#include "annotate.h" #include "util.h" #include "build-id.h" #include "hist.h" #include "session.h" #include "sort.h" #include static bool hists__filter_entry_by_dso(struct hists *hists, struct hist_entry *he); static bool hists__filter_entry_by_thread(struct hists *hists, struct hist_entry *he); static bool hists__filter_entry_by_symbol(struct hists *hists, struct hist_entry *he); enum hist_filter { HIST_FILTER__DSO, HIST_FILTER__THREAD, HIST_FILTER__PARENT, HIST_FILTER__SYMBOL, }; struct callchain_param callchain_param = { .mode = CHAIN_GRAPH_REL, .min_percent = 0.5, .order = ORDER_CALLEE }; u16 hists__col_len(struct hists *hists, enum hist_column col) { return hists->col_len[col]; } void hists__set_col_len(struct hists *hists, enum hist_column col, u16 len) { hists->col_len[col] = len; } bool hists__new_col_len(struct hists *hists, enum hist_column col, u16 len) { if (len > hists__col_len(hists, col)) { hists__set_col_len(hists, col, len); return true; } return false; } void hists__reset_col_len(struct hists *hists) { enum hist_column col; for (col = 0; col < HISTC_NR_COLS; ++col) hists__set_col_len(hists, col, 0); } static void hists__set_unres_dso_col_len(struct hists *hists, int dso) { const unsigned int unresolved_col_width = BITS_PER_LONG / 4; if (hists__col_len(hists, dso) < unresolved_col_width && !symbol_conf.col_width_list_str && !symbol_conf.field_sep && !symbol_conf.dso_list) hists__set_col_len(hists, dso, unresolved_col_width); } void hists__calc_col_len(struct hists *hists, struct hist_entry *h) { const unsigned int unresolved_col_width = BITS_PER_LONG / 4; u16 len; if (h->ms.sym) hists__new_col_len(hists, HISTC_SYMBOL, h->ms.sym->namelen + 4); else hists__set_unres_dso_col_len(hists, HISTC_DSO); len = thread__comm_len(h->thread); if (hists__new_col_len(hists, HISTC_COMM, len)) hists__set_col_len(hists, HISTC_THREAD, len + 6); if (h->ms.map) { len = dso__name_len(h->ms.map->dso); hists__new_col_len(hists, HISTC_DSO, len); } if (h->branch_info) { int symlen; /* * +4 accounts for '[x] ' priv level info * +2 account of 0x prefix on raw addresses */ if (h->branch_info->from.sym) { symlen = (int)h->branch_info->from.sym->namelen + 4; hists__new_col_len(hists, HISTC_SYMBOL_FROM, symlen); symlen = dso__name_len(h->branch_info->from.map->dso); hists__new_col_len(hists, HISTC_DSO_FROM, symlen); } else { symlen = unresolved_col_width + 4 + 2; hists__new_col_len(hists, HISTC_SYMBOL_FROM, symlen); hists__set_unres_dso_col_len(hists, HISTC_DSO_FROM); } if (h->branch_info->to.sym) { symlen = (int)h->branch_info->to.sym->namelen + 4; hists__new_col_len(hists, HISTC_SYMBOL_TO, symlen); symlen = dso__name_len(h->branch_info->to.map->dso); hists__new_col_len(hists, HISTC_DSO_TO, symlen); } else { symlen = unresolved_col_width + 4 + 2; hists__new_col_len(hists, HISTC_SYMBOL_TO, symlen); hists__set_unres_dso_col_len(hists, HISTC_DSO_TO); } } } void hists__output_recalc_col_len(struct hists *hists, int max_rows) { struct rb_node *next = rb_first(&hists->entries); struct hist_entry *n; int row = 0; hists__reset_col_len(hists); while (next && row++ < max_rows) { n = rb_entry(next, struct hist_entry, rb_node); if (!n->filtered) hists__calc_col_len(hists, n); next = rb_next(&n->rb_node); } } static void hist_entry__add_cpumode_period(struct hist_entry *he, unsigned int cpumode, u64 period) { switch (cpumode) { case PERF_RECORD_MISC_KERNEL: he->stat.period_sys += period; break; case PERF_RECORD_MISC_USER: he->stat.period_us += period; break; case PERF_RECORD_MISC_GUEST_KERNEL: he->stat.period_guest_sys += period; break; case PERF_RECORD_MISC_GUEST_USER: he->stat.period_guest_us += period; break; default: break; } } static void he_stat__add_period(struct he_stat *he_stat, u64 period) { he_stat->period += period; he_stat->nr_events += 1; } static void he_stat__add_stat(struct he_stat *dest, struct he_stat *src) { dest->period += src->period; dest->period_sys += src->period_sys; dest->period_us += src->period_us; dest->period_guest_sys += src->period_guest_sys; dest->period_guest_us += src->period_guest_us; dest->nr_events += src->nr_events; } static void hist_entry__decay(struct hist_entry *he) { he->stat.period = (he->stat.period * 7) / 8; he->stat.nr_events = (he->stat.nr_events * 7) / 8; } static bool hists__decay_entry(struct hists *hists, struct hist_entry *he) { u64 prev_period = he->stat.period; if (prev_period == 0) return true; hist_entry__decay(he); if (!he->filtered) hists->stats.total_period -= prev_period - he->stat.period; return he->stat.period == 0; } static void __hists__decay_entries(struct hists *hists, bool zap_user, bool zap_kernel, bool threaded) { struct rb_node *next = rb_first(&hists->entries); struct hist_entry *n; while (next) { n = rb_entry(next, struct hist_entry, rb_node); next = rb_next(&n->rb_node); /* * We may be annotating this, for instance, so keep it here in * case some it gets new samples, we'll eventually free it when * the user stops browsing and it agains gets fully decayed. */ if (((zap_user && n->level == '.') || (zap_kernel && n->level != '.') || hists__decay_entry(hists, n)) && !n->used) { rb_erase(&n->rb_node, &hists->entries); if (sort__need_collapse || threaded) rb_erase(&n->rb_node_in, &hists->entries_collapsed); hist_entry__free(n); --hists->nr_entries; } } } void hists__decay_entries(struct hists *hists, bool zap_user, bool zap_kernel) { return __hists__decay_entries(hists, zap_user, zap_kernel, false); } void hists__decay_entries_threaded(struct hists *hists, bool zap_user, bool zap_kernel) { return __hists__decay_entries(hists, zap_user, zap_kernel, true); } /* * histogram, sorted on item, collects periods */ static struct hist_entry *hist_entry__new(struct hist_entry *template) { size_t callchain_size = symbol_conf.use_callchain ? sizeof(struct callchain_root) : 0; struct hist_entry *he = malloc(sizeof(*he) + callchain_size); if (he != NULL) { *he = *template; if (he->ms.map) he->ms.map->referenced = true; if (symbol_conf.use_callchain) callchain_init(he->callchain); INIT_LIST_HEAD(&he->pairs.node); } return he; } static void hists__inc_nr_entries(struct hists *hists, struct hist_entry *h) { if (!h->filtered) { hists__calc_col_len(hists, h); ++hists->nr_entries; hists->stats.total_period += h->stat.period; } } static u8 symbol__parent_filter(const struct symbol *parent) { if (symbol_conf.exclude_other && parent == NULL) return 1 << HIST_FILTER__PARENT; return 0; } static struct hist_entry *add_hist_entry(struct hists *hists, struct hist_entry *entry, struct addr_location *al, u64 period) { struct rb_node **p; struct rb_node *parent = NULL; struct hist_entry *he; int cmp; pthread_mutex_lock(&hists->lock); p = &hists->entries_in->rb_node; while (*p != NULL) { parent = *p; he = rb_entry(parent, struct hist_entry, rb_node_in); cmp = hist_entry__cmp(entry, he); if (!cmp) { he_stat__add_period(&he->stat, period); /* If the map of an existing hist_entry has * become out-of-date due to an exec() or * similar, update it. Otherwise we will * mis-adjust symbol addresses when computing * the history counter to increment. */ if (he->ms.map != entry->ms.map) { he->ms.map = entry->ms.map; if (he->ms.map) he->ms.map->referenced = true; } goto out; } if (cmp < 0) p = &(*p)->rb_left; else p = &(*p)->rb_right; } he = hist_entry__new(entry); if (!he) goto out_unlock; rb_link_node(&he->rb_node_in, parent, p); rb_insert_color(&he->rb_node_in, hists->entries_in); out: hist_entry__add_cpumode_period(he, al->cpumode, period); out_unlock: pthread_mutex_unlock(&hists->lock); return he; } struct hist_entry *__hists__add_branch_entry(struct hists *self, struct addr_location *al, struct symbol *sym_parent, struct branch_info *bi, u64 period) { struct hist_entry entry = { .thread = al->thread, .ms = { .map = bi->to.map, .sym = bi->to.sym, }, .cpu = al->cpu, .ip = bi->to.addr, .level = al->level, .stat = { .period = period, .nr_events = 1, }, .parent = sym_parent, .filtered = symbol__parent_filter(sym_parent), .branch_info = bi, .hists = self, }; return add_hist_entry(self, &entry, al, period); } struct hist_entry *__hists__add_entry(struct hists *self, struct addr_location *al, struct symbol *sym_parent, u64 period) { struct hist_entry entry = { .thread = al->thread, .ms = { .map = al->map, .sym = al->sym, }, .cpu = al->cpu, .ip = al->addr, .level = al->level, .stat = { .period = period, .nr_events = 1, }, .parent = sym_parent, .filtered = symbol__parent_filter(sym_parent), .hists = self, }; return add_hist_entry(self, &entry, al, period); } int64_t hist_entry__cmp(struct hist_entry *left, struct hist_entry *right) { struct sort_entry *se; int64_t cmp = 0; list_for_each_entry(se, &hist_entry__sort_list, list) { cmp = se->se_cmp(left, right); if (cmp) break; } return cmp; } int64_t hist_entry__collapse(struct hist_entry *left, struct hist_entry *right) { struct sort_entry *se; int64_t cmp = 0; list_for_each_entry(se, &hist_entry__sort_list, list) { int64_t (*f)(struct hist_entry *, struct hist_entry *); f = se->se_collapse ?: se->se_cmp; cmp = f(left, right); if (cmp) break; } return cmp; } void hist_entry__free(struct hist_entry *he) { free(he->branch_info); free(he); } /* * collapse the histogram */ static bool hists__collapse_insert_entry(struct hists *hists __maybe_unused, struct rb_root *root, struct hist_entry *he) { struct rb_node **p = &root->rb_node; struct rb_node *parent = NULL; struct hist_entry *iter; int64_t cmp; while (*p != NULL) { parent = *p; iter = rb_entry(parent, struct hist_entry, rb_node_in); cmp = hist_entry__collapse(iter, he); if (!cmp) { he_stat__add_stat(&iter->stat, &he->stat); if (symbol_conf.use_callchain) { callchain_cursor_reset(&callchain_cursor); callchain_merge(&callchain_cursor, iter->callchain, he->callchain); } hist_entry__free(he); return false; } if (cmp < 0) p = &(*p)->rb_left; else p = &(*p)->rb_right; } rb_link_node(&he->rb_node_in, parent, p); rb_insert_color(&he->rb_node_in, root); return true; } static struct rb_root *hists__get_rotate_entries_in(struct hists *hists) { struct rb_root *root; pthread_mutex_lock(&hists->lock); root = hists->entries_in; if (++hists->entries_in > &hists->entries_in_array[1]) hists->entries_in = &hists->entries_in_array[0]; pthread_mutex_unlock(&hists->lock); return root; } static void hists__apply_filters(struct hists *hists, struct hist_entry *he) { hists__filter_entry_by_dso(hists, he); hists__filter_entry_by_thread(hists, he); hists__filter_entry_by_symbol(hists, he); } static void __hists__collapse_resort(struct hists *hists, bool threaded) { struct rb_root *root; struct rb_node *next; struct hist_entry *n; if (!sort__need_collapse && !threaded) return; root = hists__get_rotate_entries_in(hists); next = rb_first(root); while (next) { n = rb_entry(next, struct hist_entry, rb_node_in); next = rb_next(&n->rb_node_in); rb_erase(&n->rb_node_in, root); if (hists__collapse_insert_entry(hists, &hists->entries_collapsed, n)) { /* * If it wasn't combined with one of the entries already * collapsed, we need to apply the filters that may have * been set by, say, the hist_browser. */ hists__apply_filters(hists, n); } } } void hists__collapse_resort(struct hists *hists) { return __hists__collapse_resort(hists, false); } void hists__collapse_resort_threaded(struct hists *hists) { return __hists__collapse_resort(hists, true); } /* * reverse the map, sort on period. */ static void __hists__insert_output_entry(struct rb_root *entries, struct hist_entry *he, u64 min_callchain_hits) { struct rb_node **p = &entries->rb_node; struct rb_node *parent = NULL; struct hist_entry *iter; if (symbol_conf.use_callchain) callchain_param.sort(&he->sorted_chain, he->callchain, min_callchain_hits, &callchain_param); while (*p != NULL) { parent = *p; iter = rb_entry(parent, struct hist_entry, rb_node); if (he->stat.period > iter->stat.period) p = &(*p)->rb_left; else p = &(*p)->rb_right; } rb_link_node(&he->rb_node, parent, p); rb_insert_color(&he->rb_node, entries); } static void __hists__output_resort(struct hists *hists, bool threaded) { struct rb_root *root; struct rb_node *next; struct hist_entry *n; u64 min_callchain_hits; min_callchain_hits = hists->stats.total_period * (callchain_param.min_percent / 100); if (sort__need_collapse || threaded) root = &hists->entries_collapsed; else root = hists->entries_in; next = rb_first(root); hists->entries = RB_ROOT; hists->nr_entries = 0; hists->stats.total_period = 0; hists__reset_col_len(hists); while (next) { n = rb_entry(next, struct hist_entry, rb_node_in); next = rb_next(&n->rb_node_in); __hists__insert_output_entry(&hists->entries, n, min_callchain_hits); hists__inc_nr_entries(hists, n); } } void hists__output_resort(struct hists *hists) { return __hists__output_resort(hists, false); } void hists__output_resort_threaded(struct hists *hists) { return __hists__output_resort(hists, true); } static void hists__remove_entry_filter(struct hists *hists, struct hist_entry *h, enum hist_filter filter) { h->filtered &= ~(1 << filter); if (h->filtered) return; ++hists->nr_entries; if (h->ms.unfolded) hists->nr_entries += h->nr_rows; h->row_offset = 0; hists->stats.total_period += h->stat.period; hists->stats.nr_events[PERF_RECORD_SAMPLE] += h->stat.nr_events; hists__calc_col_len(hists, h); } static bool hists__filter_entry_by_dso(struct hists *hists, struct hist_entry *he) { if (hists->dso_filter != NULL && (he->ms.map == NULL || he->ms.map->dso != hists->dso_filter)) { he->filtered |= (1 << HIST_FILTER__DSO); return true; } return false; } void hists__filter_by_dso(struct hists *hists) { struct rb_node *nd; hists->nr_entries = hists->stats.total_period = 0; hists->stats.nr_events[PERF_RECORD_SAMPLE] = 0; hists__reset_col_len(hists); for (nd = rb_first(&hists->entries); nd; nd = rb_next(nd)) { struct hist_entry *h = rb_entry(nd, struct hist_entry, rb_node); if (symbol_conf.exclude_other && !h->parent) continue; if (hists__filter_entry_by_dso(hists, h)) continue; hists__remove_entry_filter(hists, h, HIST_FILTER__DSO); } } static bool hists__filter_entry_by_thread(struct hists *hists, struct hist_entry *he) { if (hists->thread_filter != NULL && he->thread != hists->thread_filter) { he->filtered |= (1 << HIST_FILTER__THREAD); return