corepll(pdev, priv); mlxbf_i2c_release_gpio(pdev, priv); } mutex_unlock(&mlxbf_i2c_bus_lock); devm_free_irq(dev, priv->irq, priv); i2c_del_adapter(&priv->adap); return 0; } static struct platform_driver mlxbf_i2c_driver = { .probe = mlxbf_i2c_probe, .remove = mlxbf_i2c_remove, .driver = { .name = "i2c-mlxbf", .of_match_table = mlxbf_i2c_dt_ids, #ifdef CONFIG_ACPI .acpi_match_table = ACPI_PTR(mlxbf_i2c_acpi_ids), #endif /* CONFIG_ACPI */ }, }; static int __init mlxbf_i2c_init(void) { mutex_init(&mlxbf_i2c_coalesce_lock); mutex_init(&mlxbf_i2c_corepll_lock); mutex_init(&mlxbf_i2c_gpio_lock); mutex_init(&mlxbf_i2c_bus_lock); return platform_driver_register(&mlxbf_i2c_driver); } module_init(mlxbf_i2c_init); static void __exit mlxbf_i2c_exit(void) { platform_driver_unregister(&mlxbf_i2c_driver); mutex_destroy(&mlxbf_i2c_bus_lock); mutex_destroy(&mlxbf_i2c_gpio_lock); mutex_destroy(&mlxbf_i2c_corepll_lock); mutex_destroy(&mlxbf_i2c_coalesce_lock); } module_exit(mlxbf_i2c_exit); MODULE_DESCRIPTION("Mellanox BlueField I2C bus driver"); MODULE_AUTHOR("Khalil Blaiech "); MODULE_LICENSE("GPL v2");