/* * Written by: Patricia Gaughen , IBM Corporation * August 2002: added remote node KVA remap - Martin J. Bligh * * Copyright (C) 2002, IBM Corp. * * All rights reserved. * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or * NON INFRINGEMENT. See the GNU General Public License for more * details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include struct pglist_data *node_data[MAX_NUMNODES] __read_mostly; EXPORT_SYMBOL(node_data); static bootmem_data_t node0_bdata; /* * numa interface - we expect the numa architecture specific code to have * populated the following initialisation. * * 1) node_online_map - the map of all nodes configured (online) in the system * 2) node_start_pfn - the starting page frame number for a node * 3) node_end_pfn - the ending page fram number for a node */ unsigned long node_start_pfn[MAX_NUMNODES] __read_mostly; unsigned long node_end_pfn[MAX_NUMNODES] __read_mostly; #ifdef CONFIG_DISCONTIGMEM /* * 4) physnode_map - the mapping between a pfn and owning node * physnode_map keeps track of the physical memory layout of a generic * numa node on a 256Mb break (each element of the array will * represent 256Mb of memory and will be marked by the node id. so, * if the first gig is on node 0, and the second gig is on node 1 * physnode_map will contain: * * physnode_map[0-3] = 0; * physnode_map[4-7] = 1; * physnode_map[8- ] = -1; */ s8 physnode_map[MAX_ELEMENTS] __read_mostly = { [0 ... (MAX_ELEMENTS - 1)] = -1}; EXPORT_SYMBOL(physnode_map); void memory_present(int nid, unsigned long start, unsigned long end) { unsigned long pfn; printk(KERN_INFO "Node: %d, start_pfn: %ld, end_pfn: %ld\n", nid, start, end); printk(KERN_DEBUG " Setting physnode_map array to node %d for pfns:\n", nid); printk(KERN_DEBUG " "); for (pfn = start; pfn < end; pfn += PAGES_PER_ELEMENT) { physnode_map[pfn / PAGES_PER_ELEMENT] = nid; printk("%ld ", pfn); } printk("\n"); } unsigned long node_memmap_size_bytes(int nid, unsigned long start_pfn, unsigned long end_pfn) { unsigned long nr_pages = end_pfn - start_pfn; if (!nr_pages) return 0; return (nr_pages + 1) * sizeof(struct page); } #endif extern unsigned long find_max_low_pfn(void); extern void add_one_highpage_init(struct page *, int, int); extern unsigned long highend_pfn, highstart_pfn; #define LARGE_PAGE_BYTES (PTRS_PER_PTE * PAGE_SIZE) unsigned long node_remap_size[MAX_NUMNODES]; static void *node_remap_start_vaddr[MAX_NUMNODES]; void set_pmd_pfn(unsigned long vaddr, unsigned long pfn, pgprot_t flags); static unsigned long kva_start_pfn; static unsigned long kva_pages; /* * FLAT - support for basic PC memory model with discontig enabled, essentially * a single node with all available processors in it with a flat * memory map. */ int __init get_memcfg_numa_flat(void) { printk("NUMA - single node, flat memory mode\n"); /* Run the memory configuration and find the top of memory. */ propagate_e820_map(); node_start_pfn[0] = 0; node_end_pfn[0] = max_pfn; memory_present(0, 0, max_pfn); /* Indicate there is one node available. */ nodes_clear(node_online_map); node_set_online(0); return 1; } /* * Find the highest page frame number we have available for the node */ static void __init propagate_e820_map_node(int nid) { if (node_end_pfn[nid] > max_pfn) node_end_pfn[nid] = max_pfn; /* * if a user has given mem=XXXX, then we need to make sure * that the node _starts_ before that, too, not just ends */ if (node_start_pfn[nid] > max_pfn) node_start_pfn[nid] = max_pfn; BUG_ON(node_start_pfn[nid] > node_end_pfn[nid]); } /* * Allocate memory for the pg_data_t for this node via a crude pre-bootmem * method. For node zero take this from the bottom of memory, for * subsequent nodes place them at node_remap_start_vaddr which contains * node local data in physically node local memory. See setup_memory() * for details. */ static void __init allocate_pgdat(int