/* * NAND Flash Controller Device Driver * Copyright © 2009-2010, Intel Corporation and its suppliers. * * This program is free software; you can redistribute it and/or modify it * under the terms and conditions of the GNU General Public License, * version 2, as published by the Free Software Foundation. * * This program is distributed in the hope it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for * more details. * * You should have received a copy of the GNU General Public License along with * this program; if not, write to the Free Software Foundation, Inc., * 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA. * */ #include #include #include #include #include #include #include #include "denali.h" MODULE_LICENSE("GPL"); /* * We define a module parameter that allows the user to override * the hardware and decide what timing mode should be used. */ #define NAND_DEFAULT_TIMINGS -1 static int onfi_timing_mode = NAND_DEFAULT_TIMINGS; module_param(onfi_timing_mode, int, S_IRUGO); MODULE_PARM_DESC(onfi_timing_mode, "Overrides default ONFI setting. -1 indicates use default timings"); #define DENALI_NAND_NAME "denali-nand" /* * We define a macro here that combines all interrupts this driver uses into * a single constant value, for convenience. */ #define DENALI_IRQ_ALL (INTR__DMA_CMD_COMP | \ INTR__ECC_TRANSACTION_DONE | \ INTR__ECC_ERR | \ INTR__PROGRAM_FAIL | \ INTR__LOAD_COMP | \ INTR__PROGRAM_COMP | \ INTR__TIME_OUT | \ INTR__ERASE_FAIL | \ INTR__RST_COMP | \ INTR__ERASE_COMP) /* * indicates whether or not the internal value for the flash bank is * valid or not */ #define CHIP_SELECT_INVALID -1 /* * This macro divides two integers and rounds fractional values up * to the nearest integer value. */ #define CEIL_DIV(X, Y) (((X)%(Y)) ? ((X)/(Y)+1) : ((X)/(Y))) /* * this macro allows us to convert from an MTD structure to our own * device context (denali) structure. */ static inline struct denali_nand_info *mtd_to_denali(struct mtd_info *mtd) { return container_of(mtd_to_nand(mtd), struct denali_nand_info, nand); } /* * These constants are defined by the driver to enable common driver * configuration options. */ #define SPARE_ACCESS 0x41 #define MAIN_ACCESS 0x42 #define MAIN_SPARE_ACCESS 0x43 #define DENALI_READ 0 #define DENALI_WRITE 0x100 /* * this is a helper macro that allows us to * format the bank into the proper bits for the controller */ #define BANK(x) ((x) << 24) /* forward declarations */ static void clear_interrupts(struct denali_nand_info *denali); static uint32_t wait_for_irq(struct denali_nand_info *denali, uint32_t irq_mask); static void denali_irq_enable(struct denali_nand_info *denali, uint32_t int_mask); static uint32_t read_interrupt_status(struct denali_nand_info *denali); /* * Certain operations for the denali NAND controller use an indexed mode to * read/write data. The operation is performed by writing the address value * of the command to the device memory followed by the data. This function * abstracts this common operation. */ static void index_addr(struct denali_nand_info *denali, uint32_t address, uint32_t data) { iowrite32(address, denali->flash_mem); iowrite32(data, denali->flash_mem + 0x10); } /* Perform an indexed read of the device */ static void index_addr_read_data(struct denali_nand_info *denali, uint32_t address, uint32_t *pdata) { iowrite32(address, denali->flash_mem); *pdata = ioread32(denali->flash_mem + 0x10); } /* * We need to buffer some data for some of the NAND core routines. * The operations manage buffering that data. */ static void reset_buf(struct denali_nand_info *denali) { denali->buf.head = denali->buf.tail = 0; } static void write_byte_to_buf(struct denali_nand_info *denali, uint8_t byte) { denali->buf.buf[denali->buf.tail++] = byte; } /* reads the status of the device */ static void read_status(struct denali_nand_info *denali) { uint32_t cmd; /* initialize the data buffer to store status */ reset_buf(denali); cmd = ioread32(denali->flash_reg + WRITE_PROTECT); if (cmd) write_byte_to_buf(denali, NAND_STATUS_WP); else write_byte_to_buf(denali, 0); } /* resets a specific device connected to the core */ static void reset_bank(struct denali_nand_info *denali) { uint32_t irq_status; uint32_t irq_mask = INTR__RST_COMP | INTR__TIME_OUT; clear_interrupts(denali); iowrite32(1 << denali->flash_bank, denali->flash_reg + DEVICE_RESET); irq_status = wait_for_irq(denali, irq_mask); if (irq_status & INTR__TIME_OUT) dev_err(denali->dev, "reset bank failed.\n"); } /* Reset the flash controller */ static uint16_t denali_nand_reset(struct denali_nand_info *denali) { int i; for (i = 0; i < denali->max_banks; i++) iowrite32(INTR__RST_COMP | INTR__TIME_OUT, denali->flash_reg + INTR_STATUS(i)); for (i = 0; i < denali->max_banks; i++) { iowrite32(1 << i, denali->flash_reg + DEVICE_RESET); while (!