true; } return false; } void hists__filter_by_thread(struct hists *hists) { struct rb_node *nd; hists->nr_entries = hists->stats.total_period = 0; hists->stats.nr_events[PERF_RECORD_SAMPLE] = 0; hists__reset_col_len(hists); for (nd = rb_first(&hists->entries); nd; nd = rb_next(nd)) { struct hist_entry *h = rb_entry(nd, struct hist_entry, rb_node); if (hists__filter_entry_by_thread(hists, h)) continue; hists__remove_entry_filter(hists, h, HIST_FILTER__THREAD); } } static bool hists__filter_entry_by_symbol(struct hists *hists, struct hist_entry *he) { if (hists->symbol_filter_str != NULL && (!he->ms.sym || strstr(he->ms.sym->name, hists->symbol_filter_str) == NULL)) { he->filtered |= (1 << HIST_FILTER__SYMBOL); return true; } return false; } void hists__filter_by_symbol(struct hists *hists) { struct rb_node *nd; hists->nr_entries = hists->stats.total_period = 0; hists->stats.nr_events[PERF_RECORD_SAMPLE] = 0; hists__reset_col_len(hists); for (nd = rb_first(&hists->entries); nd; nd = rb_next(nd)) { struct hist_entry *h = rb_entry(nd, struct hist_entry, rb_node); if (hists__filter_entry_by_symbol(hists, h)) continue; hists__remove_entry_filter(hists, h, HIST_FILTER__SYMBOL); } } int hist_entry__inc_addr_samples(struct hist_entry *he, int evidx, u64 ip) { return symbol__inc_addr_samples(he->ms.sym, he->ms.map, evidx, ip); } int hist_entry__annotate(struct hist_entry *he, size_t privsize) { return symbol__annotate(he->ms.sym, he->ms.map, privsize); } void hists__inc_nr_events(struct hists *hists, u32 type) { ++hists->stats.nr_events[0]; ++hists->stats.nr_events[type]; } static struct hist_entry *hists__add_dummy_entry(struct hists *hists, struct hist_entry *pair) { struct rb_node **p = &hists->entries.rb_node; struct rb_node *parent = NULL; struct hist_entry *he; int cmp; while (*p != NULL) { parent = *p; he = rb_entry(parent, struct hist_entry, rb_node); cmp = hist_entry__cmp(pair, he); if (!cmp) goto out; if (cmp < 0) p = &(*p)->rb_left; else p = &(*p)->rb_right; } he = hist_entry__new(pair); if (he) { memset(&he->stat, 0, sizeof(he->stat)); he->hists = hists; rb_link_node(&he->rb_node, parent, p); rb_insert_color(&he->rb_node, &hists->entries); hists__inc_nr_entries(hists, he); } out: return he; } static struct hist_entry *hists__find_entry(struct hists *hists, struct hist_entry *he) { struct rb_node *n = hists->entries.rb_node; while (n) { struct hist_entry *iter = rb_entry(n, struct hist_entry, rb_node); int64_t cmp = hist_entry__cmp(he, iter); if (cmp < 0) n = n->rb_left; else if (cmp > 0) n = n->rb_right; else return iter; } return NULL; } /* * Look for pairs to link to the leader buckets (hist_entries): */ void hists__match(struct hists *leader, struct hists *other) { struct rb_node *nd; struct hist_entry *pos, *pair; for (nd = rb_first(&leader->entries); nd; nd = rb_next(nd)) { pos = rb_entry(nd, struct hist_entry, rb_node); pair = hists__find_entry(other, pos); if (pair) hist_entry__add_pair(pos, pair); } } /* * Look for entries in the other hists that are not present in the leader, if * we find them, just add a dummy entry on the leader hists, with period=0, * nr_events=0, to serve as the list header. */ int hists__link(struct hists *leader, struct hists *other) { struct rb_node *nd; struct hist_entry *pos, *pair; for (nd = rb_first(&other->entries); nd; nd = rb_next(nd)) { pos = rb_entry(nd, struct hist_entry, rb_node); if (!hist_entry__has_pairs(pos)) { pair = hists__add_dummy_entry(leader, pos); if (pair == NULL) return -1; hist_entry__add_pair(pair, pos); } } return 0; }