// SPDX-License-Identifier: GPL-2.0 /* * Basic Node interface support */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include static struct bus_type node_subsys = { .name = "node", .dev_name = "node", }; static inline ssize_t cpumap_read(struct file *file, struct kobject *kobj, struct bin_attribute *attr, char *buf, loff_t off, size_t count) { struct device *dev = kobj_to_dev(kobj); struct node *node_dev = to_node(dev); cpumask_var_t mask; ssize_t n; if (!alloc_cpumask_var(&mask, GFP_KERNEL)) return 0; cpumask_and(mask, cpumask_of_node(node_dev->dev.id), cpu_online_mask); n = cpumap_print_bitmask_to_buf(buf, mask, off, count); free_cpumask_var(mask); return n; } static BIN_ATTR_RO(cpumap, 0); static inline ssize_t cpulist_read(struct file *file, struct kobject *kobj, struct bin_attribute *attr, char *buf, loff_t off, size_t count) { struct device *dev = kobj_to_dev(kobj); struct node *node_dev = to_node(dev); cpumask_var_t mask; ssize_t n; if (!alloc_cpumask_var(&mask, GFP_KERNEL)) return 0; cpumask_and(mask, cpumask_of_node(node_dev->dev.id), cpu_online_mask); n = cpumap_print_list_to_buf(buf, mask, off, count); free_cpumask_var(mask); return n; } static BIN_ATTR_RO(cpulist, 0); /** * struct node_access_nodes - Access class device to hold user visible * relationships to other nodes. * @dev: Device for this memory access class * @list_node: List element in the node's access list * @access: The access class rank * @hmem_attrs: Heterogeneous memory performance attributes */ struct node_access_nodes { struct device dev; struct list_head list_node; unsigned int access; #ifdef CONFIG_HMEM_REPORTING struct node_hmem_attrs hmem_attrs; #endif }; #define to_access_nodes(dev) container_of(dev, struct node_access_nodes, dev) static struct attribute *node_init_access_node_attrs[] = { NULL, }; static struct attribute *node_targ_access_node_attrs[] = { NULL, }; static const struct attribute_group initiators = { .name = "initiators", .attrs = node_init_access_node_attrs, }; static const struct attribute_group targets = { .name = "targets", .attrs = node_targ_access_node_attrs, }; static const struct attribute_group *node_access_node_groups[] = { &initiators, &targets, NULL, }; static void node_remove_accesses(struct node *node) { struct node_access_nodes *c, *cnext; list_for_each_entry_safe(c, cnext, &node->access_list, list_node) { list_del(&c->list_node); device_unregister(&c->dev); } } static void node_access_release(struct device *dev) { kfree(to_access_nodes(dev)); } static struct node_access_nodes *node_init_node_access(struct node *node, unsigned int access) { struct node_access_nodes *access_node; struct device *dev; list_for_each_entry(access_node, &node->access_list, list_node) if (access_node->access == access) return access_node; access_node = kzalloc(sizeof(*access_node), GFP_KERNEL); if (!access_node) return NULL; access_node->access = access; dev = &access_node->dev; dev->parent = &node->dev; dev->release = node_access_release; dev->groups = node_access_node_groups; if (dev_set_name(dev, "access%u", access)) goto free; if (device_register(dev)) goto free_name; pm_runtime_no_callbacks(dev); list_add_tail(&access_node->list_node, &node->access_list); return access_node; free_name: kfree_const(dev->kobj.name); free: kfree(access_node); return NULL; } #ifdef