(ioread32(denali->flash_reg + INTR_STATUS(i)) & (INTR__RST_COMP | INTR__TIME_OUT))) cpu_relax(); if (ioread32(denali->flash_reg + INTR_STATUS(i)) & INTR__TIME_OUT) dev_dbg(denali->dev, "NAND Reset operation timed out on bank %d\n", i); } for (i = 0; i < denali->max_banks; i++) iowrite32(INTR__RST_COMP | INTR__TIME_OUT, denali->flash_reg + INTR_STATUS(i)); return PASS; } /* * this routine calculates the ONFI timing values for a given mode and * programs the clocking register accordingly. The mode is determined by * the get_onfi_nand_para routine. */ static void nand_onfi_timing_set(struct denali_nand_info *denali, uint16_t mode) { uint16_t Trea[6] = {40, 30, 25, 20, 20, 16}; uint16_t Trp[6] = {50, 25, 17, 15, 12, 10}; uint16_t Treh[6] = {30, 15, 15, 10, 10, 7}; uint16_t Trc[6] = {100, 50, 35, 30, 25, 20}; uint16_t Trhoh[6] = {0, 15, 15, 15, 15, 15}; uint16_t Trloh[6] = {0, 0, 0, 0, 5, 5}; uint16_t Tcea[6] = {100, 45, 30, 25, 25, 25}; uint16_t Tadl[6] = {200, 100, 100, 100, 70, 70}; uint16_t Trhw[6] = {200, 100, 100, 100, 100, 100}; uint16_t Trhz[6] = {200, 100, 100, 100, 100, 100}; uint16_t Twhr[6] = {120, 80, 80, 60, 60, 60}; uint16_t Tcs[6] = {70, 35, 25, 25, 20, 15}; uint16_t data_invalid_rhoh, data_invalid_rloh, data_invalid; uint16_t dv_window = 0; uint16_t en_lo, en_hi; uint16_t acc_clks; uint16_t addr_2_data, re_2_we, re_2_re, we_2_re, cs_cnt; en_lo = CEIL_DIV(Trp[mode], CLK_X); en_hi = CEIL_DIV(Treh[mode], CLK_X); #if ONFI_BLOOM_TIME if ((en_hi * CLK_X) < (Treh[mode] + 2)) en_hi++; #endif if ((en_lo + en_hi) * CLK_X < Trc[mode]) en_lo += CEIL_DIV((Trc[mode] - (en_lo + en_hi) * CLK_X), CLK_X); if ((en_lo + en_hi) < CLK_MULTI) en_lo += CLK_MULTI - en_lo - en_hi; while (dv_window < 8) { data_invalid_rhoh = en_lo * CLK_X + Trhoh[mode]; data_invalid_rloh = (en_lo + en_hi) * CLK_X + Trloh[mode]; data_invalid = data_invalid_rhoh < data_invalid_rloh ? data_invalid_rhoh : data_invalid_rloh; dv_window = data_invalid - Trea[mode]; if (dv_window < 8) en_lo++; } acc_clks = CEIL_DIV(Trea[mode], CLK_X); while (acc_clks * CLK_X - Trea[mode] < 3) acc_clks++; if (data_invalid - acc_clks * CLK_X < 2) dev_warn(denali->dev, "%s, Line %d: Warning!\n", __FILE__, __LINE__); addr_2_data = CEIL_DIV(Tadl[mode], CLK_X); re_2_we = CEIL_DIV(Trhw[mode], CLK_X); re_2_re = CEIL_DIV(Trhz[mode], CLK_X); we_2_re = CEIL_DIV(Twhr[mode], CLK_X); cs_cnt = CEIL_DIV((Tcs[mode] - Trp[mode]), CLK_X); if (cs_cnt == 0) cs_cnt = 1; if (Tcea[mode]) { while (cs_cnt * CLK_X + Trea[mode] < Tcea[mode]) cs_cnt++; } #if MODE5_WORKAROUND if (mode == 5) acc_clks = 5; #endif /* Sighting 3462430: Temporary hack for MT29F128G08CJABAWP:B */ if (ioread32(denali->flash_reg + MANUFACTURER_ID) == 0 && ioread32(denali->flash_reg + DEVICE_ID) == 0x88) acc_clks = 6; iowrite32(acc_clks, denali->flash_reg + ACC_CLKS); iowrite32(re_2_we, denali->flash_reg + RE_2_WE); iowrite32(re_2_re, denali->flash_reg + RE_2_RE); iowrite32(we_2_re, denali->flash_reg + WE_2_RE); iowrite32(addr_2_data, denali->flash_reg + ADDR_2_DATA); iowrite32(en_lo, denali->flash_reg + RDWR_EN_LO_CNT); iowrite32(en_hi, denali->flash_reg + RDWR_EN_HI_CNT); iowrite32(cs_cnt, denali->flash_reg + CS_SETUP_CNT); } /* queries the NAND device to see what ONFI modes it supports. */ static uint16_t get_onfi_nand_para(struct denali_nand_info *denali) { int i; /* * we needn't to do a reset here because driver has already * reset all the banks before */ if (!(ioread32(denali->flash_reg + ONFI_TIMING_MODE) & ONFI_TIMING_MODE__VALUE)) return FAIL; for (i = 5; i > 0; i--) { if (ioread32(denali->flash_reg + ONFI_TIMING_MODE) & (0x01 << i)) break; } nand_onfi_timing_set(denali, i); /* * By now, all the ONFI devices we know support the page cache * rw feature. So here we enable the pipeline_rw_ahead feature */ /* iowrite32(1, denali->flash_reg + CACHE_WRITE_ENABLE); */ /* iowrite32(1, denali->flash_reg + CACHE_READ_ENABLE); */ return PASS; } static void get_samsung_nand_para(struct denali_nand_info *denali, uint8_t device_id) { if (device_id == 0xd3) { /* Samsung K9WAG08U1A */ /* Set timing register values according to datasheet */ iowrite32(5, denali->flash_reg + ACC_CLKS); iowrite32(20, denali->flash_reg + RE_2_WE); iowrite32(12, denali->flash_reg + WE_2_RE); iowrite32(14, denali->flash_reg + ADDR_2_DATA); iowrite32(3, denali->flash_reg + RDWR_EN_LO_CNT); iowrite32(2, denali->flash_reg + RDWR_EN_HI_CNT); iowrite32(2, denali->flash_reg + CS_SETUP_CNT); } } static void get_toshiba_nand_para(struct denali_nand_info *denali) { /* * Workaround to fix a controller bug which reports a wrong * spare area size for some kind of Toshiba NAND device */ if ((ioread32(denali->flash_reg + DEVICE_MAIN_AREA_SIZE) == 4096) && (ioread32(denali->flash_reg + DEVICE_SPARE_AREA_SIZE) == 64)) iowrite32(216, denali->flash_reg + DEVICE_SPARE_AREA_SIZE); } static void get_hynix_nand_para(struct denali_nand_info *denali, uint8_t device_id) { switch (device_id) { case 0xD5: /* Hynix H27UAG8T2A, H27UBG8U5A or H27UCG8VFA */ case 0xD7: /* Hynix H27UDG8VEM, H27UCG8UDM or H27UCG8V5A */ iowrite32(128, denali->flash_reg + PAGES_PER_BLOCK); iowrite32(4096, denali->flash_reg + DEVICE_MAIN_AREA_SIZE); iowrite32(224, denali->flash_reg + DEVICE_SPARE_AREA_SIZE); iowrite32(0, denali->flash_reg + DEVICE_WIDTH); break; default: dev_warn(denali->dev, "Unknown Hynix NAND (Device ID: 0x%x).\n" "Will use default parameter values instead.\n", device_id); } } /* * determines how many NAND chips are connected to the controller. Note for * Intel CE4100 devices we don't support more than one device. */ static void find_valid_banks(struct denali_nand_info *denali) { uint32_t id[denali->max_banks]; int i; denali->total_used_banks = 1; for (i = 0; i < denali->max_banks; i++) { index_addr(denali, MODE_11 | (i << 24) | 0, 0x90); index_addr(denali, MODE_11 | (i << 24) | 1, 0); index_addr_read_data(denali, MODE_11 | (i << 24) | 2, &id[i]); dev_dbg(denali->dev, "Return 1st ID for bank[%d]: %x\n", i, id[i]); if (i == 0) { if (!(id[i] & 0x0ff)) break; /* WTF? */ } else { if ((id[i] & 0x0ff) == (id[0] & 0x0ff)) denali->total_used_banks++; else break; } } if (denali->platform == INTEL_CE4100) { /* * Platform limitations of the CE4100 device limit * users to a single chip solution for NAND. * Multichip support is not enabled. */ if (denali->total_used_banks != 1) { dev_err(denali->dev, "Sorry, Intel CE4100 only supports a single NAND device.