/* * Performance events x86 architecture code * * Copyright (C) 2008 Thomas Gleixner * Copyright (C) 2008-2009 Red Hat, Inc., Ingo Molnar * Copyright (C) 2009 Jaswinder Singh Rajput * Copyright (C) 2009 Advanced Micro Devices, Inc., Robert Richter * Copyright (C) 2008-2009 Red Hat, Inc., Peter Zijlstra * Copyright (C) 2009 Intel Corporation, * Copyright (C) 2009 Google, Inc., Stephane Eranian * * For licencing details see kernel-base/COPYING */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include static u64 perf_event_mask __read_mostly; /* The maximal number of PEBS events: */ #define MAX_PEBS_EVENTS 4 /* The size of a BTS record in bytes: */ #define BTS_RECORD_SIZE 24 /* The size of a per-cpu BTS buffer in bytes: */ #define BTS_BUFFER_SIZE (BTS_RECORD_SIZE * 2048) /* The BTS overflow threshold in bytes from the end of the buffer: */ #define BTS_OVFL_TH (BTS_RECORD_SIZE * 128) /* * Bits in the debugctlmsr controlling branch tracing. */ #define X86_DEBUGCTL_TR (1 << 6) #define X86_DEBUGCTL_BTS (1 << 7) #define X86_DEBUGCTL_BTINT (1 << 8) #define X86_DEBUGCTL_BTS_OFF_OS (1 << 9) #define X86_DEBUGCTL_BTS_OFF_USR (1 << 10) /* * A debug store configuration. * * We only support architectures that use 64bit fields. */ struct debug_store { u64 bts_buffer_base; u64 bts_index; u64 bts_absolute_maximum; u64 bts_interrupt_threshold; u64 pebs_buffer_base; u64 pebs_index; u64 pebs_absolute_maximum; u64 pebs_interrupt_threshold; u64 pebs_event_reset[MAX_PEBS_EVENTS]; }; struct event_constraint { union { unsigned long idxmsk[BITS_TO_LONGS(X86_PMC_IDX_MAX)]; u64 idxmsk64[1]; }; int code; int cmask; int weight; }; struct cpu_hw_events { struct perf_event *events[X86_PMC_IDX_MAX]; /* in counter order */ unsigned long active_mask[BITS_TO_LONGS(X86_PMC_IDX_MAX)]; unsigned long interrupts; int enabled; struct debug_store *ds; int n_events; int n_added; int assign[X86_PMC_IDX_MAX]; /* event to counter assignment */ struct perf_event *event_list[X86_PMC_IDX_MAX]; /* in enabled order */ }; #define EVENT_CONSTRAINT(c, n, m) { \ { .idxmsk64[0] = (n) }, \ .code = (c), \ .cmask = (m), \ .weight = HWEIGHT64((u64)(n)), \ } #define INTEL_EVENT_CONSTRAINT(c, n) EVENT_CONSTRAINT(c, n, INTEL_ARCH_EVENT_MASK) #define FIXED_EVENT_CONSTRAINT(c, n) EVENT_CONSTRAINT(c, n, INTEL_ARCH_FIXED_MASK) #define EVENT_CONSTRAINT_END EVENT_CONSTRAINT(0, 0, 0) #define for_each_event_constraint(e, c) for ((e) = (c); (e)->cmask; (e)++) /* * struct x86_pmu - generic x86 pmu */ struct x86_pmu { const char *name; int version; int (*handle_irq)(struct pt_regs *); void (*disable_all)(void); void (*enable_all)(void); void (*enable)(struct hw_perf_event *, int); void (*disable)(struct hw_perf_event *, int); unsigned eventsel; unsigned perfctr; u64 (*event_map)(int); u64 (*raw_event)(u64); int max_events; int num_events; int num_events_fixed; int event_bits; u64 event_mask; int apic; u64 max_period; u64 intel_ctrl; void (*enable_bts)(u64 config); void (*disable_bts)(void); struct event_constraint * (*get_event_constraints)(struct cpu_hw_events *cpuc, struct perf_event *event); void (*put_event_constraints)(struct cpu_hw_events *cpuc, struct perf_event *event); struct event_constraint *event_constraints; }; static struct x86_pmu x86_pmu __read_mostly; static DEFINE_PER_CPU(struct cpu_hw_events, cpu_hw_events) = { .enabled = 1, }; static int x86_perf_event_set_period(struct perf_event *event, struct hw_perf_event *hwc, int idx); /* * Not sure about some of these */ static const u64 p6_perfmon_event_map[] = { [PERF_COUNT_HW_CPU_CYCLES] = 0x0079, [PERF_COUNT_HW_INSTRUCTIONS] = 0x00c0, [PERF_COUNT_HW_CACHE_REFERENCES] = 0x0f2e, [PERF_COUNT_HW_CACHE_MISSES] = 0x012e, [PERF_COUNT_HW_BRANCH_INSTRUCTIONS] = 0x00c4, [PERF_COUNT_HW_BRANCH_MISSES] = 0x00c5, [PERF_COUNT_HW_BUS_CYCLES] = 0x0062, }; static u64 p6_pmu_event_map(int hw_event) { return p6_perfmon_event_map[hw_event]; } /* * Event setting that is specified not to count anything. * We use this to effectively disable a counter. * * L2_RQSTS with 0 MESI unit mask. */ #define P6_NOP_EVENT 0x0000002EULL static u64 p6_pmu_raw_event(u64 hw_event) { #define P6_EVNTSEL_EVENT_MASK 0x000000FFULL #define P6_EVNTSEL_UNIT_MASK 0x0000FF00ULL #define P6_EVNTSEL_EDGE_MASK 0x00040000ULL #define P6_EVNTSEL_INV_MASK 0x00800000ULL #define P6_EVNTSEL_REG_MASK 0xFF000000ULL #define P6_EVNTSEL_MASK \ (P6_EVNTSEL_EVENT_MASK | \ P6_EVNTSEL_UNIT_MASK | \ P6_EVNTSEL_EDGE_MASK | \ P6_EVNTSEL_INV_MASK | \ P6_EVNTSEL_REG_MASK) return hw_event & P6_EVNTSEL_MASK; } static struct event_constraint intel_p6_event_constraints[] = { INTEL_EVENT_CONSTRAINT(0xc1, 0x1), /* FLOPS */ INTEL_EVENT_CONSTRAINT(0x10, 0x1), /* FP_COMP_OPS_EXE */ INTEL_EVENT_CONSTRAINT(0x11, 0x1), /* FP_ASSIST */ INTEL_EVENT_CONSTRAINT(0x12, 0x2), /* MUL */ INTEL_EVENT_CONSTRAINT(0x13, 0x2), /* DIV */ INTEL_EVENT_CONSTRAINT(0x14, 0x1), /* CYCLES_DIV_BUSY */ EVENT_CONSTRAINT_END }; /* * Intel PerfMon v3. Used on Core2 and later. */ static const u64 intel_perfmon_event_map[] = { [PERF_COUNT_HW_CPU_CYCLES] = 0x003c, [PERF_COUNT_HW_INSTRUCTIONS] = 0x00c0, [PERF_COUNT_HW_CACHE_REFERENCES] = 0x4f2e, [PERF_COUNT_HW_CACHE_MISSES] = 0x412e, [PERF_COUNT_HW_BRANCH_INSTRUCTIONS] = 0x00c4, [PERF_COUNT_HW_BRANCH_MISSES] = 0x00c5, [PERF_COUNT_HW_BUS_CYCLES] = 0x013c, }; static struct event_constraint intel_core_event_constraints[] = { FIXED_EVENT_CONSTRAINT(0xc0, (0x3|(1ULL<<32))), /* INSTRUCTIONS_RETIRED */ FIXED_EVENT_CONSTRAINT(0x3c, (0x3|(1ULL<<33))), /* UNHALTED_CORE_CYCLES */ INTEL_EVENT_CONSTRAINT(0x10, 0x1), /* FP_COMP_OPS_EXE */ INTEL_EVENT_CONSTRAINT(0x11, 0x2), /* FP_ASSIST */ INTEL_EVENT_CONSTRAINT(0x12, 0x2), /* MUL */ INTEL_EVENT_CONSTRAINT(0x13, 0x2), /* DIV */ INTEL_EVENT_CONSTRAINT(0x14, 0x1), /* CYCLES_DIV_BUSY */ INTEL_EVENT_CONSTRAINT(0x18, 0x1), /* IDLE_DURING_DIV */ INTEL_EVENT_CONSTRAINT(0x19, 0x2), /* DELAYED_BYPASS */ INTEL_EVENT_CONSTRAINT(0xa1, 0x1), /* RS_UOPS_DISPATCH_CYCLES */ INTEL_EVENT_CONSTRAINT(0xcb, 0x1), /* MEM_LOAD_RETIRED */ EVENT_CONSTRAINT_END }; static struct event_constraint intel_nehalem_event_constraints[] = { FIXED_EVENT_CONSTRAINT(0xc0, (0x3|(1ULL<<32))), /* INSTRUCTIONS_RETIRED */ FIXED_EVENT_CONSTRAINT(0x3c, (0x3|(1ULL<<33))), /* UNHALTED_CORE_CYCLES */ INTEL_EVENT_CONSTRAINT(0x40, 0x3), /* L1D_CACHE_LD */ INTEL_EVENT_CONSTRAINT(0x41, 0x3), /* L1D_CACHE_ST */ INTEL_EVENT_CONSTRAINT(0x42, 0x3), /* L1D_CACHE_LOCK */ INTEL_EVENT_CONSTRAINT(0x43, 0x3), /* L1D_ALL_REF */ INTEL_EVENT_CONSTRAINT(0x4e, 0x3), /* L1D_PREFETCH */ INTEL_EVENT_CONSTRAINT(0x4c, 0x3), /* LOAD_HIT_PRE */ INTEL_EVENT_CONSTRAINT(0x51, 0x3), /* L1D */ INTEL_EVENT_CONSTRAINT(0x52, 0x3), /* L1D_CACHE_PREFETCH_LOCK_FB_HIT */ INTEL_EVENT_CONSTRAINT(0x53, 0x3), /* L1D_CACHE_LOCK_FB_HIT */ INTEL_EVENT_CONSTRAINT(0xc5, 0x3), /* CACHE_LOCK_CYCLES */ EVENT_CONSTRAINT_END }; static struct event_constraint intel_gen_event_constraints[] = { FIXED_EVENT_CONSTRAINT(0xc0, (0x3|(1ULL<<32))), /* INSTRUCTIONS_RETIRED */ FIXED_EVENT_CONSTRAINT(0x3c, (0x3|(1ULL<<33))), /* UNHALTED_CORE_CYCLES */ EVENT_CONSTRAINT_END }; static u64 intel_pmu_event_map(int hw_event) { return intel_perfmon_event_map[hw_event]; } /* * Generalized hw caching related hw_event table, filled * in on a per model basis. A value of 0 means * 'not supported', -1 means 'hw_event makes no sense on * this CPU', any other value means the raw hw_event * ID. */ #define C(x) PERF_COUNT_HW_CACHE_##x static u64 __read_mostly hw_cache_event_ids [PERF_COUNT_HW_CACHE_MAX] [PERF_COUNT_HW_CACHE_OP_MAX] [PERF_COUNT_HW_CACHE_RESULT_MAX]; static __initconst u64 nehalem_hw_cache_event_ids [PERF_COUNT_HW_CACHE_MAX] [PERF_COUNT_HW_CACHE_OP_MAX] [PERF_COUNT_HW_CACHE_RESULT_MAX] = { [ C(L1D) ] = { [ C(OP_READ) ] = { [ C(RESULT_ACCESS) ] = 0x0f40, /* L1D_CACHE_LD.MESI */ [ C(RESULT_MISS) ] = 0x0140, /* L1D_CACHE_LD.I_STATE */ }, [ C(OP_WRITE) ] = { [ C(RESULT_ACCESS) ] = 0x0f41, /* L1D_CACHE_ST.MESI */ [ C(RESULT_MISS) ] = 0x0141, /* L1D_CACHE_ST.I_STATE */ }, [ C(OP_PREFETCH) ] = { [ C(RESULT_ACCESS) ] = 0x014e, /* L1D_PREFETCH.REQUESTS */ [ C(RESULT_MISS) ] = 0x024e, /* L1D_PREFETCH.MISS */ }, }, [ C(L1I ) ] = { [ C(OP_READ) ] = { [ C(RESULT_ACCESS) ] = 0x0380, /* L1I.READS */ [ C(RESULT_MISS) ] = 0x0280, /* L1I.MISSES */ }, [ C(OP_WRITE) ] = { [ C(RESULT_ACCESS) ] = -1, [ C(RESULT_MISS) ] = -1, }, [ C(OP_PREFETCH) ] = { [ C(RESULT_ACCESS) ] = 0x0, [ C(RESULT_MISS) ] = 0x0, }, }, [ C(LL ) ] = { [ C(OP_READ) ] = { [ C(RESULT_ACCESS) ] = 0x0324, /* L2_RQSTS.LOADS */ [ C(RESULT_MISS) ] = 0x0224, /* L2_RQSTS.LD_MISS */ }, [ C(OP_WRITE) ] = { [ C(RESULT_ACCESS) ] = 0x0c24, /* L2_RQSTS.RFOS */ [ C(RESULT_MISS) ] = 0x0824, /* L2_RQSTS.RFO_MISS */ }, [ C(OP_PREFETCH) ] = { [ C(RESULT_ACCESS) ] = 0x4f2e, /* LLC Reference */ [ C(RESULT_MISS) ] = 0x412e, /* LLC Misses */ }, }, [ C(DTLB) ] = { [ C(OP_READ) ] = { [ C(RESULT_ACCESS) ] = 0x0f40, /* L1D_CACHE_LD.MESI (alias) */ [ C(RESULT_MISS) ] = 0x0108, /* DTLB_LOAD_MISSES.ANY */ }, [ C(OP_WRITE) ] = { [ C(RESULT_ACCESS) ] = 0x0f41, /* L1D_CACHE_ST.MESI (alias) */ [ C(RESULT_MISS) ] = 0x010c, /* MEM_STORE_RETIRED.DTLB_MISS */ }, [ C(OP_PREFETCH) ] = { [ C(RESULT_ACCESS) ] = 0x0, [ C(RESULT_MISS) ] = 0x0, }, }, [ C(ITLB) ] = { [ C(OP_READ) ] = { [ C(RESULT_ACCESS) ] = 0x01c0, /* INST_RETIRED.ANY_P */ [ C(RESULT_MISS) ] = 0x20c8, /* ITLB_MISS_RETIRED */ }, [ C(OP_WRITE) ] = { [ C(RESULT_ACCESS) ] = -1, [ C(RESULT_MISS) ] = -1, }, [ C(OP_PREFETCH) ] = { [ C(RESULT_ACCESS) ] = -1, [ C(RESULT_MISS) ] = -1, }, }, [ C(BPU ) ] = { [ C(OP_READ) ] = { [ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ALL_BRANCHES */ [ C(RESULT_MISS) ] = 0x03e8, /* BPU_CLEARS.ANY */ }, [ C(OP_WRITE) ] = { [ C(RESULT_ACCESS) ] = -1, [ C(RESULT_MISS) ] = -1, }, [ C(OP_PREFETCH) ] = { [ C(RESULT_ACCESS) ] = -1, [ C(RESULT_MISS) ] = -1, }, }, }; static __initconst u64 core2_hw_cache_event_ids [PERF_COUNT_HW_CACHE_MAX] [PERF_COUNT_HW_CACHE_OP_MAX] [PERF_COUNT_HW_CACHE_RESULT_MAX] = { [ C(L1D) ] = { [ C(OP_READ) ] = { [ C(RESULT_ACCESS) ] = 0x0f40, /* L1D_CACHE_LD.MESI */ [ C(RESULT_MISS) ] = 0x0140, /* L1D_CACHE_LD.I_STATE */ }, [ C(OP_WRITE) ] = { [ C(RESULT_ACCESS) ] = 0x0f41, /* L1D_CACHE_ST.MESI */ [ C(RESULT_MISS) ] = 0x0141, /* L1D_CACHE_ST.I_STATE */ }, [ C(OP_PREFETCH) ] = { [ C(RESULT_ACCESS) ] = 0x104e, /* L1D_PREFETCH.REQUESTS */ [ C(RESULT_MISS) ] = 0, }, }, [ C(L1I ) ] = { [ C(OP_READ) ] = { [ C(RESULT_ACCESS) ] = 0x0080, /* L1I.READS */ [ C(RESULT_MISS) ] = 0x0081, /* L1I.MISSES */ }, [ C(OP_WRITE) ] = { [ C(RESULT_ACCESS) ] = -1, [ C(RESULT_MISS) ] = -1, }, [ C(OP_PREFETCH) ] = { [ C(RESULT_ACCESS) ] = 0, [ C(RESULT_MISS) ] = 0, }, }, [ C(LL ) ] = { [ C(OP_READ) ] = { [ C(RESULT_ACCESS) ] = 0x4f29, /* L2_LD.MESI */ [ C(RESULT_MISS) ] = 0x4129, /* L2_LD.ISTATE */ }, [ C(OP_WRITE) ] = { [ C(RESULT_ACCESS) ] = 0x4f2A, /* L2_ST.MESI */ [ C(RESULT_MISS) ] = 0x412A, /* L2_ST.ISTATE */ }, [ C(OP_PREFETCH) ] = { [ C(RESULT_ACCESS) ] = 0, [ C(RESULT_MISS) ] = 0, }, }, [ C(DTLB) ] = { [ C(OP_READ) ] = { [ C(RESULT_ACCESS) ] = 0x0f40, /* L1D_CACHE_LD.MESI (alias) */ [ C(RESULT_MISS) ] = 0x0208, /* DTLB_MISSES.MISS_LD */ }, [ C(OP_WRITE) ] = { [ C(RESULT_ACCESS) ] = 0x0f41, /* L1D_CACHE_ST.MESI (alias) */ [ C(RESULT_MISS) ] = 0x0808, /* DTLB_MISSES.MISS_ST */ }, [ C(OP_PREFETCH) ] = { [ C(RESULT_ACCESS) ] = 0, [ C(RESULT_MISS) ] = 0, }, }, [ C(ITLB) ] = { [ C(OP_READ) ] = { [ C(RESULT_ACCESS) ] = 0x00c0, /* INST_RETIRED.ANY_P */ [ C(RESULT_MISS) ] = 0x1282, /* ITLBMISSES */ }, [ C(OP_WRITE) ] = { [ C(RESULT_ACCESS) ] = -1, [ C(RESULT_MISS) ] = -1, }, [ C(OP_PREFETCH) ] = { [ C(RESULT_ACCESS) ] = -1, [ C(RESULT_MISS) ] = -1, }, }, [ C(BPU ) ] = { [ C(OP_READ) ] = { [ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ANY */ [ C(RESULT_MISS) ] = 0x00c5, /* BP_INST_RETIRED.MISPRED */ }, [ C(OP_WRITE) ] = { [ C(RESULT_ACCESS) ] = -1, [ C(RESULT_MISS) ] = -1, }, [ C(OP_PREFETCH) ] = { [ C(RESULT_ACCESS) ] = -1, [ C(RESULT_MISS) ] = -1, }, }, }; static __initconst u64 atom_hw_cache_event_ids [PERF_COUNT_HW_CACHE_MAX] [PERF_COUNT_HW_CACHE_OP_MAX] [PERF_COUNT_HW_CACHE_RESULT_MAX] = { [ C(L1D) ] = { [ C(OP_READ) ] = { [ C(RESULT_ACCESS) ] = 0x2140, /* L1D_CACHE.LD */ [ C(RESULT_MISS) ] = 0, }, [ C(OP_WRITE) ] = { [ C(RESULT_ACCESS) ] = 0x2240, /* L1D_CACHE.ST */ [ C(RESULT_MISS) ] = 0, }, [ C(OP_PREFETCH) ] = { [ C(RESULT_ACCESS) ] = 0x0, [ C(RESULT_MISS) ] = 0, }, }, [ C(L1I ) ] = { [ C(OP_READ) ] = { [ C(RESULT_ACCESS) ] = 0x0380, /* L1I.READS */ [ C(RESULT_MISS) ] = 0x0280, /* L1I.MISSES */ }, [ C(OP_WRITE) ] = { [ C(RESULT_ACCESS) ] = -1, [ C(RESULT_MISS) ] = -1, }, [ C(OP_PREFETCH) ] = { [ C(RESULT_ACCESS) ] = 0, [ C(RESULT_MISS) ] = 0, }, }, [ C(LL ) ] = { [ C(OP_READ) ] = { [ C(RESULT_ACCESS) ] = 0x4f29, /* L2_LD.MESI */ [ C(RESULT_MISS) ] = 0x4129, /* L2_LD.ISTATE */ }, [ C(OP_WRITE) ] = { [ C(RESULT_ACCESS) ] = 0x4f2A, /* L2_ST.MESI */ [ C(RESULT_MISS) ] = 0x412A, /* L2_ST.ISTATE */ }, [ C(OP_PREFETCH) ] = { [ C(RESULT_ACCESS) ] = 0, [ C(RESULT_MISS) ] = 0, }, }, [ C(DTLB) ] = { [ C(OP_READ) ] = { [ C(RESULT_ACCESS) ] = 0x2140, /* L1D_CACHE_LD.MESI (alias) */ [ C(RESULT_MISS) ] = 0x0508, /* DTLB_MISSES.MISS_LD */ }, [ C(OP_WRITE) ] = { [ C(RESULT_ACCESS) ] = 0x2240, /* L1D_CACHE_ST.MESI (alias) */ [ C(RESULT_MISS) ] = 0x0608, /* DTLB_MISSES.MISS_ST */ }, [ C(OP_PREFETCH) ] = { [ C(RESULT_ACCESS) ] = 0, [ C(RESULT_MISS) ] = 0, }, }, [ C(ITLB) ] = { [ C(OP_READ) ] = { [ C(RESULT_ACCESS) ] = 0x00c0, /* INST_RETIRED.ANY_P */ [ C(RESULT_MISS) ] = 0x0282, /* ITLB.MISSES */ }, [ C(OP_WRITE) ] = { [ C(RESULT_ACCESS) ] = -1, [ C(RESULT_MISS) ] = -1, }, [ C(OP_PREFETCH) ] = { [ C(RESULT_ACCESS) ] = -1, [ C(RESULT_MISS) ] = -1, }, }, [ C(BPU ) ] = { [ C(OP_READ) ] = { [ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ANY */ [ C(RESULT_MISS) ] = 0x00c5, /* BP_INST_RETIRED.MISPRED */ }, [ C(OP_WRITE) ] = { [ C(RESULT_ACCESS) ] = -1, [ C(RESULT_MISS) ] = -1, }, [ C(OP_PREFETCH) ] = { [ C(RESULT_ACCESS) ] = -1, [ C(RESULT_MISS) ] = -1, }, }, }; static u64 intel_pmu_raw_event(u64 hw_event) { #define CORE_EVNTSEL_EVENT_MASK 0x000000FFULL #define CORE_EVNTSEL_UNIT_MASK 0x0000FF00ULL #define CORE_EVNTSEL_EDGE_MASK 0x00040000ULL #define CORE_EVNTSEL_INV_MASK 0x00800000ULL #define CORE_EVNTSEL_REG_MASK 0xFF000000ULL #define CORE_EVNTSEL_MASK \ (INTEL_ARCH_EVTSEL_MASK | \ INTEL_ARCH_UNIT_MASK | \ INTEL_ARCH_EDGE_MASK | \ INTEL_ARCH_INV_MASK | \ INTEL_ARCH_CNT_MASK) return hw_event & CORE_EVNTSEL_MASK; } static __initconst u64 amd_hw_cache_event_ids [PERF_COUNT_HW_CACHE_MAX] [PERF_COUNT_HW_CACHE_OP_MAX] [PERF_COUNT_HW_CACHE_RESULT_MAX] = { [ C(L1D) ] = { [ C(OP_READ) ] = { [ C(RESULT_ACCESS) ] = 0x0040, /* Data Cache Accesses */ [ C(RESULT_MISS) ] = 0x0041, /* Data Cache Misses */ }, [ C(OP_WRITE) ] = { [ C(RESULT_ACCESS) ] = 0x0142, /* Data Cache Refills :system */ [ C(RESULT_MISS) ] = 0, }, [ C(OP_PREFETCH) ] = { [ C(RESULT_ACCESS) ] = 0x0267, /* Data Prefetcher :attempts */ [ C(RESULT_MISS) ] = 0x0167, /* Data Prefetcher :cancelled */ }, }, [ C(L1I ) ] = { [ C(OP_READ) ] = { [ C(RESULT_ACCESS) ] = 0x0080, /* Instruction cache fetches */ [ C(RESULT_MISS) ] = 0x0081, /* Instruction cache misses */ }, [ C(OP_WRITE) ] = { [ C(RESULT_ACCESS) ] = -1, [ C(RESULT_MISS) ] = -1, }, [ C(OP_PREFETCH) ] = { [ C(RESULT_ACCESS) ] = 0x014B, /* Prefetch Instructions :Load */ [ C(RESULT_MISS) ] = 0, }, }, [ C(LL ) ] = { [ C(OP_READ) ] = { [ C(RESULT_ACCESS) ] = 0x037D, /* Requests to L2 Cache :IC+DC */ [ C(RESULT_MISS) ] = 0x037E, /* L2 Cache Misses : IC+DC */ }, [ C(OP_WRITE) ] = { [ C(RESULT_ACCESS) ] = 0x017F, /* L2 Fill/Writeback */ [ C(RESULT_MISS) ] = 0, }, [ C(OP_PREFETCH) ] = { [ C(RESULT_ACCESS) ] = 0, [ C(RESULT_MISS) ] = 0, }, }, [ C(DTLB) ] = { [ C(OP_READ) ] = { [ C(RESULT_ACCESS) ] = 0x0040, /* Data Cache Accesses */ [ C(RESULT_MISS) ] = 0x0046, /* L1 DTLB and L2 DLTB Miss */ }, [ C(OP_WRITE) ] = { [ C(RESULT_ACCESS) ] = 0, [ C(RESULT_MISS) ] = 0, }, [ C(OP_PREFETCH) ] = { [ C(RESULT_ACCESS) ] = 0, [ C(RESULT_MISS) ] = 0, }, }, [ C(ITLB) ] = { [ C(OP_READ) ] = { [ C(RESULT_ACCESS) ] = 0x0080, /* Instruction fecthes */ [ C(RESULT_MISS) ] = 0x0085, /* Instr. fetch ITLB misses */ }, [ C(OP_WRITE) ] = { [ C(RESULT_ACCESS) ] = -1, [ C(RESULT_MISS) ] = -1, }, [ C(OP_PREFETCH) ] = { [ C(RESULT_ACCESS) ] = -1, [ C(RESULT_MISS) ] = -1, }, }, [ C(BPU ) ] = { [ C(OP_READ) ] = { [ C(RESULT_ACCESS) ] = 0x00c2, /* Retired Branch Instr. */ [ C(RESULT_MISS) ] = 0x00c3, /* Retired Mispredicted BI */ }, [ C(OP_WRITE) ] = { [ C(RESULT_ACCESS) ] = -1, [ C(RESULT_MISS) ] = -1, }, [ C(OP_PREFETCH) ] = { [ C(RESULT_ACCESS) ] = -1, [ C(RESULT_MISS) ] = -1, }, }, }; /* * AMD Performance Monitor K7 and later. */ static const u64 amd_perfmon_event_map[] = { [PERF_COUNT_HW_CPU_CYCLES] = 0x0076, [PERF_COUNT_HW_INSTRUCTIONS] = 0x00c0, [PERF_COUNT_HW_CACHE_REFERENCES] = 0x0080, [PERF_COUNT_HW_CACHE_MISSES] = 0x0081, [PERF_COUNT_HW_BRANCH_INSTRUCTIONS] = 0x00c4, [PERF_COUNT_HW_BRANCH_MISSES] = 0x00c5, }; static u64 amd_pmu_event_map(int hw_event) { return amd_perfmon_event_map[hw_event]; } static u64 amd_pmu_raw_event(u64 hw_event) { #define K7_EVNTSEL_EVENT_MASK 0x7000000FFULL #define K7_EVNTSEL_UNIT_MASK 0x00000FF00ULL #define K7_EVNTSEL_EDGE_MASK 0x000040000ULL #define K7_EVNTSEL_INV_MASK 0x000800000ULL #define K7_EVNTSEL_REG_MASK 0x0FF000000ULL #define K7_EVNTSEL_MASK \ (K7_EVNTSEL_EVENT_MASK | \ K7_EVNTSEL_UNIT_MASK | \ K7_EVNTSEL_EDGE_MASK | \ K7_EVNTSEL_INV_MASK | \ K7_EVNTSEL_REG_MASK) return hw_event & K7_EVNTSEL_MASK; } /* * Propagate event elapsed time into the generic event. * Can only be executed on the CPU where the event is active. * Returns the delta events processed. */ static u64 x86_perf_event_update(struct perf_event *event, struct hw_perf_event *hwc, int idx) { int shift = 64 - x86_pmu.event_bits; u64 prev_raw_count, new_raw_count; s64 delta; if (idx == X86_PMC_IDX_FIXED_BTS) return 0; /* * Careful: an NMI might modify the previous event value. * * Our tactic to handle this is to first atomically read and * exchange a new raw count - then add that new-prev delta * count to the generic event atomically: */ again: prev_raw_count = atomic64_read(&hwc->prev_count); rdmsrl(hwc->event_base + idx, new_raw_count); if (atomic64_cmpxchg(&hwc->prev_count, prev_raw_count, new_raw_count) != prev_raw_count) goto again; /* * Now we have the new raw value and have updated the prev * timestamp