CONFIG_HMEM_REPORTING #define ACCESS_ATTR(name) \ static ssize_t name##_show(struct device *dev, \ struct device_attribute *attr, \ char *buf) \ { \ return sysfs_emit(buf, "%u\n", \ to_access_nodes(dev)->hmem_attrs.name); \ } \ static DEVICE_ATTR_RO(name) ACCESS_ATTR(read_bandwidth); ACCESS_ATTR(read_latency); ACCESS_ATTR(write_bandwidth); ACCESS_ATTR(write_latency); static struct attribute *access_attrs[] = { &dev_attr_read_bandwidth.attr, &dev_attr_read_latency.attr, &dev_attr_write_bandwidth.attr, &dev_attr_write_latency.attr, NULL, }; /** * node_set_perf_attrs - Set the performance values for given access class * @nid: Node identifier to be set * @hmem_attrs: Heterogeneous memory performance attributes * @access: The access class the for the given attributes */ void node_set_perf_attrs(unsigned int nid, struct node_hmem_attrs *hmem_attrs, unsigned int access) { struct node_access_nodes *c; struct node *node; int i; if (WARN_ON_ONCE(!node_online(nid))) return; node = node_devices[nid]; c = node_init_node_access(node, access); if (!c) return; c->hmem_attrs = *hmem_attrs; for (i = 0; access_attrs[i] != NULL; i++) { if (sysfs_add_file_to_group(&c->dev.kobj, access_attrs[i], "initiators")) { pr_info("failed to add performance attribute to node %d\n", nid); break; } } } /** * struct node_cache_info - Internal tracking for memory node caches * @dev: Device represeting the cache level * @node: List element for tracking in the node * @cache_attrs:Attributes for this cache level */ struct node_cache_info { struct device dev; struct list_head node; struct node_cache_attrs cache_attrs; }; #define to_cache_info(device) container_of(device, struct node_cache_info, dev) #define CACHE_ATTR(name, fmt) \ static ssize_t name##_show(struct device *dev, \ struct device_attribute *attr, \ char *buf) \ { \ return sysfs_emit(buf, fmt "\n", \ to_cache_info(dev)->cache_attrs.name); \ } \ static DEVICE_ATTR_RO(name); CACHE_ATTR(size, "%llu") CACHE_ATTR(line_size, "%u") CACHE_ATTR(indexing, "%u") CACHE_ATTR(write_policy, "%u") static struct attribute *cache_attrs[] = { &dev_attr_indexing.attr, &dev_attr_size.attr, &dev_attr_line_size.attr, &dev_attr_write_policy.attr, NULL, }; ATTRIBUTE_GROUPS(cache); static void node_cache_release(struct device *dev) { kfree(dev); } static void node_cacheinfo_release(struct device *dev) { struct node_cache_info *info = to_cache_info(dev); kfree(info); } static void node_init_cache_dev(struct node *node) { struct device *dev; dev = kzalloc(sizeof(*dev), GFP_KERNEL); if (!dev) return; device_initialize(dev); dev->parent = &node->dev; dev->release = node_cache_release; if (dev_set_name(dev, "memory_side_cache")) goto put_device; if (device_add(dev)) goto put_device; pm_runtime_no_callbacks(dev); node->cache_dev = dev; return; put_device: put_device(dev); } /** * node_add_cache() - add cache attribute to a memory node * @nid: Node identifier that has new cache attributes * @cache_attrs: Attributes for the cache being added */ void node_add_cache(unsigned int nid, struct node_cache_attrs *cache_attrs) { struct node_cache_info *info; struct device *dev; struct node *node; if (!node_online(nid) || !node_devices[nid]) return; node = node_devices[nid]; list_for_each_entry(info, &node->cache_attrs, node) { if (info->cache_attrs.level == cache_attrs->level) { dev_warn(&node->dev, "attempt to add duplicate cache level:%d\n", cache_attrs->level); return; } } if (!node->cache_dev) node_init_cache_dev(node); if (!node->cache_dev) return; info = kzalloc(sizeof(*info), GFP_KERNEL); if (!info) return; dev = &info->dev; device_initialize(dev); dev->parent = node->cache_dev; dev->release = node_cacheinfo_release; dev->groups = cache_groups; if (dev_set_name(dev, "index%d", cache_attrs->level)) goto put_device; info->cache_attrs = *cache_attrs; if (device_add(dev)) { dev_warn(&node->dev, "failed to add cache level:%d\n", cache_attrs->level); goto put_device; } pm_runtime_no_callbacks(dev); list_add_tail(&info->node, &node->cache_attrs); return; put_device: put_device(dev); } static void node_remove_caches(struct node *node) { struct node_cache_info *info, *next; if (!node->cache_dev) return; list_for_each_entry_safe(info, next, &node->cache_attrs, node) { list_del(&info->node); device_unregister(&info->dev); } device_unregister(node->cache_dev); } static void node_init_caches(unsigned int nid) { INIT_LIST_HEAD(&node_devices[nid]->cache_attrs); } #else static void node_init_caches(unsigned int nid) { } static void node_remove_caches(struct node *node) { } #endif #define K(x) ((x) << (PAGE_SHIFT - 10)) static ssize_t node_read_meminfo(struct device *dev, struct device_attribute *attr, char *buf) { int len = 0; int nid = dev->id; struct pglist_data *pgdat = NODE_DATA(nid); struct sysinfo i; unsigned long sreclaimable, sunreclaimable; unsigned long swapcached = 0; si_meminfo_node(&i, nid); sreclaimable = node_page_state_pages(pgdat, NR_SLAB_RECLAIMABLE_B); sunreclaimable = node_page_state_pages(pgdat, NR_SLAB_UNRECLAIMABLE_B); #ifdef CONFIG_SWAP swapcached = node_page_state_pages(pgdat, NR_SWAPCACHE); #endif len = sysfs_emit_at(buf, len, "Node %d MemTotal: %8lu kB\n" "Node %d MemFree: %8lu kB\n" "Node %d MemUsed: %8lu kB\n" "Node %d SwapCached: %8lu kB\n" "Node %d Active: %8lu kB\n" "Node %d Inactive: %8lu kB\n" "Node %d Active(anon): %8lu kB\n" "Node %d Inactive(anon): %8lu kB\n" "Node %d Active(file): %8lu kB\n" "Node %d Inactive(file): %8lu kB\n" "Node %d Unevictable: %8lu kB\n" "Node %d Mlocked: %8lu kB\n", nid, K(i.totalram), nid, K(i.freeram), nid, K(i.totalram - i.freeram), nid, K(swapcached), nid, K(node_page_state(pgdat, NR_ACTIVE_ANON) + node_page_state(pgdat, NR_ACTIVE_FILE)), nid, K(node_page_state(pgdat, NR_INACTIVE_ANON) + node_page_state(pgdat, NR_INACTIVE_FILE)), nid, K(node_page_state(pgdat, NR_ACTIVE_ANON)), nid, K(node_page_state(pgdat, NR_INACTIVE_ANON)), nid, K(node_page_state(pgdat, NR_ACTIVE_FILE)), nid, K(node_page_state(pgdat, NR_INACTIVE_FILE)), nid, K(node_page_state(pgdat, NR_UNEVICTABLE)), nid, K(sum_zone_node_page_state(nid, NR_MLOCK))); #ifdef CONFIG_HIGHMEM len += sysfs_emit_at(buf, len, "Node %d HighTotal: %8lu kB\n" "Node %d HighFree: %8lu kB\n" "Node %d LowTotal: %8lu kB\n" "Node %d LowFree: %8lu kB\n", nid, K(i.totalhigh), nid, K(i.freehigh), nid, K(i.totalram - i.totalhigh), nid, K(i.freeram - i.freehigh)); #endif len += sysfs_emit_at(buf, len, "Node %d Dirty: %8lu kB\n" "Node %d Writeback: %8lu kB\n" "Node %d FilePages: %8lu kB\n" "Node %d Mapped: %8lu kB\n" "Node %d AnonPages: %8lu kB\n" "Node %d Shmem: %8lu kB\n" "Node %d KernelStack: %8lu kB\n" #ifdef CONFIG_SHADOW_CALL_STACK "Node %d ShadowCallStack:%8lu kB\n" #endif "Node %d PageTables: %8lu kB\n" "Node %d NFS_Unstable: %8lu kB\n" "Node %d Bounce: %8lu kB\n" "Node %d WritebackTmp: %8lu kB\n" "Node %d KReclaimable: %8lu kB\n" "Node %d Slab: %8lu kB\n" "Node %d SReclaimable: %8lu kB\n" "Node %d SUnreclaim: %8lu kB\n" #ifdef CONFIG_TRANSPARENT_HUGEPAGE "Node %d AnonHugePages: %8lu kB\n" "Node %d ShmemHugePages: %8lu kB\n" "Node %d ShmemPmdMapped: %8lu kB\n" "Node %d FileHugePages: %8lu kB\n" "Node %d FilePmdMapped: %8lu kB\n" #endif , nid, K(node_page_state(pgdat, NR_FILE_DIRTY)), nid, K(node_page_state(pgdat, NR_WRITEBACK)), nid, K(node_page_state(pgdat, NR_FILE_PAGES)), nid, K(node_page_state(pgdat, NR_FILE_MAPPED)), nid, K(node_page_state(pgdat, NR_ANON_MAPPED)), nid, K(i.sharedram), nid, node_page_state(pgdat, NR_KERNEL_STACK_KB), #ifdef CONFIG_SHADOW_CALL_STACK nid, node_page_state(pgdat, NR_KERNEL_SCS_KB), #endif nid, K(node_page_state(pgdat, NR_PAGETABLE)), nid, 0UL, nid, K(sum_zone_node_page_state(nid, NR_BOUNCE)), nid, K(node_page_state(pgdat, NR_WRITEBACK_TEMP)), nid, K(sreclaimable + node_page_state(pgdat, NR_KERNEL_MISC_RECLAIMABLE)), nid, K(sreclaimable + sunreclaimable), nid, K(sreclaimable), nid, K(sunreclaimable) #ifdef CONFIG_TRANSPARENT_HUGEPAGE , nid, K(node_page_state(pgdat, NR_ANON_THPS)), nid, K(node_page_state(pgdat, NR_SHMEM_THPS)), nid, K(node_page_state(pgdat, NR_SHMEM_PMDMAPPED)), nid, K(node_page_state(pgdat, NR_FILE_THPS)), nid, K(node_page_state(pgdat, NR_FILE_PMDMAPPED)) #endif ); len += hugetlb_report_node_meminfo(buf, len, nid); return len; } #undef K static DEVICE_ATTR(meminfo, 0444, node_read_meminfo, NULL); static ssize_t node_read_numastat(struct device *dev, struct device_attribute *attr, char *buf) { fold_vm_numa_events(); return sysfs_emit(buf, "numa_hit %lu\n" "numa_miss %lu\n" "numa_foreign %lu\n" "interleave_hit %lu\n" "local_node %lu\n" "other_node %lu\n", sum_zone_numa_event_state(dev->id, NUMA_HIT), sum_zone_numa_event_state(dev->id, NUMA_MISS), sum_zone_numa_event_state(dev->id, NUMA_FOREIGN), sum_zone_numa_event_state(dev->id, NUMA_INTERLEAVE_HIT), sum_zone_numa_event_state(dev->id, NUMA_LOCAL), sum_zone_numa_event_state(dev->id, NUMA_OTHER)); } static DEVICE_ATTR(numastat, 0444, node_read_numastat, NULL); static ssize_t node_read_vmstat(struct device *dev, struct device_attribute *attr, char *buf) { int nid = dev->id; struct pglist_data *pgdat = NODE_DATA(nid); int i; int len = 0; for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++) len += sysfs_emit_at(buf, len, "%s %lu\n", zone_stat_name(i), sum_zone_node_page_state(nid, i)); #ifdef CONFIG_NUMA fold_vm_numa_events(); for (i = 0; i < NR_VM_NUMA_EVENT_ITEMS; i++) len += sysfs_emit_at(buf, len, "%s %lu\n", numa_stat_name(i), sum_zone_numa_event_state(nid, i)); #endif for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++) { unsigned long pages = node_page_state_pages(pgdat, i); if (vmstat_item_print_in_thp(i)) pages /= HPAGE_PMD_NR; len += sysfs_emit_at(buf, len, "%s %lu\n", node_stat_name(i), pages); } return len; } static DEVICE_ATTR(vmstat, 0444, node_read_vmstat, NULL); static ssize_t node_read_distance(struct device *dev, struct device_attribute *attr, char *buf) { int nid = dev->id; int len = 0; int i; /* * buf is currently PAGE_SIZE in length and each node needs 4 chars * at the most (distance + space or newline). */ BUILD_BUG_ON(MAX_NUMNODES * 4 > PAGE_SIZE); for_each_online_node(i) { len += sysfs_emit_at(buf, len, "%s%d", i ? " " : "", node_distance(nid, i)); } len += sysfs_emit_at(buf, len, "\n"); return len; } static DEVICE_ATTR(distance, 0444, node_read_distance, NULL); static struct attribute *node_dev_attrs[] = { &dev_attr_meminfo.attr, &dev_attr_numastat.attr, &dev_attr_distance.attr, &dev_attr_vmstat.attr, NULL }; static struct bin_attribute *node_dev_bin_attrs[] = { &bin_attr_cpumap, &bin_attr_cpulist, NULL }; static const struct attribute_group node_dev_group = { .attrs = node_dev_attrs, .bin_attrs = node_dev_bin_attrs }; static const struct attribute_group *node_dev_groups[] = { &node_dev_group, #ifdef CONFIG_HAVE_ARCH_NODE_DEV_GROUP &arch_node_dev_group, #endif NULL }; #ifdef CONFIG_HUGETLBFS /* * hugetlbfs per node attributes registration interface: * When/if hugetlb[fs] subsystem initializes [sometime after this module], * it will register its per node attributes for all online nodes with * memory. It will also call register_hugetlbfs_with_node(), below, to * register its attribute registration functions with this node driver. * Once these hooks have been initialized, the node driver will call into * the hugetlb module to [un]register attributes for hot-plugged nodes. */ static node_registration_func_t __hugetlb_register_node; static node_registration_func_t __hugetlb_unregister_node; static inline bool hugetlb_register_node(struct node *node) { if (__hugetlb_register_node && node_state(node->dev.id, N_MEMORY)) { __hugetlb_register_node(node); return true; } return false; } static inline void hugetlb_unregister_node(struct node *node) { if (__hugetlb_unregister_node) __hugetlb_unregister_node(node); } void register_hugetlbfs_with_node(node_registration_func_t doregister, node_registration_func_t unregister) { __hugetlb_register_node = doregister; __hugetlb_unregister_node = unregister; } #else static inline void hugetlb_register_node(struct node *node) {} static inline void hugetlb_unregister_node(struct node *node) {} #endif static void node_device_release(struct device *dev) { struct node *node = to_node(dev); #if defined(CONFIG_MEMORY_HOTPLUG) && defined(CONFIG_HUGETLBFS) /* * We schedule the work only when a memory section is * onlined/offlined on this node. When we come here, * all the memory on this node has been offlined, * so we won't enqueue new work to this work. * * The work is using node->node_work, so we should * flush work before freeing the memory. */ flush_work(&node->node_work); #endif kfree(node); } /* * register_node - Setup a sysfs device for a node. * @num - Node number to use when creating the device. * * Initialize and register the node device. */ static int register_node(struct node *node, int num) { int error; node->dev.id = num; node->dev.bus = &node_subsys; node->dev.release = node_device_release; node->dev.groups = node_dev_groups; error = device_register(&node->dev); if (error) put_device(&node->dev); else { hugetlb_register_node(node); compaction_register_node(node); } return error; } /** * unregister_node - unregister a node device * @node: node going away * * Unregisters a node device @node. All the devices on the node must be * unregistered before calling this function. */ void