nid) { if (nid && node_has_online_mem(nid) && node_remap_start_vaddr[nid]) NODE_DATA(nid) = (pg_data_t *)node_remap_start_vaddr[nid]; else { NODE_DATA(nid) = (pg_data_t *)(pfn_to_kaddr(min_low_pfn)); min_low_pfn += PFN_UP(sizeof(pg_data_t)); } } /* * In the DISCONTIGMEM and SPARSEMEM memory model, a portion of the kernel * virtual address space (KVA) is reserved and portions of nodes are mapped * using it. This is to allow node-local memory to be allocated for * structures that would normally require ZONE_NORMAL. The memory is * allocated with alloc_remap() and callers should be prepared to allocate * from the bootmem allocator instead. */ static unsigned long node_remap_start_pfn[MAX_NUMNODES]; static void *node_remap_end_vaddr[MAX_NUMNODES]; static void *node_remap_alloc_vaddr[MAX_NUMNODES]; static unsigned long node_remap_offset[MAX_NUMNODES]; void *alloc_remap(int nid, unsigned long size) { void *allocation = node_remap_alloc_vaddr[nid]; size = ALIGN(size, L1_CACHE_BYTES); if (!allocation || (allocation + size) >= node_remap_end_vaddr[nid]) return 0; node_remap_alloc_vaddr[nid] += size; memset(allocation, 0, size); return allocation; } void __init remap_numa_kva(void) { void *vaddr; unsigned long pfn; int node; for_each_online_node(node) { for (pfn=0; pfn < node_remap_size[node]; pfn += PTRS_PER_PTE) { vaddr = node_remap_start_vaddr[node]+(pfn< max_pfn) continue; if (node_end_pfn[nid] > max_pfn) node_end_pfn[nid] = max_pfn; /* ensure the remap includes space for the pgdat. */ size = node_remap_size[nid] + sizeof(pg_data_t); /* convert size to large (pmd size) pages, rounding up */ size = (size + LARGE_PAGE_BYTES - 1) / LARGE_PAGE_BYTES; /* now the roundup is correct, convert to PAGE_SIZE pages */ size = size * PTRS_PER_PTE; /* * Validate the region we are allocating only contains valid * pages. */ for (pfn = node_end_pfn[nid] - size; pfn < node_end_pfn[nid]; pfn++) if (!page_is_ram(pfn)) break; if (pfn != node_end_pfn[nid]) size = 0; printk("Reserving %ld pages of KVA for lmem_map of node %d\n", size, nid); node_remap_size[nid] = size; node_remap_offset[nid] = reserve_pages; reserve_pages += size; printk("Shrinking node %d from %ld pages to %ld pages\n", nid, node_end_pfn[nid], node_end_pfn[nid] - size); if (node_end_pfn[nid] & (PTRS_PER_PTE-1)) { /* * Align node_end_pfn[] and node_remap_start_pfn[] to * pmd boundary. remap_numa_kva will barf otherwise. */ printk("Shrinking node %d further by %ld pages for proper alignment\n", nid, node_end_pfn[nid] & (PTRS_PER_PTE-1)); size += node_end_pfn[nid] & (PTRS_PER_PTE-1); } node_end_pfn[nid] -= size; node_remap_start_pfn[nid] = node_end_pfn[nid]; shrink_active_range(nid, old_end_pfn, node_end_pfn[nid]); } printk("Reserving total of %ld pages for numa KVA remap\n", reserve_pages); return reserve_pages; } static void init_remap_allocator(int nid) { node_remap_start_vaddr[nid] = pfn_to_kaddr( kva_start_pfn + node_remap_offset[nid]); node_remap_end_vaddr[nid] = node_remap_start_vaddr[nid] + (node_remap_size[nid] * PAGE_SIZE); node_remap_alloc_vaddr[nid] = node_remap_start_vaddr[nid] + ALIGN(sizeof(pg_data_t), PAGE_SIZE); printk ("node %d will remap to vaddr %08lx - %08lx\n", nid, (ulong) node_remap_start_vaddr[nid], (ulong) pfn_to_kaddr(highstart_pfn + node_remap_offset[nid] + node_remap_size[nid])); } extern void setup_bootmem_allocator(void); unsigned long __init setup_memory(void) { int nid; unsigned long system_start_pfn, system_max_low_pfn; unsigned long wasted_pages; /* * When mapping a NUMA machine we allocate the node_mem_map arrays * from node local memory. They are then mapped directly into KVA * between zone normal and vmalloc space. Calculate the size of * this space and use it to adjust the boundary between ZONE_NORMAL * and ZONE_HIGHMEM. */ get_memcfg_numa(); kva_pages = calculate_numa_remap_pages(); /* partially used pages are not