already. We can now calculate the elapsed delta * (event-)time and add that to the generic event. * * Careful, not all hw sign-extends above the physical width * of the count. */ delta = (new_raw_count << shift) - (prev_raw_count << shift); delta >>= shift; atomic64_add(delta, &event->count); atomic64_sub(delta, &hwc->period_left); return new_raw_count; } static atomic_t active_events; static DEFINE_MUTEX(pmc_reserve_mutex); static bool reserve_pmc_hardware(void) { #ifdef CONFIG_X86_LOCAL_APIC int i; if (nmi_watchdog == NMI_LOCAL_APIC) disable_lapic_nmi_watchdog(); for (i = 0; i < x86_pmu.num_events; i++) { if (!reserve_perfctr_nmi(x86_pmu.perfctr + i)) goto perfctr_fail; } for (i = 0; i < x86_pmu.num_events; i++) { if (!reserve_evntsel_nmi(x86_pmu.eventsel + i)) goto eventsel_fail; } #endif return true; #ifdef CONFIG_X86_LOCAL_APIC eventsel_fail: for (i--; i >= 0; i--) release_evntsel_nmi(x86_pmu.eventsel + i); i = x86_pmu.num_events; perfctr_fail: for (i--; i >= 0; i--) release_perfctr_nmi(x86_pmu.perfctr + i); if (nmi_watchdog == NMI_LOCAL_APIC) enable_lapic_nmi_watchdog(); return false; #endif } static void release_pmc_hardware(void) { #ifdef CONFIG_X86_LOCAL_APIC int i; for (i = 0; i < x86_pmu.num_events; i++) { release_perfctr_nmi(x86_pmu.perfctr + i); release_evntsel_nmi(x86_pmu.eventsel + i); } if (nmi_watchdog == NMI_LOCAL_APIC) enable_lapic_nmi_watchdog(); #endif } static inline bool bts_available(void) { return x86_pmu.enable_bts != NULL; } static inline void init_debug_store_on_cpu(int cpu) { struct debug_store *ds = per_cpu(cpu_hw_events, cpu).ds; if (!ds) return; wrmsr_on_cpu(cpu, MSR_IA32_DS_AREA, (u32)((u64)(unsigned long)ds), (u32)((u64)(unsigned long)ds >> 32)); } static inline void fini_debug_store_on_cpu(int cpu) { if (!per_cpu(cpu_hw_events, cpu).ds) return; wrmsr_on_cpu(cpu, MSR_IA32_DS_AREA, 0, 0); } static void release_bts_hardware(void) { int cpu; if (!bts_available()) return; get_online_cpus(); for_each_online_cpu(cpu) fini_debug_store_on_cpu(cpu); for_each_possible_cpu(cpu) { struct debug_store *ds = per_cpu(cpu_hw_events, cpu).ds; if (!ds) continue; per_cpu(cpu_hw_events, cpu).ds = NULL; kfree((void *)(unsigned long)ds->bts_buffer_base); kfree(ds); } put_online_cpus(); } static int reserve_bts_hardware(void) { int cpu, err = 0; if (!bts_available()) return 0; get_online_cpus(); for_each_possible_cpu(cpu) { struct debug_store *ds; void *buffer; err = -ENOMEM; buffer = kzalloc(BTS_BUFFER_SIZE, GFP_KERNEL); if (unlikely(!buffer)) break; ds = kzalloc(sizeof(*ds), GFP_KERNEL); if (unlikely(!ds)) { kfree(buffer); break; } ds->bts_buffer_base = (u64)(unsigned long)buffer; ds->bts_index = ds->bts_buffer_base; ds->bts_absolute_maximum = ds->bts_buffer_base + BTS_BUFFER_SIZE; ds->bts_interrupt_threshold = ds->bts_absolute_maximum - BTS_OVFL_TH; per_cpu(cpu_hw_events, cpu).ds = ds; err = 0; } if (err) release_bts_hardware(); else { for_each_online_cpu(cpu) init_debug_store_on_cpu(cpu); } put_online_cpus(); return err; } static void hw_perf_event_destroy(struct perf_event *event) { if (atomic_dec_and_mutex_lock(&active_events, &pmc_reserve_mutex)) { release_pmc_hardware(); release_bts_hardware(); mutex_unlock(&pmc_reserve_mutex); } } static inline int x86_pmu_initialized(void) { return x86_pmu.handle_irq != NULL; } static inline int set_ext_hw_attr(struct hw_perf_event *hwc, struct perf_event_attr *attr) { unsigned int cache_type, cache_op, cache_result; u64 config, val; config = attr->config; cache_type = (config >> 0) & 0xff; if (cache_type >= PERF_COUNT_HW_CACHE_MAX) return -EINVAL; cache_op = (config >> 8) & 0xff; if (cache_op >= PERF_COUNT_HW_CACHE_OP_MAX) return -EINVAL; cache_result = (config >> 16) & 0xff; if (cache_result >= PERF_COUNT_HW_CACHE_RESULT_MAX) return -EINVAL; val = hw_cache_event_ids[cache_type][cache_op][cache_result]; if (val == 0) return -ENOENT; if (val == -1) return -EINVAL; hwc->config |= val; return 0; } static void intel_pmu_enable_bts(u64 config) { unsigned long debugctlmsr; debugctlmsr = get_debugctlmsr(); debugctlmsr |= X86_DEBUGCTL_TR; debugctlmsr |= X86_DEBUGCTL_BTS; debugctlmsr |= X86_DEBUGCTL_BTINT; if (!(config & ARCH_PERFMON_EVENTSEL_OS)) debugctlmsr |= X86_DEBUGCTL_BTS_OFF_OS; if (!(config & ARCH_PERFMON_EVENTSEL_USR)) debugctlmsr |= X86_DEBUGCTL_BTS_OFF_USR; update_debugctlmsr(debugctlmsr); } static void intel_pmu_disable_bts(void) { struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events); unsigned long debugctlmsr; if (!cpuc->ds) return; debugctlmsr = get_debugctlmsr(); debugctlmsr &= ~(X86_DEBUGCTL_TR | X86_DEBUGCTL_BTS | X86_DEBUGCTL_BTINT | X86_DEBUGCTL_BTS_OFF_OS | X86_DEBUGCTL_BTS_OFF_USR); update_debugctlmsr(debugctlmsr); } /* * Setup the hardware configuration for a given attr_type */ static int __hw_perf_event_init(struct perf_event *event) { struct perf_event_attr *attr = &event->attr; struct hw_perf_event *hwc = &event->hw; u64 config; int err; if (!x86_pmu_initialized()) return -ENODEV; err = 0; if (!atomic_inc_not_zero(&active_events)) { mutex_lock(&pmc_reserve_mutex); if (atomic_read(&active_events) == 0) { if (!reserve_pmc_hardware()) err = -EBUSY; else err = reserve_bts_hardware(); } if (!err) atomic_inc(&active_events); mutex_unlock(&pmc_reserve_mutex); } if (err) return err; event->destroy = hw_perf_event_destroy; /* * Generate PMC IRQs: * (keep 'enabled' bit clear for now) */ hwc->config = ARCH_PERFMON_EVENTSEL_INT; hwc->idx = -1; /* * Count user and OS events unless requested not to. */ if (!attr->exclude_user) hwc->config |= ARCH_PERFMON_EVENTSEL_USR; if (!attr->exclude_kernel) hwc->config |= ARCH_PERFMON_EVENTSEL_OS; if (!hwc->sample_period) { hwc->sample_period = x86_pmu.max_period; hwc->last_period = hwc->sample_period; atomic64_set(&hwc->period_left, hwc->sample_period); } else { /* * If we have a PMU initialized but no APIC * interrupts, we cannot sample hardware * events (user-space has to fall back and * sample via a hrtimer based software event): */ if (!x86_pmu.apic) return -EOPNOTSUPP; } /* * Raw hw_event type provide the config in the hw_event structure */ if (attr->type == PERF_TYPE_RAW) { hwc->config |= x86_pmu.raw_event(attr->config); return 0; } if (attr->type == PERF_TYPE_HW_CACHE) return set_ext_hw_attr(hwc, attr); if (attr->config >= x86_pmu.max_events) return -EINVAL; /* * The generic map: */ config = x86_pmu.event_map(attr->config); if (config == 0) return -ENOENT; if (config == -1LL) return -EINVAL; /* * Branch tracing: */ if ((attr->config == PERF_COUNT_HW_BRANCH_INSTRUCTIONS) && (hwc->sample_period == 1)) { /* BTS is not supported by this architecture. */ if (!bts_available()) return -EOPNOTSUPP; /* BTS is currently only allowed for user-mode. */ if (hwc->config & ARCH_PERFMON_EVENTSEL_OS) return -EOPNOTSUPP; } hwc->config |= config; return 0; } static void p6_pmu_disable_all(void) { struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events); u64 val; if (!cpuc->enabled) return; cpuc->enabled = 0; barrier(); /* p6 only has one enable register */ rdmsrl(MSR_P6_EVNTSEL0, val); val &= ~ARCH_PERFMON_EVENTSEL0_ENABLE; wrmsrl(MSR_P6_EVNTSEL0, val); } static void intel_pmu_disable_all(void) { struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events); if (!cpuc->enabled) return; cpuc->enabled = 0; barrier(); wrmsrl(MSR_CORE_PERF_GLOBAL_CTRL, 0); if (test_bit(X86_PMC_IDX_FIXED_BTS, cpuc->active_mask)) intel_pmu_disable_bts(); } static void amd_pmu_disable_all(void) { struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events); int idx; if (!cpuc->enabled) return; cpuc->enabled = 0; /* * ensure we write the disable before we start disabling the * events proper, so that amd_pmu_enable_event() does the * right thing. */ barrier(); for (idx = 0; idx < x86_pmu.num_events; idx++) { u64 val; if (!test_bit(idx, cpuc->active_mask)) continue; rdmsrl(MSR_K7_EVNTSEL0 + idx, val); if (!(val & ARCH_PERFMON_EVENTSEL0_ENABLE)) continue; val &= ~ARCH_PERFMON_EVENTSEL0_ENABLE; wrmsrl(MSR_K7_EVNTSEL0 + idx, val); } } void hw_perf_disable(void) { struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events); if (!x86_pmu_initialized()) return; if (cpuc->enabled) cpuc->n_added = 0; x86_pmu.disable_all(); } static void p6_pmu_enable_all(void) { struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events); unsigned long val; if (cpuc->enabled) return; cpuc->enabled = 1; barrier(); /* p6 only has one enable register */ rdmsrl(MSR_P6_EVNTSEL0, val); val |= ARCH_PERFMON_EVENTSEL0_ENABLE; wrmsrl(MSR_P6_EVNTSEL0, val); } static void intel_pmu_enable_all(void) { struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events); if (cpuc->enabled) return; cpuc->enabled = 1; barrier(); wrmsrl(MSR_CORE_PERF_GLOBAL_CTRL, x86_pmu.intel_ctrl); if (test_bit(X86_PMC_IDX_FIXED_BTS, cpuc->active_mask)) { struct perf_event *event = cpuc->events[X86_PMC_IDX_FIXED_BTS]; if (WARN_ON_ONCE(!event)) return; intel_pmu_enable_bts(event->hw.config); } } static void amd_pmu_enable_all(void) { struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events); int idx; if (cpuc->enabled) return; cpuc->enabled = 1; barrier(); for (idx = 0; idx < x86_pmu.num_events; idx++) { struct perf_event *event = cpuc->events[idx]; u64 val; if (!test_bit(idx, cpuc->active_mask)) continue; val = event->hw.config; val |= ARCH_PERFMON_EVENTSEL0_ENABLE; wrmsrl(MSR_K7_EVNTSEL0 + idx, val); } } static const struct pmu pmu; static inline int is_x86_event(struct perf_event *event) { return event->pmu == &pmu; } static int x86_schedule_events(struct cpu_hw_events *cpuc, int n, int *assign) { struct event_constraint *c, *constraints[X86_PMC_IDX_MAX]; unsigned long used_mask[BITS_TO_LONGS(X86_PMC_IDX_MAX)]; int i, j, w, wmax, num = 0; struct hw_perf_event *hwc; bitmap_zero(used_mask, X86_PMC_IDX_MAX); for (i = 0; i < n; i++) { constraints[i] = x86_pmu.get_event_constraints(cpuc, cpuc->event_list[i]); } /* * fastpath, try to reuse previous register */ for (i = 0; i < n; i++) { hwc = &cpuc->event_list[i]->hw; c = constraints[i]; /* never assigned */ if (hwc->idx == -1) break; /* constraint still honored */ if (!test_bit(hwc->idx, c->idxmsk)) break; /* not already used */ if (test_bit(hwc->idx, used_mask)) break; set_bit(hwc->idx, used_mask); if (assign) assign[i] = hwc->idx; } if (i == n) goto done; /* * begin slow path */ bitmap_zero(used_mask, X86_PMC_IDX_MAX); /* * weight = number of possible counters * * 1 = most constrained, only works on one counter * wmax = least constrained, works on any counter * * assign events to counters starting with most * constrained events. */ wmax = x86_pmu.num_events; /* * when fixed event counters are present, * wmax is incremented by 1 to account * for one more choice */ if (x86_pmu.num_events_fixed) wmax++; for (w = 1, num = n; num && w <= wmax; w++) { /* for each event */ for (i = 0; num && i < n; i++) { c = constraints[i]; hwc = &cpuc->event_list[i]->hw; if (c->weight != w) continue; for_each_bit(j, c->idxmsk, X86_PMC_IDX_MAX) { if (!test_bit(j, used_mask)) break; } if (j == X86_PMC_IDX_MAX) break; set_bit(j, used_mask); if (assign) assign[i] = j; num--; } } done: /* * scheduling failed or is just a simulation, * free resources if necessary */ if (!assign || num) { for (i = 0; i < n; i++) { if (x86_pmu.put_event_constraints) x86_pmu.put_event_constraints(cpuc, cpuc->event_list[i]); } } return num ? -ENOSPC : 0; } /* * dogrp: true if must collect siblings events (group) * returns total number of events and error code */ static int collect_events(struct cpu_hw_events *cpuc, struct perf_event *leader, bool dogrp) { struct perf_event *event; int n, max_count; max_count = x86_pmu.num_events + x86_pmu.num_events_fixed; /* current number of events already accepted */ n = cpuc->n_events; if (is_x86_event(leader)) { if (n >= max_count) return -ENOSPC; cpuc->event_list[n] = leader; n++; } if (!dogrp) return n; list_for_each_entry(event, &leader->sibling_list, group_entry) { if (!is_x86_event(event) || event->state <= PERF_EVENT_STATE_OFF) continue; if (n >= max_count) return -ENOSPC; cpuc->event_list[n] = event; n++; } return n; } static inline void x86_assign_hw_event(struct perf_event *event, struct hw_perf_event *hwc, int idx) { hwc->idx = idx; if (hwc->idx == X86_PMC_IDX_FIXED_BTS) { hwc->config_base = 0; hwc->event_base = 0; } else if (hwc->idx >= X86_PMC_IDX_FIXED) { hwc->config_base = MSR_ARCH_PERFMON_FIXED_CTR_CTRL; /* * We set it so that event_base + idx in wrmsr/rdmsr maps to * MSR_ARCH_PERFMON_FIXED_CTR0 ... CTR2: */ hwc->event_base = MSR_ARCH_PERFMON_FIXED_CTR0 - X86_PMC_IDX_FIXED; } else { hwc->config_base = x86_pmu.eventsel; hwc->event_base = x86_pmu.perfctr; } } static void __x86_pmu_disable(struct perf_event *event, struct cpu_hw_events *cpuc); void hw_perf_enable(void) { struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events); struct perf_event *event; struct hw_perf_event *hwc; int i; if (!x86_pmu_initialized()) return; if (cpuc->n_added) { /* * apply assignment obtained either from * hw_perf_group_sched_in() or x86_pmu_enable() * * step1: save events moving to new counters * step2: reprogram moved events into new counters */ for (i = 0; i < cpuc->n_events; i++) { event = cpuc->event_list[i]; hwc = &event->hw; if (hwc->idx == -1 || hwc->idx == cpuc->assign[i]) continue; __x86_pmu_disable(event, cpuc); hwc->idx = -1; } for (i = 0; i < cpuc->n_events; i++) { event = cpuc->event_list[i]; hwc = &event->hw; if (hwc->idx == -1) { x86_assign_hw_event(event, hwc, cpuc->assign[i]); x86_perf_event_set_period(event, hwc, hwc->idx); } /* * need to mark as active because x86_pmu_disable() * clear active_mask and eventsp[] yet it preserves * idx */ set_bit(hwc->idx, cpuc->active_mask); cpuc->events[hwc->idx] = event; x86_pmu.enable(hwc, hwc->idx); perf_event_update_userpage(event); } cpuc->n_added = 0; perf_events_lapic_init(); } x86_pmu.enable_all(); } static inline u64 intel_pmu_get_status(void) { u64 status; rdmsrl(MSR_CORE_PERF_GLOBAL_STATUS, status); return status; } static inline void intel_pmu_ack_status(u64 ack) { wrmsrl(MSR_CORE_PERF_GLOBAL_OVF_CTRL, ack); } static inline void x86_pmu_enable_event(struct hw_perf_event *hwc, int idx) { (void)checking_wrmsrl(hwc->config_base + idx, hwc->config | ARCH_PERFMON_EVENTSEL0_ENABLE); } static inline void x86_pmu_disable_event(struct hw_perf_event *hwc, int idx) { (void)checking_wrmsrl(hwc->config_base + idx, hwc->config); } static inline void intel_pmu_disable_fixed(struct hw_perf_event *hwc, int __idx) { int idx = __idx - X86_PMC_IDX_FIXED; u64 ctrl_val, mask; mask = 0xfULL << (idx * 4); rdmsrl(hwc->config_base, ctrl_val); ctrl_val &= ~mask; (void)checking_wrmsrl(hwc->config_base, ctrl_val); } static inline void p6_pmu_disable_event(struct hw_perf_event *hwc, int idx) { struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events); u64 val = P6_NOP_EVENT; if (cpuc->enabled) val |= ARCH_PERFMON_EVENTSEL0_ENABLE; (void)checking_wrmsrl(hwc->config_base + idx, val); } static inline void intel_pmu_disable_event(struct hw_perf_event *hwc, int idx) { if (unlikely(idx == X86_PMC_IDX_FIXED_BTS)) { intel_pmu_disable_bts(); return; } if (unlikely(hwc->config_base == MSR_ARCH_PERFMON_FIXED_CTR_CTRL)) { intel_pmu_disable_fixed(hwc, idx); return; } x86_pmu_disable_event(hwc, idx); } static inline void amd_pmu_disable_event(struct hw_perf_event *hwc, int idx) { x86_pmu_disable_event(hwc, idx); } static DEFINE_PER_CPU(u64 [X86_PMC_IDX_MAX], pmc_prev_left); /* * Set the next IRQ period, based on the hwc->period_left value. * To be called with the event disabled in hw: */ static int x86_perf_event_set_period(struct perf_event *event, struct hw_perf_event *hwc, int idx) { s64 left = atomic64_read(&hwc->period_left); s64 period = hwc->sample_period; int err, ret = 0; if (idx == X86_PMC_IDX_FIXED_BTS) return 0; /* * If we are way outside a reasonable range then just skip forward: */ if (unlikely(left <= -period)) { left = period; atomic64_set(&hwc->period_left, left); hwc->last_period = period; ret = 1; } if (unlikely(left <= 0)) { left += period; atomic64_set(&hwc->period_left, left); hwc->last_period = period; ret = 1; } /* * Quirk: certain CPUs dont like it if just 1 hw_event is left: */ if (unlikely(left < 2)) left = 2; if (left > x86_pmu.max_period) left = x86_pmu.max_period; per_cpu(pmc_prev_left[idx], smp_processor_id()) = left; /* * The hw event starts counting from this event offset, * mark it to be able to extra future deltas: */ atomic64_set(&hwc->prev_count, (u64)-left); err = checking_wrmsrl(hwc->event_base + idx, (u64)(-left) & x86_pmu.event_mask); perf_event_update_userpage(event); return ret; } static inline void intel_pmu_enable_fixed(struct hw_perf_event *hwc, int __idx) { int idx = __idx - X86_PMC_IDX_FIXED; u64 ctrl_val, bits, mask; int err; /* * Enable IRQ generation (0x8), * and enable ring-3 counting (0x2) and ring-0 counting (0x1) * if requested: */ bits = 0x8ULL; if (hwc->config & ARCH_PERFMON_EVENTSEL_USR) bits |= 0x2; if (hwc->config & ARCH_PERFMON_EVENTSEL_OS) bits |= 0x1; bits <<= (idx * 4); mask = 0xfULL << (idx * 4); rdmsrl(hwc->config_base, ctrl_val); ctrl_val &= ~mask; ctrl_val |= bits; err = checking_wrmsrl(hwc->config_base, ctrl_val); } static void p6_pmu_enable_event(struct hw_perf_event *hwc, int idx) { struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events); u64 val; val = hwc->config; if (cpuc->enabled) val |= ARCH_PERFMON_EVENTSEL0_ENABLE; (void)checking_wrmsrl(hwc->config_base + idx, val); } static void intel_pmu_enable_event(struct hw_perf_event *hwc, int idx) { if (unlikely(idx == X86_PMC_IDX_FIXED_BTS)) { if (!