unregister_node(struct node *node) { hugetlb_unregister_node(node); /* no-op, if memoryless node */ node_remove_accesses(node); node_remove_caches(node); device_unregister(&node->dev); } struct node *node_devices[MAX_NUMNODES]; /* * register cpu under node */ int register_cpu_under_node(unsigned int cpu, unsigned int nid) { int ret; struct device *obj; if (!node_online(nid)) return 0; obj = get_cpu_device(cpu); if (!obj) return 0; ret = sysfs_create_link(&node_devices[nid]->dev.kobj, &obj->kobj, kobject_name(&obj->kobj)); if (ret) return ret; return sysfs_create_link(&obj->kobj, &node_devices[nid]->dev.kobj, kobject_name(&node_devices[nid]->dev.kobj)); } /** * register_memory_node_under_compute_node - link memory node to its compute * node for a given access class. * @mem_nid: Memory node number * @cpu_nid: Cpu node number * @access: Access class to register * * Description: * For use with platforms that may have separate memory and compute nodes. * This function will export node relationships linking which memory * initiator nodes can access memory targets at a given ranked access * class. */ int register_memory_node_under_compute_node(unsigned int mem_nid, unsigned int cpu_nid, unsigned int access) { struct node *init_node, *targ_node; struct node_access_nodes *initiator, *target; int ret; if (!node_online(cpu_nid) || !node_online(mem_nid)) return -ENODEV; init_node = node_devices[cpu_nid]; targ_node = node_devices[mem_nid]; initiator = node_init_node_access(init_node, access); target = node_init_node_access(targ_node, access); if (!initiator || !target) return -ENOMEM; ret = sysfs_add_link_to_group(&initiator->dev.kobj, "targets", &targ_node->dev.kobj, dev_name(&targ_node->dev)); if (ret) return ret; ret = sysfs_add_link_to_group(&target->dev.kobj, "initiators", &init_node->dev.kobj, dev_name(&init_node->dev)); if (ret) goto err; return 0; err: sysfs_remove_link_from_group(&initiator->dev.kobj, "targets", dev_name(&targ_node->dev)); return ret; } int unregister_cpu_under_node(unsigned int cpu, unsigned int nid) { struct device *obj; if (!node_online(nid)) return 0; obj = get_cpu_device(cpu); if (!obj) return 0; sysfs_remove_link(&node_devices[nid]->dev.kobj, kobject_name(&obj->kobj)); sysfs_remove_link(&obj->kobj, kobject_name(&node_devices[nid]->dev.kobj)); return 0; } #ifdef CONFIG_MEMORY_HOTPLUG static int __ref get_nid_for_pfn(unsigned long pfn) { #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT if (system_state < SYSTEM_RUNNING) return early_pfn_to_nid(pfn); #endif return pfn_to_nid(pfn); } static void do_register_memory_block_under_node(int nid, struct memory_block *mem_blk) { int ret; /* * If this memory block spans multiple nodes, we only indicate * the last processed node. */ mem_blk->nid = nid; ret = sysfs_create_link_nowarn(&node_devices[nid]->dev.kobj, &mem_blk->dev.kobj, kobject_name(&mem_blk->dev.kobj)); if (ret && ret != -EEXIST) dev_err_ratelimited(&node_devices[nid]->dev, "can't create link to %s in sysfs (%d)\n", kobject_name(&mem_blk->dev.kobj), ret); ret = sysfs_create_link_nowarn(&mem_blk->dev.kobj, &node_devices[nid]->dev.kobj, kobject_name(&node_devices[nid]->dev.kobj)); if (ret && ret != -EEXIST) dev_err_ratelimited(&mem_blk->dev, "can't create link to %s in sysfs (%d)\n", kobject_name(&node_devices[nid]->dev.kobj), ret); } /* register