\n"); BUG(); } } dev_dbg(denali->dev, "denali->total_used_banks: %d\n", denali->total_used_banks); } /* * Use the configuration feature register to determine the maximum number of * banks that the hardware supports. */ static void detect_max_banks(struct denali_nand_info *denali) { uint32_t features = ioread32(denali->flash_reg + FEATURES); denali->max_banks = 1 << (features & FEATURES__N_BANKS); /* the encoding changed from rev 5.0 to 5.1 */ if (denali->revision < 0x0501) denali->max_banks <<= 1; } static uint16_t denali_nand_timing_set(struct denali_nand_info *denali) { uint16_t status = PASS; uint32_t id_bytes[8], addr; uint8_t maf_id, device_id; int i; /* * Use read id method to get device ID and other params. * For some NAND chips, controller can't report the correct * device ID by reading from DEVICE_ID register */ addr = MODE_11 | BANK(denali->flash_bank); index_addr(denali, addr | 0, 0x90); index_addr(denali, addr | 1, 0); for (i = 0; i < 8; i++) index_addr_read_data(denali, addr | 2, &id_bytes[i]); maf_id = id_bytes[0]; device_id = id_bytes[1]; if (ioread32(denali->flash_reg + ONFI_DEVICE_NO_OF_LUNS) & ONFI_DEVICE_NO_OF_LUNS__ONFI_DEVICE) { /* ONFI 1.0 NAND */ if (FAIL == get_onfi_nand_para(denali)) return FAIL; } else if (maf_id == 0xEC) { /* Samsung NAND */ get_samsung_nand_para(denali, device_id); } else if (maf_id == 0x98) { /* Toshiba NAND */ get_toshiba_nand_para(denali); } else if (maf_id == 0xAD) { /* Hynix NAND */ get_hynix_nand_para(denali, device_id); } dev_info(denali->dev, "Dump timing register values:\n" "acc_clks: %d, re_2_we: %d, re_2_re: %d\n" "we_2_re: %d, addr_2_data: %d, rdwr_en_lo_cnt: %d\n" "rdwr_en_hi_cnt: %d, cs_setup_cnt: %d\n", ioread32(denali->flash_reg + ACC_CLKS), ioread32(denali->flash_reg + RE_2_WE), ioread32(denali->flash_reg + RE_2_RE), ioread32(denali->flash_reg + WE_2_RE), ioread32(denali->flash_reg + ADDR_2_DATA), ioread32(denali->flash_reg + RDWR_EN_LO_CNT), ioread32(denali->flash_reg + RDWR_EN_HI_CNT), ioread32(denali->flash_reg + CS_SETUP_CNT)); find_valid_banks(denali); /* * If the user specified to override the default timings * with a specific ONFI mode, we apply those changes here. */ if (onfi_timing_mode != NAND_DEFAULT_TIMINGS) nand_onfi_timing_set(denali, onfi_timing_mode); return status; } static void denali_set_intr_modes(struct denali_nand_info *denali, uint16_t INT_ENABLE) { if (INT_ENABLE) iowrite32(1, denali->flash_reg + GLOBAL_INT_ENABLE); else iowrite32(0, denali->flash_reg + GLOBAL_INT_ENABLE); } /* * validation function to verify that the controlling software is making * a valid request */ static inline bool is_flash_bank_valid(int flash_bank) { return flash_bank >= 0 && flash_bank < 4; } static void denali_irq_init(struct denali_nand_info *denali) { uint32_t int_mask; int i; /* Disable global interrupts */ denali_set_intr_modes(denali, false); int_mask = DENALI_IRQ_ALL; /* Clear all status bits */ for (i = 0; i < denali->max_banks; ++i) iowrite32(0xFFFF, denali->flash_reg + INTR_STATUS(i)); denali_irq_enable(denali, int_mask); } static void denali_irq_cleanup(int irqnum, struct denali_nand_info *denali) { denali_set_intr_modes(denali, false); } static void denali_irq_enable(struct denali_nand_info *denali, uint32_t int_mask) { int i; for (i = 0; i < denali->max_banks; ++i) iowrite32(int_mask, denali->flash_reg + INTR_EN(i)); } /* * This function only returns when an interrupt that this driver cares about * occurs. This is to reduce the overhead of servicing interrupts */ static inline uint32_t denali_irq_detected(struct denali_nand_info *denali) { return read_interrupt_status(denali) & DENALI_IRQ_ALL; } /* Interrupts are cleared by writing a 1 to the appropriate status bit */ static inline void clear_interrupt(struct denali_nand_info *denali, uint32_t irq_mask) { uint32_t intr_status_reg; intr_status_reg = INTR_STATUS(denali->flash_bank); iowrite32(irq_mask, denali->flash_reg + intr_status_reg); } static void clear_interrupts(struct denali_nand_info *denali) { uint32_t status; spin_lock_irq(&denali->irq_lock); status = read_interrupt_status(denali); clear_interrupt(denali, status); denali->irq_status = 0x0; spin_unlock_irq(&denali->irq_lock); } static uint32_t read_interrupt_status(struct denali_nand_info *denali) { uint32_t intr_status_reg; intr_status_reg = INTR_STATUS(denali->flash_bank); return ioread32(denali->flash_reg + intr_status_reg); } /* * This is the interrupt service routine. It handles all interrupts * sent to this device. Note that on CE4100, this is a shared interrupt. */ static irqreturn_t denali_isr(int irq, void *dev_id) { struct denali_nand_info *denali = dev_id; uint32_t irq_status; irqreturn_t result = IRQ_NONE; spin_lock(&denali->irq_lock); /* check to see if a valid NAND chip has been selected. */ if (is_flash_bank_valid(denali->flash_bank)) { /* * check to see if controller generated the interrupt, * since this is a shared interrupt */ irq_status = denali_irq_detected(denali); if (irq_status != 0) { /* handle interrupt */ /* first acknowledge it */ clear_interrupt(denali, irq_status); /* * store the status in the device context for someone * to read */ denali->irq_status |= irq_status; /* notify anyone who cares that it happened */ complete(&denali->complete); /* tell the OS that we've handled this */ result = IRQ_HANDLED; } } spin_unlock(&denali->irq_lock); return