__get_cpu_var(cpu_hw_events).enabled) return; intel_pmu_enable_bts(hwc->config); return; } if (unlikely(hwc->config_base == MSR_ARCH_PERFMON_FIXED_CTR_CTRL)) { intel_pmu_enable_fixed(hwc, idx); return; } x86_pmu_enable_event(hwc, idx); } static void amd_pmu_enable_event(struct hw_perf_event *hwc, int idx) { struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events); if (cpuc->enabled) x86_pmu_enable_event(hwc, idx); } /* * activate a single event * * The event is added to the group of enabled events * but only if it can be scehduled with existing events. * * Called with PMU disabled. If successful and return value 1, * then guaranteed to call perf_enable() and hw_perf_enable() */ static int x86_pmu_enable(struct perf_event *event) { struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events); struct hw_perf_event *hwc; int assign[X86_PMC_IDX_MAX]; int n, n0, ret; hwc = &event->hw; n0 = cpuc->n_events; n = collect_events(cpuc, event, false); if (n < 0) return n; ret = x86_schedule_events(cpuc, n, assign); if (ret) return ret; /* * copy new assignment, now we know it is possible * will be used by hw_perf_enable() */ memcpy(cpuc->assign, assign, n*sizeof(int)); cpuc->n_events = n; cpuc->n_added = n - n0; if (hwc->idx != -1) x86_perf_event_set_period(event, hwc, hwc->idx); return 0; } static void x86_pmu_unthrottle(struct perf_event *event) { struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events); struct hw_perf_event *hwc = &event->hw; if (WARN_ON_ONCE(hwc->idx >= X86_PMC_IDX_MAX || cpuc->events[hwc->idx] != event)) return; x86_pmu.enable(hwc, hwc->idx); } void perf_event_print_debug(void) { u64 ctrl, status, overflow, pmc_ctrl, pmc_count, prev_left, fixed; struct cpu_hw_events *cpuc; unsigned long flags; int cpu, idx; if (!x86_pmu.num_events) return; local_irq_save(flags); cpu = smp_processor_id(); cpuc = &per_cpu(cpu_hw_events, cpu); if (x86_pmu.version >= 2) { rdmsrl(MSR_CORE_PERF_GLOBAL_CTRL, ctrl); rdmsrl(MSR_CORE_PERF_GLOBAL_STATUS, status); rdmsrl(MSR_CORE_PERF_GLOBAL_OVF_CTRL, overflow); rdmsrl(MSR_ARCH_PERFMON_FIXED_CTR_CTRL, fixed); pr_info("\n"); pr_info("CPU#%d: ctrl: %016llx\n", cpu, ctrl); pr_info("CPU#%d: status: %016llx\n", cpu, status); pr_info("CPU#%d: overflow: %016llx\n", cpu, overflow); pr_info("CPU#%d: fixed: %016llx\n", cpu, fixed); } pr_info("CPU#%d: active: %016llx\n", cpu, *(u64 *)cpuc->active_mask); for (idx = 0; idx < x86_pmu.num_events; idx++) { rdmsrl(x86_pmu.eventsel + idx, pmc_ctrl); rdmsrl(x86_pmu.perfctr + idx, pmc_count); prev_left = per_cpu(pmc_prev_left[idx], cpu); pr_info("CPU#%d: gen-PMC%d ctrl: %016llx\n", cpu, idx, pmc_ctrl); pr_info("CPU#%d: gen-PMC%d count: %016llx\n", cpu, idx, pmc_count); pr_info("CPU#%d: gen-PMC%d left: %016llx\n", cpu, idx, prev_left); } for (idx = 0; idx < x86_pmu.num_events_fixed; idx++) { rdmsrl(MSR_ARCH_PERFMON_FIXED_CTR0 + idx, pmc_count); pr_info("CPU#%d: fixed-PMC%d count: %016llx\n", cpu, idx, pmc_count); } local_irq_restore(flags); } static void intel_pmu_drain_bts_buffer(struct cpu_hw_events *cpuc) { struct debug_store *ds = cpuc->ds; struct bts_record { u64 from; u64 to; u64 flags; }; struct perf_event *event = cpuc->events[X86_PMC_IDX_FIXED_BTS]; struct bts_record *at, *top; struct perf_output_handle handle; struct perf_event_header header; struct perf_sample_data data; struct pt_regs regs; if (!event) return; if (!ds) return; at = (struct bts_record *)(unsigned long)ds->bts_buffer_base; top = (struct bts_record *)(unsigned long)ds->bts_index; if (top <= at) return; ds->bts_index = ds->bts_buffer_base; data.period = event->hw.last_period; data.addr = 0; data.raw = NULL; regs.ip = 0; /* * Prepare a generic sample, i.e. fill in the invariant fields. * We will overwrite the from and to address before we output * the sample. */ perf_prepare_sample(&header, &data, event, ®s); if (perf_output_begin(&handle, event, header.size * (top - at), 1, 1)) return; for (; at < top; at++) { data.ip = at->from; data.addr = at->to; perf_output_sample(&handle, &header, &data, event); } perf_output_end(&handle); /* There's new data available. */ event->hw.interrupts++; event->pending_kill = POLL_IN; } static void __x86_pmu_disable(struct perf_event *event, struct cpu_hw_events *cpuc) { struct hw_perf_event *hwc = &event->hw; int idx = hwc->idx; /* * Must be done before we disable, otherwise the nmi handler * could reenable again: */ clear_bit(idx, cpuc->active_mask); x86_pmu.disable(hwc, idx); /* * Drain the remaining delta count out of a event * that we are disabling: */ x86_perf_event_update(event, hwc, idx); /* Drain the remaining BTS records. */ if (unlikely(idx == X86_PMC_IDX_FIXED_BTS)) intel_pmu_drain_bts_buffer(cpuc); cpuc->events[idx] = NULL; } static void x86_pmu_disable(struct perf_event *event) { struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events); int i; __x86_pmu_disable(event, cpuc); for (i = 0; i < cpuc->n_events; i++) { if (event == cpuc->event_list[i]) { if (x86_pmu.put_event_constraints) x86_pmu.put_event_constraints(cpuc, event); while (++i < cpuc->n_events) cpuc->event_list[i-1] = cpuc->event_list[i]; --cpuc->n_events; break; } } perf_event_update_userpage(event); } /* * Save and restart an expired event. Called by NMI contexts, * so it has to be careful about preempting normal event ops: */ static int intel_pmu_save_and_restart(struct perf_event *event) { struct hw_perf_event *hwc = &event->hw; int idx = hwc->idx; int ret; x86_perf_event_update(event, hwc, idx); ret = x86_perf_event_set_period(event, hwc, idx); if (event->state == PERF_EVENT_STATE_ACTIVE) intel_pmu_enable_event(hwc, idx); return ret; } static void intel_pmu_reset(void) { struct debug_store *ds = __get_cpu_var(cpu_hw_events).ds; unsigned long flags; int idx; if (!x86_pmu.num_events) return; local_irq_save(flags); printk("clearing PMU state on CPU#%d\n", smp_processor_id()); for (idx = 0; idx < x86_pmu.num_events; idx++) { checking_wrmsrl(x86_pmu.eventsel + idx, 0ull); checking_wrmsrl(x86_pmu.perfctr + idx, 0ull); } for (idx = 0; idx < x86_pmu.num_events_fixed; idx++) { checking_wrmsrl(MSR_ARCH_PERFMON_FIXED_CTR0 + idx, 0ull); } if (ds) ds->bts_index = ds->bts_buffer_base; local_irq_restore(flags); } static int p6_pmu_handle_irq(struct pt_regs *regs) { struct perf_sample_data data; struct cpu_hw_events *cpuc; struct perf_event *event; struct hw_perf_event *hwc; int idx, handled = 0; u64 val; data.addr = 0; data.raw = NULL; cpuc = &__get_cpu_var(cpu_hw_events); for (idx = 0; idx < x86_pmu.num_events; idx++) { if (!test_bit(idx, cpuc->active_mask)) continue; event = cpuc->events[idx]; hwc = &event->hw; val = x86_perf_event_update(event, hwc, idx); if (val & (1ULL << (x86_pmu.event_bits - 1))) continue; /* * event overflow */ handled = 1; data.period = event->hw.last_period; if (!x86_perf_event_set_period(event, hwc, idx)) continue; if (perf_event_overflow(event, 1, &data, regs)) p6_pmu_disable_event(hwc, idx); } if (handled) inc_irq_stat(apic_perf_irqs); return handled; } /* * This handler is triggered by the local APIC, so the APIC IRQ handling * rules apply: */ static int intel_pmu_handle_irq(struct pt_regs *regs) { struct perf_sample_data data; struct cpu_hw_events *cpuc; int bit, loops; u64 ack, status; data.addr = 0; data.raw = NULL; cpuc = &__get_cpu_var(cpu_hw_events); perf_disable(); intel_pmu_drain_bts_buffer(cpuc); status = intel_pmu_get_status(); if (!status) { perf_enable(); return 0; } loops = 0; again: if (++loops > 100) { WARN_ONCE(1, "perfevents: irq loop stuck!