memory section under specified node if it spans that node */ static int register_mem_block_under_node_early(struct memory_block *mem_blk, void *arg) { unsigned long memory_block_pfns = memory_block_size_bytes() / PAGE_SIZE; unsigned long start_pfn = section_nr_to_pfn(mem_blk->start_section_nr); unsigned long end_pfn = start_pfn + memory_block_pfns - 1; int nid = *(int *)arg; unsigned long pfn; for (pfn = start_pfn; pfn <= end_pfn; pfn++) { int page_nid; /* * memory block could have several absent sections from start. * skip pfn range from absent section */ if (!pfn_in_present_section(pfn)) { pfn = round_down(pfn + PAGES_PER_SECTION, PAGES_PER_SECTION) - 1; continue; } /* * We need to check if page belongs to nid only at the boot * case because node's ranges can be interleaved. */ page_nid = get_nid_for_pfn(pfn); if (page_nid < 0) continue; if (page_nid != nid) continue; do_register_memory_block_under_node(nid, mem_blk); return 0; } /* mem section does not span the specified node */ return 0; } /* * During hotplug we know that all pages in the memory block belong to the same * node. */ static int register_mem_block_under_node_hotplug(struct memory_block *mem_blk, void *arg) { int nid = *(int *)arg; do_register_memory_block_under_node(nid, mem_blk); return 0; } /* * Unregister a memory block device under the node it spans. Memory blocks * with multiple nodes cannot be offlined and therefore also never be removed. */ void unregister_memory_block_under_nodes(struct memory_block *mem_blk) { if (mem_blk->nid == NUMA_NO_NODE) return; sysfs_remove_link(&node_devices[mem_blk->nid]->dev.kobj, kobject_name(&mem_blk->dev.kobj)); sysfs_remove_link(&mem_blk->dev.kobj, kobject_name(&node_devices[mem_blk->nid]->dev.kobj)); } void link_mem_sections(int nid, unsigned long start_pfn, unsigned long end_pfn, enum meminit_context context) { walk_memory_blocks_func_t func; if (context == MEMINIT_HOTPLUG) func = register_mem_block_under_node_hotplug; else func = register_mem_block_under_node_early; walk_memory_blocks(PFN_PHYS(start_pfn), PFN_PHYS(end_pfn - start_pfn), (void *)&nid, func); return; } #ifdef CONFIG_HUGETLBFS /* * Handle per node hstate attribute [un]registration on transistions * to/from memoryless state. */ static void node_hugetlb_work(struct work_struct *work) { struct node *node = container_of(work, struct node, node_work); /* * We only get here when a node transitions to/from memoryless state. * We can detect which transition occurred by examining whether the * node has memory now. hugetlb_register_node() already check this * so we try to register the attributes. If that fails, then the * node has transitioned to memoryless, try to unregister the * attributes. */ if (!hugetlb_register_node(node)) hugetlb_unregister_node(node); } static void init_node_hugetlb_work(int nid) { INIT_WORK(&node_devices[nid]->node_work, node_hugetlb_work); } static int node_memory_callback(struct notifier_block *self, unsigned long action, void *arg) { struct memory_notify *mnb = arg; int nid = mnb->status_change_nid; switch (action) { case MEM_ONLINE: case MEM_OFFLINE: /* * offload per node hstate [un]registration to a work thread * when transitioning to/from memoryless state. */ if (nid != NUMA_NO_NODE) schedule_work(&node_devices[nid]->node_work); break; case MEM_GOING_ONLINE: case MEM_GOING_OFFLINE: case MEM_CANCEL_ONLINE: case MEM_CANCEL_OFFLINE: default: break; } return NOTIFY_OK; } #endif /* CONFIG_HUGETLBFS */ #endif /* CONFIG_MEMORY_HOTPLUG */ #if !defined(CONFIG_MEMORY_HOTPLUG) || !defined(CONFIG_HUGETLBFS) static inline int node_memory_callback(struct notifier_block *self, unsigned long action, void *arg) { return NOTIFY_OK; } static void init_node_hugetlb_work(int nid) { } #endif int __register_one_node(int nid) { int error; int cpu; node_devices[nid] = kzalloc(sizeof(struct node), GFP_KERNEL); if (!node_devices[nid]) return -ENOMEM; error = register_node(node_devices[nid], nid); /* link cpu under this node */ for_each_present_cpu(cpu) { if (cpu_to_node(cpu) == nid) register_cpu_under_node(cpu, nid); } INIT_LIST_HEAD(&node_devices[nid]->access_list); /* initialize work queue for memory hot plug */ init_node_hugetlb_work(nid); node_init_caches(nid); return error; } void unregister_one_node(int nid) { if (!node_devices[nid]) return; unregister_node(node_devices[nid]); node_devices[nid] = NULL; } /* * node states attributes */ struct node_attr { struct device_attribute attr; enum node_states state; }; static ssize_t show_node_state(struct device *dev, struct device_attribute *attr, char *buf) { struct node_attr *na = container_of(attr, struct node_attr, attr); return sysfs_emit(buf, "%*pbl\n", nodemask_pr_args(&node_states[na->state])); } #define _NODE_ATTR(name, state) \ { __ATTR(name, 0444, show_node_state, NULL), state } static struct node_attr node_state_attr[] = { [N_POSSIBLE] = _NODE_ATTR(possible, N_POSSIBLE), [N_ONLINE] = _NODE_ATTR(online, N_ONLINE), [N_NORMAL_MEMORY] = _NODE_ATTR(has_normal_memory, N_NORMAL_MEMORY), #ifdef CONFIG_HIGHMEM [N_HIGH_MEMORY] = _NODE_ATTR(has_high_memory, N_HIGH_MEMORY), #endif [N_MEMORY] = _NODE_ATTR(has_memory, N_MEMORY), [N_CPU] = _NODE_ATTR(has_cpu, N_CPU), [N_GENERIC_INITIATOR] = _NODE_ATTR(has_generic_initiator, N_GENERIC_INITIATOR), }; static struct attribute *node_state_attrs[] = { &node_state_attr[N_POSSIBLE].attr.attr, &node_state_attr[N_ONLINE].attr.attr, &node_state_attr[N_NORMAL_MEMORY].attr.attr, #ifdef CONFIG_HIGHMEM &node_state_attr[N_HIGH_MEMORY].attr.attr, #endif &node_state_attr[N_MEMORY].attr.attr, &node_state_attr[N_CPU].attr.attr, &node_state_attr[N_GENERIC_INITIATOR].attr.attr, NULL }; static const struct attribute_group memory_root_attr_group = { .attrs = node_state_attrs, }; static const struct attribute_group *cpu_root_attr_groups[] = { &memory_root_attr_group, NULL, }; #define NODE_CALLBACK_PRI 2 /* lower than SLAB */ void __init node_dev_init(void) { static struct notifier_block node_memory_callback_nb = { .notifier_call = node_memory_callback, .priority = NODE_CALLBACK_PRI, }; int ret, i; BUILD_BUG_ON(ARRAY_SIZE(node_state_attr) != NR_NODE_STATES); BUILD_BUG_ON(ARRAY_SIZE(node_state_attrs)-1 != NR_NODE_STATES); ret = subsys_system_register(&node_subsys, cpu_root_attr_groups); if (ret) panic("%s() failed to register subsystem: %d\n", __func__, ret); register_hotmemory_notifier(&node_memory_callback_nb); /* * Create all node devices, which will properly link the node * to applicable memory block devices and already created cpu devices. */ for_each_online_node(i) { ret = register_one_node(i); if (ret) panic("%s() failed to add node: %d\n", __func__, ret); } }