result; } static uint32_t wait_for_irq(struct denali_nand_info *denali, uint32_t irq_mask) { unsigned long comp_res; uint32_t intr_status; unsigned long timeout = msecs_to_jiffies(1000); do { comp_res = wait_for_completion_timeout(&denali->complete, timeout); spin_lock_irq(&denali->irq_lock); intr_status = denali->irq_status; if (intr_status & irq_mask) { denali->irq_status &= ~irq_mask; spin_unlock_irq(&denali->irq_lock); /* our interrupt was detected */ break; } /* * these are not the interrupts you are looking for - * need to wait again */ spin_unlock_irq(&denali->irq_lock); } while (comp_res != 0); if (comp_res == 0) { /* timeout */ pr_err("timeout occurred, status = 0x%x, mask = 0x%x\n", intr_status, irq_mask); intr_status = 0; } return intr_status; } /* * This helper function setups the registers for ECC and whether or not * the spare area will be transferred. */ static void setup_ecc_for_xfer(struct denali_nand_info *denali, bool ecc_en, bool transfer_spare) { int ecc_en_flag, transfer_spare_flag; /* set ECC, transfer spare bits if needed */ ecc_en_flag = ecc_en ? ECC_ENABLE__FLAG : 0; transfer_spare_flag = transfer_spare ? TRANSFER_SPARE_REG__FLAG : 0; /* Enable spare area/ECC per user's request. */ iowrite32(ecc_en_flag, denali->flash_reg + ECC_ENABLE); iowrite32(transfer_spare_flag, denali->flash_reg + TRANSFER_SPARE_REG); } /* * sends a pipeline command operation to the controller. See the Denali NAND * controller's user guide for more information (section 4.2.3.6). */ static int denali_send_pipeline_cmd(struct denali_nand_info *denali, bool ecc_en, bool transfer_spare, int access_type, int op) { int status = PASS; uint32_t addr, cmd; setup_ecc_for_xfer(denali, ecc_en, transfer_spare); clear_interrupts(denali); addr = BANK(denali->flash_bank) | denali->page; if (op == DENALI_WRITE && access_type != SPARE_ACCESS) { cmd = MODE_01 | addr; iowrite32(cmd, denali->flash_mem); } else if (op == DENALI_WRITE && access_type == SPARE_ACCESS) { /* read spare area */ cmd = MODE_10 | addr; index_addr(denali, cmd, access_type); cmd = MODE_01 | addr; iowrite32(cmd, denali->flash_mem); } else if (op == DENALI_READ) { /* setup page read request for access type */ cmd = MODE_10 | addr; index_addr(denali, cmd, access_type); cmd = MODE_01 | addr; iowrite32(cmd, denali->flash_mem); } return status; } /* helper function that simply writes a buffer to the flash */ static int write_data_to_flash_mem(struct denali_nand_info *denali, const uint8_t *buf, int len) { uint32_t *buf32; int i; /* * verify that the len is a multiple of 4. * see comment in read_data_from_flash_mem() */ BUG_ON((len % 4) != 0); /* write the data to the flash memory */ buf32 = (uint32_t *)buf; for (i = 0; i < len / 4; i++) iowrite32(*buf32++, denali->flash_mem + 0x10); return i * 4; /* intent is to return the number of bytes read */ } /* helper function that simply reads a buffer from the flash */ static int read_data_from_flash_mem(struct denali_nand_info *denali, uint8_t *buf, int len) { uint32_t *buf32; int i; /* * we assume that len will be a multiple of 4, if not it would be nice * to know about it ASAP rather than have random failures... * This assumption is based on the fact that this function is designed * to be used to read flash pages, which are typically multiples of 4. */ BUG_ON((len % 4) != 0); /* transfer the data from the flash */ buf32 = (uint32_t *)buf; for (i = 0; i < len / 4; i++) *buf32++ = ioread32(denali->flash_mem + 0x10); return i * 4; /* intent is to return the number of bytes read */ } /* writes OOB data to the device */ static int write_oob_data(struct mtd_info *mtd, uint8_t *buf, int page) { struct denali_nand_info *denali = mtd_to_denali(mtd); uint32_t irq_status; uint32_t irq_mask = INTR__PROGRAM_COMP | INTR__PROGRAM_FAIL; int status = 0; denali->page = page; if (denali_send_pipeline_cmd(denali, false, false, SPARE_ACCESS, DENALI_WRITE) == PASS) { write_data_to_flash_mem(denali, buf, mtd->oobsize); /* wait for operation to complete */ irq_status = wait_for_irq(denali, irq_mask); if (irq_status == 0) { dev_err(denali->dev, "OOB write failed\n"); status = -EIO; } } else { dev_err(denali->dev, "unable to send pipeline command\n"); status = -EIO; } return status; } /* reads OOB data from the device */ static void read_oob_data(struct mtd_info *mtd, uint8_t *buf, int page) { struct denali_nand_info *denali = mtd_to_denali(mtd); uint32_t irq_mask = INTR__LOAD_COMP; uint32_t irq_status, addr, cmd; denali->page = page; if (denali_send_pipeline_cmd(denali, false, true, SPARE_ACCESS, DENALI_READ) == PASS) { read_data_from_flash_mem(denali, buf, mtd->oobsize); /* * wait for command to be accepted * can always use status0 bit as the * mask is identical for each bank. */ irq_status = wait_for_irq(denali, irq_mask); if (irq_status == 0) dev_err(denali->dev, "page on OOB timeout %d\n", denali->page); /* * We set the device back to MAIN_ACCESS here as I observed * instability with the controller if you do a block erase * and the last transaction was a SPARE_ACCESS. Block erase * is reliable (according to the MTD test infrastructure) * if you are in MAIN_ACCESS. */ addr = BANK(denali->flash_bank) | denali->page; cmd = MODE_10 | addr; index_addr(denali, cmd, MAIN_ACCESS); } } static int denali_check_erased_page(struct mtd_info *mtd, struct nand_chip *chip, uint8_t *buf, unsigned long uncor_ecc_flags, unsigned int max_bitflips) { uint8_t *ecc_code = chip->buffers->ecccode; int ecc_steps = chip->ecc.steps; int ecc_size = chip->ecc.size; int ecc_bytes = chip->ecc.bytes; int i, ret, stat; ret = mtd_ooblayout_get_eccbytes(mtd, ecc_code, chip->oob_poi, 0, chip->ecc.total); if (ret) return ret; for (i = 0; i < ecc_steps; i++) { if (!