usable - thus round upwards */ system_start_pfn = min_low_pfn = PFN_UP(init_pg_tables_end); kva_start_pfn = find_max_low_pfn() - kva_pages; #ifdef CONFIG_BLK_DEV_INITRD /* Numa kva area is below the initrd */ if (initrd_start) kva_start_pfn = PFN_DOWN(initrd_start - PAGE_OFFSET) - kva_pages; #endif /* * We waste pages past at the end of the KVA for no good reason other * than how it is located. This is bad. */ wasted_pages = kva_start_pfn & (PTRS_PER_PTE-1); kva_start_pfn -= wasted_pages; kva_pages += wasted_pages; system_max_low_pfn = max_low_pfn = find_max_low_pfn(); printk("kva_start_pfn ~ %ld find_max_low_pfn() ~ %ld\n", kva_start_pfn, max_low_pfn); printk("max_pfn = %ld\n", max_pfn); #ifdef CONFIG_HIGHMEM highstart_pfn = highend_pfn = max_pfn; if (max_pfn > system_max_low_pfn) highstart_pfn = system_max_low_pfn; printk(KERN_NOTICE "%ldMB HIGHMEM available.\n", pages_to_mb(highend_pfn - highstart_pfn)); num_physpages = highend_pfn; high_memory = (void *) __va(highstart_pfn * PAGE_SIZE - 1) + 1; #else num_physpages = system_max_low_pfn; high_memory = (void *) __va(system_max_low_pfn * PAGE_SIZE - 1) + 1; #endif printk(KERN_NOTICE "%ldMB LOWMEM available.\n", pages_to_mb(system_max_low_pfn)); printk("min_low_pfn = %ld, max_low_pfn = %ld, highstart_pfn = %ld\n", min_low_pfn, max_low_pfn, highstart_pfn); printk("Low memory ends at vaddr %08lx\n", (ulong) pfn_to_kaddr(max_low_pfn)); for_each_online_node(nid) { init_remap_allocator(nid); allocate_pgdat(nid); } printk("High memory starts at vaddr %08lx\n", (ulong) pfn_to_kaddr(highstart_pfn)); for_each_online_node(nid) propagate_e820_map_node(nid); memset(NODE_DATA(0), 0, sizeof(struct pglist_data)); NODE_DATA(0)->bdata = &node0_bdata; setup_bootmem_allocator(); return max_low_pfn; } void __init numa_kva_reserve(void) { if (kva_pages) reserve_bootmem(PFN_PHYS(kva_start_pfn), PFN_PHYS(kva_pages), BOOTMEM_DEFAULT); } void __init zone_sizes_init(void) { int nid; unsigned long max_zone_pfns[MAX_NR_ZONES]; memset(max_zone_pfns, 0, sizeof(max_zone_pfns)); max_zone_pfns[ZONE_DMA] = virt_to_phys((char *)MAX_DMA_ADDRESS) >> PAGE_SHIFT; max_zone_pfns[ZONE_NORMAL] = max_low_pfn; #ifdef CONFIG_HIGHMEM max_zone_pfns[ZONE_HIGHMEM] = highend_pfn; #endif /* If SRAT has not registered memory, register it now */ if (find_max_pfn_with_active_regions() == 0) { for_each_online_node(nid) { if (node_has_online_mem(nid)) add_active_range(nid, node_start_pfn[nid], node_end_pfn[nid]); } } free_area_init_nodes(max_zone_pfns); return; } void __init set_highmem_pages_init(int bad_ppro) { #ifdef CONFIG_HIGHMEM struct zone *zone; struct page *page; for_each_zone(zone) { unsigned long node_pfn, zone_start_pfn, zone_end_pfn; if (!is_highmem(zone)) continue; zone_start_pfn = zone->zone_start_pfn; zone_end_pfn = zone_start_pfn + zone->spanned_pages; printk("Initializing %s for node %d (%08lx:%08lx)\n", zone->name, zone_to_nid(zone), zone_start_pfn, zone_end_pfn); for (node_pfn = zone_start_pfn; node_pfn < zone_end_pfn; node_pfn++) { if (!pfn_valid(node_pfn)) continue; page = pfn_to_page(node_pfn); add_one_highpage_init(page, node_pfn, bad_ppro); } } totalram_pages += totalhigh_pages; #endif } #ifdef CONFIG_MEMORY_HOTPLUG static int paddr_to_nid(u64 addr) { int nid; unsigned long pfn = PFN_DOWN(addr); for_each_node(nid) if (node_start_pfn[nid] <= pfn && pfn < node_end_pfn[nid]) return nid; return -1; } /* * This function is used to ask node id BEFORE memmap and mem_section's * initialization (pfn_to_nid() can't be used yet). * If _PXM is not defined on ACPI's DSDT, node id must be found by this. */ int memory_add_physaddr_to_nid(u64 addr) { int nid = paddr_to_nid(addr); return (nid >= 0) ? nid : 0; } EXPORT_SYMBOL_GPL(memory_add_physaddr_to_nid); #endif #ifdef CONFIG_ACPI_NUMA /* * Dummy on 32-bit, for now: */ void __init acpi_numa_slit_init(struct acpi_table_slit *slit) { } #endif