(uncor_ecc_flags & BIT(i))) continue; stat = nand_check_erased_ecc_chunk(buf, ecc_size, ecc_code, ecc_bytes, NULL, 0, chip->ecc.strength); if (stat < 0) { mtd->ecc_stats.failed++; } else { mtd->ecc_stats.corrected += stat; max_bitflips = max_t(unsigned int, max_bitflips, stat); } buf += ecc_size; ecc_code += ecc_bytes; } return max_bitflips; } static int denali_hw_ecc_fixup(struct mtd_info *mtd, struct denali_nand_info *denali, unsigned long *uncor_ecc_flags) { struct nand_chip *chip = mtd_to_nand(mtd); int bank = denali->flash_bank; uint32_t ecc_cor; unsigned int max_bitflips; ecc_cor = ioread32(denali->flash_reg + ECC_COR_INFO(bank)); ecc_cor >>= ECC_COR_INFO__SHIFT(bank); if (ecc_cor & ECC_COR_INFO__UNCOR_ERR) { /* * This flag is set when uncorrectable error occurs at least in * one ECC sector. We can not know "how many sectors", or * "which sector(s)". We need erase-page check for all sectors. */ *uncor_ecc_flags = GENMASK(chip->ecc.steps - 1, 0); return 0; } max_bitflips = ecc_cor & ECC_COR_INFO__MAX_ERRORS; /* * The register holds the maximum of per-sector corrected bitflips. * This is suitable for the return value of the ->read_page() callback. * Unfortunately, we can not know the total number of corrected bits in * the page. Increase the stats by max_bitflips. (compromised solution) */ mtd->ecc_stats.corrected += max_bitflips; return max_bitflips; } #define ECC_SECTOR_SIZE 512 #define ECC_SECTOR(x) (((x) & ECC_ERROR_ADDRESS__SECTOR_NR) >> 12) #define ECC_BYTE(x) (((x) & ECC_ERROR_ADDRESS__OFFSET)) #define ECC_CORRECTION_VALUE(x) ((x) & ERR_CORRECTION_INFO__BYTEMASK) #define ECC_ERROR_UNCORRECTABLE(x) ((x) & ERR_CORRECTION_INFO__ERROR_TYPE) #define ECC_ERR_DEVICE(x) (((x) & ERR_CORRECTION_INFO__DEVICE_NR) >> 8) #define ECC_LAST_ERR(x) ((x) & ERR_CORRECTION_INFO__LAST_ERR_INFO) static int denali_sw_ecc_fixup(struct mtd_info *mtd, struct denali_nand_info *denali, unsigned long *uncor_ecc_flags, uint8_t *buf) { unsigned int bitflips = 0; unsigned int max_bitflips = 0; uint32_t err_addr, err_cor_info; unsigned int err_byte, err_sector, err_device; uint8_t err_cor_value; unsigned int prev_sector = 0; /* read the ECC errors. we'll ignore them for now */ denali_set_intr_modes(denali, false); do { err_addr = ioread32(denali->flash_reg + ECC_ERROR_ADDRESS); err_sector = ECC_SECTOR(err_addr); err_byte = ECC_BYTE(err_addr); err_cor_info = ioread32(denali->flash_reg + ERR_CORRECTION_INFO); err_cor_value = ECC_CORRECTION_VALUE(err_cor_info); err_device = ECC_ERR_DEVICE(err_cor_info); /* reset the bitflip counter when crossing ECC sector */ if (err_sector != prev_sector) bitflips = 0; if (ECC_ERROR_UNCORRECTABLE(err_cor_info)) { /* * Check later if this is a real ECC error, or * an erased sector. */ *uncor_ecc_flags |= BIT(err_sector); } else if (err_byte < ECC_SECTOR_SIZE) { /* * If err_byte is larger than ECC_SECTOR_SIZE, means error * happened in OOB, so we ignore it. It's no need for * us to correct it err_device is represented the NAND * error bits are happened in if there are more than * one NAND connected. */ int offset; unsigned int flips_in_byte; offset = (err_sector * ECC_SECTOR_SIZE + err_byte) * denali->devnum + err_device; /* correct the ECC error */ flips_in_byte = hweight8(buf[offset] ^ err_cor_value); buf[offset] ^= err_cor_value; mtd->ecc_stats.corrected += flips_in_byte; bitflips += flips_in_byte; max_bitflips = max(max_bitflips, bitflips); } prev_sector = err_sector; } while (!ECC_LAST_ERR(err_cor_info)); /* * Once handle all ecc errors, controller will trigger a * ECC_TRANSACTION_DONE interrupt, so here just wait for * a while for this interrupt */ while (!(read_interrupt_status(denali) & INTR__ECC_TRANSACTION_DONE)) cpu_relax(); clear_interrupts(denali); denali_set_intr_modes(denali, true); return max_bitflips; } /* programs the controller to either enable/disable DMA transfers */ static void denali_enable_dma(struct denali_nand_info *denali, bool en) { iowrite32(en ? DMA_ENABLE__FLAG : 0, denali->flash_reg + DMA_ENABLE); ioread32(denali->flash_reg + DMA_ENABLE); } static void denali_setup_dma64(struct denali_nand_info *denali, int op) { uint32_t mode; const int page_count = 1; uint64_t addr = denali->buf.dma_buf; mode = MODE_10 | BANK(denali->flash_bank) | denali->page; /* DMA is a three step process */ /* * 1. setup transfer type, interrupt when complete, * burst len = 64 bytes, the number of pages */ index_addr(denali, mode, 0x01002000 | (64 << 16) | op | page_count); /* 2. set memory low address */ index_addr(denali, mode, addr); /* 3. set memory high address */ index_addr(denali, mode, addr >> 32); } static void denali_setup_dma32(struct denali_nand_info *denali, int op) { uint32_t mode; const int page_count = 1; uint32_t addr = denali->buf.dma_buf; mode = MODE_10 | BANK(denali->flash_bank); /* DMA is a four step process */ /* 1. setup transfer type and # of pages */ index_addr(denali, mode | denali->page, 0x2000 | op | page_count); /* 2. set memory high address bits 23:8 */ index_addr(denali, mode | ((addr >> 16) << 8), 0x2200); /* 3. set memory low address bits 23:8 */ index_addr(denali, mode | ((addr & 0xffff) << 8), 0x2300); /* 4. interrupt when complete, burst len = 64 bytes */ index_addr(denali, mode | 0x14000, 0x2400); } static void denali_setup_dma(struct denali_nand_info *denali, int op) { if (denali->caps & DENALI_CAP_DMA_64BIT) denali_setup_dma64(denali, op); else denali_setup_dma32(denali, op); } /* * writes a page. user specifies type, and this function handles the * configuration details. */ static int write_page(struct mtd_info *mtd, struct nand_chip *chip, const uint8_t *buf, bool raw_xfer) { struct denali_nand_info *denali = mtd_to_denali(mtd); dma_addr_t addr = denali->buf.dma_buf; size_t size = mtd->writesize + mtd->oobsize; uint32_t irq_status; uint32_t irq_mask = INTR__DMA_CMD_COMP | INTR__PROGRAM_FAIL; /* * if it is a raw xfer, we want to disable ecc and send the spare area. * !raw_xfer - enable ecc * raw_xfer - transfer spare */ setup_ecc_for_xfer(denali, !raw_xfer, raw_xfer); /* copy buffer into DMA buffer */ memcpy(denali->buf.buf, buf, mtd->writesize); if (raw_xfer) { /* transfer the data to the spare area */ memcpy(denali->buf.buf + mtd->writesize, chip->oob_poi, mtd->oobsize); } dma_sync_single_for_device(denali->dev, addr, size, DMA_TO_DEVICE); clear_interrupts(denali); denali_enable_dma(denali, true); denali_setup_dma(denali, DENALI_WRITE); /* wait for operation to complete */ irq_status = wait_for_irq(denali, irq_mask); if (irq_status == 0) { dev_err(denali->dev, "timeout on write_page (type = %d)\n", raw_xfer); denali->status = NAND_STATUS_FAIL; } denali_enable_dma(denali, false); dma_sync_single_for_cpu(denali->dev, addr, size, DMA_TO_DEVICE); return 0; } /* NAND core entry points */ /* * this is the callback that the NAND core calls to write a page. Since * writing a page with ECC or without is similar, all the work is done * by write_page above. */ static int denali_write_page(struct mtd_info *mtd, struct nand_chip *chip, const uint8_t *buf, int oob_required, int page) { /* * for regular page writes, we let HW handle all the ECC * data written to the device. */ return write_page(mtd, chip, buf, false); } /* * This is the callback that the NAND core calls to write a page without ECC. * raw access is similar to ECC page writes, so all the work is done in the * write_page() function above. */ static int denali_write_page_raw(struct mtd_info *mtd, struct nand_chip *chip, const uint8_t *buf, int oob_required, int page) { /* * for raw page writes, we want to disable ECC and simply write * whatever data is in the buffer. */ return write_page(mtd, chip, buf, true); } static int denali_write_oob(struct mtd_info *mtd, struct nand_chip *chip, int page) { return write_oob_data(mtd, chip->oob_poi, page); } static int denali_read_oob(struct mtd_info *mtd, struct nand_chip *chip, int page) { read_oob_data(mtd, chip->oob_poi, page); return 0; } static int denali_read_page(struct mtd_info *mtd, struct nand_chip *chip, uint8_t *buf, int oob_required, int page) { struct denali_nand_info *denali = mtd_to_denali(mtd); dma_addr_t addr = denali->buf.dma_buf; size_t size = mtd->writesize + mtd->oobsize; uint32_t irq_status; uint32_t irq_mask = denali->caps & DENALI_CAP_HW_ECC_FIXUP ? INTR__DMA_CMD_COMP | INTR__ECC_UNCOR_ERR : INTR__ECC_TRANSACTION_DONE | INTR__ECC_ERR; unsigned long uncor_ecc_flags = 0; int stat = 0; if (page != denali->page) { dev_err(denali->dev, "IN %s: page %d is not equal to denali->page %d", __func__, page, denali->page); BUG(); } setup_ecc_for_xfer(denali, true, false); denali_enable_dma(denali, true); dma_sync_single_for_device(denali->dev, addr, size, DMA_FROM_DEVICE); clear_interrupts(denali); denali_setup_dma(denali, DENALI_READ); /* wait for operation to complete */ irq_status = wait_for_irq(denali, irq_mask); dma_sync_single_for_cpu(denali->dev, addr, size, DMA_FROM_DEVICE); memcpy(buf, denali->buf.buf, mtd->writesize); if (denali->caps & DENALI_CAP_HW_ECC_FIXUP) stat = denali_hw_ecc_fixup(mtd, denali, &uncor_ecc_flags); else if (irq_status & INTR__ECC_ERR) stat = denali_sw_ecc_fixup(mtd, denali, &uncor_ecc_flags, buf); denali_enable_dma(denali, false); if (stat < 0) return stat; if (uncor_ecc_flags) { read_oob_data(mtd, chip->oob_poi, denali->page); stat = denali_check_erased_page(mtd, chip, buf, uncor_ecc_flags, stat); } return stat; } static int denali_read_page_raw(struct mtd_info *mtd, struct nand_chip *chip, uint8_t *buf, int oob_required, int page) { struct denali_nand_info *denali = mtd_to_denali(mtd); dma_addr_t addr = denali->buf.dma_buf; size_t size = mtd->writesize + mtd->oobsize; uint32_t irq_mask = INTR__DMA_CMD_COMP; if (page != denali->page) { dev_err(denali->dev, "IN %s: page %d is not equal to denali->page %d", __func__, page, denali->page); BUG(); } setup_ecc_for_xfer(denali, false, true); denali_enable_dma(denali, true); dma_sync_single_for_device(denali->dev, addr, size, DMA_FROM_DEVICE); clear_interrupts(denali); denali_setup_dma(denali, DENALI_READ); /* wait for operation to complete */ wait_for_irq(denali, irq_mask); dma_sync_single_for_cpu(denali->dev, addr, size, DMA_FROM_DEVICE); denali_enable_dma(denali, false); memcpy(buf, denali->buf.buf, mtd->writesize); memcpy(chip->oob_poi, denali->buf.buf + mtd->writesize, mtd->oobsize); return 0; } static uint8_t denali_read_byte(struct mtd_info *mtd) { struct denali_nand_info *denali = mtd_to_denali(mtd); uint8_t result = 0xff; if (denali->buf.head < denali->buf.tail) result = denali->buf.buf[denali->buf.head++]; return result; } static void denali_select_chip(struct mtd_info *mtd, int chip) { struct denali_nand_info *denali = mtd_to_denali(mtd); spin_lock_irq(&denali->irq_lock); denali->flash_bank = chip; spin_unlock_irq(&denali->irq_lock); } static int denali_waitfunc(struct mtd_info *mtd, struct nand_chip *chip) { struct denali_nand_info *denali = mtd_to_denali(mtd); int status = denali->status; denali->status = 0; return status; } static int denali_erase(struct mtd_info *mtd, int page) { struct denali_nand_info *denali = mtd_to_denali(mtd); uint32_t cmd, irq_status; clear_interrupts(denali); /* setup page read request for access type */ cmd = MODE_10 | BANK(denali->flash_bank) | page; index_addr(denali, cmd, 0x1); /* wait for erase to complete or failure to occur */ irq_status = wait_for_irq(denali, INTR__ERASE_COMP | INTR__ERASE_FAIL); return irq_status & INTR__ERASE_FAIL ? NAND_STATUS_FAIL : PASS; } static void denali_cmdfunc(struct mtd_info *mtd, unsigned int cmd, int col, int page) { struct denali_nand_info *denali = mtd_to_denali(mtd); uint32_t addr, id; int i; switch (cmd) { case NAND_CMD_PAGEPROG: break; case NAND_CMD_STATUS: read_status(denali); break; case NAND_CMD_READID: case NAND_CMD_PARAM: reset_buf(denali); /* * sometimes ManufactureId read from register is not right * e.g. some of Micron MT29F32G08QAA MLC NAND chips * So here we send READID cmd to NAND insteand */ addr = MODE_11 | BANK(denali->flash_bank); index_addr(denali, addr | 0, 0x90); index_addr(denali, addr | 1, col); for (i = 0; i < 8; i++) { index_addr_read_data(denali, addr | 2, &id); write_byte_to_buf(denali, id); } break; case NAND_CMD_READ0: case NAND_CMD_SEQIN: denali->page = page; break; case NAND_CMD_RESET: reset_bank(denali); break; case NAND_CMD_READOOB: /* TODO: Read OOB data */ break; default: pr_err(": unsupported command received 0x%x\n", cmd); break; } } /* end NAND core entry points */ /* Initialization code to bring the device up to a known good state */ static void denali_hw_init(struct denali_nand_info *denali) { /* * The REVISION register may not be reliable. Platforms are allowed to * override it. */ if (!denali->revision) denali->revision = swab16(ioread32(denali->flash_reg + REVISION)); /* * tell driver how many bit controller will skip before * writing ECC code in OOB, this register may be already * set by firmware. So we read this value out. * if this value is 0, just let it be. */ denali->bbtskipbytes = ioread32(denali->flash_reg + SPARE_AREA_SKIP_BYTES); detect_max_banks(denali); denali_nand_reset(denali); iowrite32(0x0F, denali->flash_reg + RB_PIN_ENABLED); iowrite32(CHIP_EN_DONT_CARE__FLAG, denali->flash_reg + CHIP_ENABLE_DONT_CARE); iowrite32(0xffff, denali->flash_reg + SPARE_AREA_MARKER); /* Should set value for these registers when init */ iowrite32(0, denali->flash_reg + TWO_ROW_ADDR_CYCLES); iowrite32(1, denali->flash_reg + ECC_ENABLE); denali_nand_timing_set(denali); denali_irq_init(denali); } /* * Althogh controller spec said SLC ECC is forceb to be 4bit, * but denali controller in MRST only support 15bit and 8bit ECC * correction */ #define ECC_8BITS 14 #define ECC_15BITS 26 static int denali_ooblayout_ecc(struct mtd_info *mtd, int section, struct mtd_oob_region *oobregion) { struct denali_nand_info *denali = mtd_to_denali(mtd); struct nand_chip *chip = mtd_to_nand(mtd); if (section) return -ERANGE; oobregion->offset = denali->bbtskipbytes; oobregion->length = chip->ecc.total; return 0; } static int denali_ooblayout_free(struct mtd_info *mtd, int section, struct mtd_oob_region *oobregion) { struct denali_nand_info *denali = mtd_to_denali(mtd); struct nand_chip *chip = mtd_to_nand(mtd); if (section) return -ERANGE; oobregion->offset = chip->ecc.total + denali->bbtskipbytes; oobregion->length = mtd->oobsize - oobregion->offset; return 0; } static const struct mtd_ooblayout_ops denali_ooblayout_ops = { .ecc = denali_ooblayout_ecc, .free = denali_ooblayout_free, }; static uint8_t bbt_pattern[] = {'B', 'b', 't', '0' }; static uint8_t mirror_pattern[] = {'1', 't', 'b', 'B' }; static struct nand_bbt_descr bbt_main_descr = { .options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE | NAND_BBT_2BIT | NAND_BBT_VERSION | NAND_BBT_PERCHIP, .offs = 8, .len = 4, .veroffs = 12, .maxblocks = 4, .pattern = bbt_pattern, }; static struct nand_bbt_descr bbt_mirror_descr = { .options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE | NAND_BBT_2BIT | NAND_BBT_VERSION | NAND_BBT_PERCHIP, .offs = 8, .len = 4, .veroffs = 12, .maxblocks = 4, .pattern = mirror_pattern, }; /* initialize driver data structures */ static void denali_drv_init(struct denali_nand_info *denali) { /* * the completion object will be used to notify * the callee that the interrupt is done */ init_completion(&denali->complete); /* * the spinlock will be used to synchronize the ISR with any * element that might be access shared data (interrupt status) */ spin_lock_init(&denali->irq_lock); /* indicate that MTD has not selected a valid bank yet */ denali->flash_bank = CHIP_SELECT_INVALID; /* initialize our irq_status variable to indicate no interrupts */ denali->irq_status = 0; } static int denali_multidev_fixup(struct denali_nand_info *denali) { struct nand_chip *chip = &denali->nand; struct mtd_info *mtd = nand_to_mtd(chip); /* * Support for multi device: * When the IP configuration is x16 capable and two x8 chips are * connected in parallel, DEVICES_CONNECTED should be set to 2. * In this case, the core framework knows nothing about this fact, * so we should tell it the _logical_ pagesize and anything necessary. */ denali->devnum = ioread32(denali->flash_reg + DEVICES_CONNECTED); /* * On some SoCs, DEVICES_CONNECTED is not auto-detected. * For those, DEVICES_CONNECTED is left to 0. Set 1 if it is the case. */ if (denali->devnum == 0) { denali->devnum = 1; iowrite32(1, denali->flash_reg + DEVICES_CONNECTED); } if (denali->devnum == 1) return 0; if (denali->devnum != 2) { dev_err(denali->dev, "unsupported number of devices %d\n", denali->devnum); return -EINVAL; } /* 2 chips in parallel */ mtd->size <<= 1; mtd->erasesize <<= 1; mtd->writesize <<= 1; mtd->oobsize <<= 1; chip->chipsize <<= 1; chip->page_shift += 1; chip->phys_erase_shift += 1; chip->bbt_erase_shift += 1; chip->chip_shift += 1; chip->pagemask <<= 1; chip->ecc.size <<= 1; chip->ecc.bytes <<= 1; chip->ecc.strength <<= 1; denali->bbtskipbytes <<= 1; return 0; } int denali_init(struct denali_nand_info *denali) { struct nand_chip *chip = &denali->nand; struct mtd_info *mtd = nand_to_mtd(chip); int ret; if (denali->platform == INTEL_CE4100) { /* * Due to a silicon limitation, we can only support * ONFI timing mode 1 and below. */ if (onfi_timing_mode < -1 || onfi_timing_mode > 1) { pr_err("Intel CE4100 only supports ONFI timing mode 1 or below\n"); return -EINVAL; } } /* allocate a temporary buffer for nand_scan_ident() */ denali->buf.buf = devm_kzalloc(denali->dev, PAGE_SIZE, GFP_DMA | GFP_KERNEL); if (!denali->buf.buf) return -ENOMEM; mtd->dev.parent = denali->dev; denali_hw_init(denali); denali_drv_init(denali); /* Request IRQ after all the hardware initialization is finished */ ret = devm_request_irq(denali->dev, denali->irq, denali_isr, IRQF_SHARED, DENALI_NAND_NAME, denali); if (ret) { dev_err(denali->dev, "Unable to request IRQ\n"); return ret; } /* now that our ISR is registered, we can enable interrupts */ denali_set_intr_modes(denali, true); nand_set_flash_node(chip, denali->dev->of_node); /* Fallback to the default name if DT did not give "label" property */ if (!mtd->name) mtd->name = "denali-nand"; /* register the driver with the NAND core subsystem */ chip->select_chip = denali_select_chip; chip->cmdfunc = denali_cmdfunc; chip->read_byte = denali_read_byte; chip->waitfunc = denali_waitfunc; chip->onfi_set_features = nand_onfi_get_set_features_notsupp; chip->onfi_get_features = nand_onfi_get_set_features_notsupp; /* * scan for NAND devices attached to the controller * this is the first stage in a two step process to register * with the nand subsystem */ ret = nand_scan_ident(mtd, denali->max_banks, NULL); if (ret) goto failed_req_irq; /* allocate the right size buffer now */ devm_kfree(denali->dev, denali->buf.buf); denali->buf.buf = devm_kzalloc(denali->dev, mtd->writesize + mtd->oobsize, GFP_KERNEL); if (!denali->buf.buf) { ret = -ENOMEM; goto failed_req_irq; } ret = dma_set_mask(denali->dev, DMA_BIT_MASK(denali->caps & DENALI_CAP_DMA_64BIT ? 64 : 32)); if (ret) { dev_err(denali->dev, "No usable DMA configuration\n"); goto failed_req_irq; } denali->buf.dma_buf = dma_map_single(denali->dev, denali->buf.buf, mtd->writesize + mtd->oobsize, DMA_BIDIRECTIONAL); if (dma_mapping_error(denali->dev, denali->buf.dma_buf)) { dev_err(denali->dev, "Failed to map DMA buffer\n"); ret = -EIO; goto failed_req_irq; } /* * second stage of the NAND scan * this stage requires information regarding ECC and * bad block management. */ /* Bad block management */ chip->bbt_td = &bbt_main_descr; chip->bbt_md = &bbt_mirror_descr; /* skip the scan for now until we have OOB read and write support */ chip->bbt_options |= NAND_BBT_USE_FLASH; chip->options |= NAND_SKIP_BBTSCAN; chip->ecc.mode = NAND_ECC_HW_SYNDROME; /* no subpage writes on denali */ chip->options |= NAND_NO_SUBPAGE_WRITE; /* * Denali Controller only support 15bit and 8bit ECC in MRST, * so just let controller do 15bit ECC for MLC and 8bit ECC for * SLC if possible. * */ if (!nand_is_slc(chip) && (mtd->oobsize > (denali->bbtskipbytes + ECC_15BITS * (mtd->writesize / ECC_SECTOR_SIZE)))) { /* if MLC OOB size is large enough, use 15bit ECC*/ chip->ecc.strength = 15; chip->ecc.bytes = ECC_15BITS; iowrite32(15, denali->flash_reg + ECC_CORRECTION); } else if (mtd->oobsize < (denali->bbtskipbytes + ECC_8BITS * (mtd->writesize / ECC_SECTOR_SIZE))) { pr_err("Your NAND chip OOB is not large enough to contain 8bit ECC correction codes"); goto failed_req_irq; } else { chip->ecc.strength = 8; chip->ecc.bytes = ECC_8BITS; iowrite32(8, denali->flash_reg + ECC_CORRECTION); } mtd_set_ooblayout(mtd, &denali_ooblayout_ops); /* override the default read operations */ chip->ecc.size = ECC_SECTOR_SIZE; chip->ecc.read_page = denali_read_page; chip->ecc.read_page_raw = denali_read_page_raw; chip->ecc.write_page = denali_write_page; chip->ecc.write_page_raw = denali_write_page_raw; chip->ecc.read_oob = denali_read_oob; chip->ecc.write_oob = denali_write_oob; chip->erase = denali_erase; ret = denali_multidev_fixup(denali); if (ret) goto failed_req_irq; ret = nand_scan_tail(mtd); if (ret) goto failed_req_irq; ret = mtd_device_register(mtd, NULL, 0); if (ret) { dev_err(denali->dev, "Failed to register MTD: %d\n", ret); goto failed_req_irq; } return 0; failed_req_irq: denali_irq_cleanup(denali->irq, denali); return ret; } EXPORT_SYMBOL(denali_init); /* driver exit point */ void denali_remove(struct denali_nand_info *denali) { struct mtd_info *mtd = nand_to_mtd(&denali->nand); /* * Pre-compute DMA buffer size to avoid any problems in case * nand_release() ever changes in a way that mtd->writesize and * mtd->oobsize are not reliable after this call. */ int bufsize = mtd->writesize + mtd->oobsize; nand_release(mtd); denali_irq_cleanup(denali->irq, denali); dma_unmap_single(denali->dev, denali->buf.dma_buf, bufsize, DMA_BIDIRECTIONAL); } EXPORT_SYMBOL(denali_remove);