\n"); perf_event_print_debug(); intel_pmu_reset(); perf_enable(); return 1; } inc_irq_stat(apic_perf_irqs); ack = status; for_each_bit(bit, (unsigned long *)&status, X86_PMC_IDX_MAX) { struct perf_event *event = cpuc->events[bit]; clear_bit(bit, (unsigned long *) &status); if (!test_bit(bit, cpuc->active_mask)) continue; if (!intel_pmu_save_and_restart(event)) continue; data.period = event->hw.last_period; if (perf_event_overflow(event, 1, &data, regs)) intel_pmu_disable_event(&event->hw, bit); } intel_pmu_ack_status(ack); /* * Repeat if there is more work to be done: */ status = intel_pmu_get_status(); if (status) goto again; perf_enable(); return 1; } static int amd_pmu_handle_irq(struct pt_regs *regs) { struct perf_sample_data data; struct cpu_hw_events *cpuc; struct perf_event *event; struct hw_perf_event *hwc; int idx, handled = 0; u64 val; data.addr = 0; data.raw = NULL; cpuc = &__get_cpu_var(cpu_hw_events); for (idx = 0; idx < x86_pmu.num_events; idx++) { if (!test_bit(idx, cpuc->active_mask)) continue; event = cpuc->events[idx]; hwc = &event->hw; val = x86_perf_event_update(event, hwc, idx); if (val & (1ULL << (x86_pmu.event_bits - 1))) continue; /* * event overflow */ handled = 1; data.period = event->hw.last_period; if (!x86_perf_event_set_period(event, hwc, idx)) continue; if (perf_event_overflow(event, 1, &data, regs)) amd_pmu_disable_event(hwc, idx); } if (handled) inc_irq_stat(apic_perf_irqs); return handled; } void smp_perf_pending_interrupt(struct pt_regs *regs) { irq_enter(); ack_APIC_irq(); inc_irq_stat(apic_pending_irqs); perf_event_do_pending(); irq_exit(); } void set_perf_event_pending(void) { #ifdef CONFIG_X86_LOCAL_APIC if (!x86_pmu.apic || !x86_pmu_initialized()) return; apic->send_IPI_self(LOCAL_PENDING_VECTOR); #endif } void perf_events_lapic_init(void) { #ifdef CONFIG_X86_LOCAL_APIC if (!x86_pmu.apic || !x86_pmu_initialized()) return; /* * Always use NMI for PMU */ apic_write(APIC_LVTPC, APIC_DM_NMI); #endif } static int __kprobes perf_event_nmi_handler(struct notifier_block *self, unsigned long cmd, void *__args) { struct die_args *args = __args; struct pt_regs *regs; if (!atomic_read(&active_events)) return NOTIFY_DONE; switch (cmd) { case DIE_NMI: case DIE_NMI_IPI: break; default: return NOTIFY_DONE; } regs = args->regs; #ifdef CONFIG_X86_LOCAL_APIC apic_write(APIC_LVTPC, APIC_DM_NMI); #endif /* * Can't rely on the handled return value to say it was our NMI, two * events could trigger 'simultaneously' raising two back-to-back NMIs. * * If the first NMI handles both, the latter will be empty and daze * the CPU. */ x86_pmu.handle_irq(regs); return NOTIFY_STOP; } static struct event_constraint unconstrained; static struct event_constraint bts_constraint = EVENT_CONSTRAINT(0, 1ULL << X86_PMC_IDX_FIXED_BTS, 0); static struct event_constraint * intel_special_constraints(struct perf_event *event) { unsigned int hw_event; hw_event = event->hw.config & INTEL_ARCH_EVENT_MASK; if (unlikely((hw_event == x86_pmu.event_map(PERF_COUNT_HW_BRANCH_INSTRUCTIONS)) && (event->hw.sample_period == 1))) { return &bts_constraint; } return NULL; } static struct event_constraint * intel_get_event_constraints(struct cpu_hw_events *cpuc, struct perf_event *event) { struct event_constraint *c; c = intel_special_constraints(event); if (c) return c; if (x86_pmu.event_constraints) { for_each_event_constraint(c, x86_pmu.event_constraints) { if ((event->hw.config & c->cmask) == c->code) return c; } } return &unconstrained; } static struct event_constraint * amd_get_event_constraints(struct cpu_hw_events *cpuc, struct perf_event *event) { return &unconstrained; } static int x86_event_sched_in(struct perf_event *event, struct perf_cpu_context *cpuctx, int cpu) { int ret = 0; event->state = PERF_EVENT_STATE_ACTIVE; event->oncpu = cpu; event->tstamp_running += event->ctx->time - event->tstamp_stopped; if (!is_x86_event(event)) ret = event->pmu->enable(event); if (!ret && !is_software_event(event)) cpuctx->active_oncpu++; if (!ret && event->attr.exclusive) cpuctx->exclusive = 1; return ret; } static void x86_event_sched_out(struct perf_event *event, struct perf_cpu_context *cpuctx, int cpu) { event->state = PERF_EVENT_STATE_INACTIVE; event->oncpu = -1; if (!is_x86_event(event)) event->pmu->disable(event); event->tstamp_running -= event->ctx->time - event->tstamp_stopped; if (!is_software_event(event)) cpuctx->active_oncpu--; if (event->attr.exclusive || !cpuctx->active_oncpu) cpuctx->exclusive = 0; } /* * Called to enable a whole group of events. * Returns 1 if the group was enabled, or -EAGAIN if it could not be. * Assumes the caller has disabled interrupts and has * frozen the PMU with hw_perf_save_disable. * * called with PMU disabled. If successful and return value 1, * then guaranteed to call perf_enable() and hw_perf_enable() */ int hw_perf_group_sched_in(struct perf_event *leader, struct perf_cpu_context *cpuctx, struct perf_event_context *ctx, int cpu) { struct cpu_hw_events *cpuc = &per_cpu(cpu_hw_events, cpu); struct perf_event *sub; int assign[X86_PMC_IDX_MAX]; int n0, n1, ret; /* n0 = total number of events */ n0 = collect_events(cpuc, leader, true); if (n0 < 0) return n0; ret = x86_schedule_events(cpuc, n0, assign); if (ret) return ret; ret = x86_event_sched_in(leader, cpuctx, cpu); if (ret) return ret; n1 = 1; list_for_each_entry(sub, &leader->sibling_list, group_entry) { if (sub->state > PERF_EVENT_STATE_OFF) { ret = x86_event_sched_in(sub, cpuctx, cpu); if (ret) goto undo; ++n1; } } /* * copy new assignment, now we know it is possible * will be used by hw_perf_enable() */ memcpy(cpuc->assign, assign, n0*sizeof(int)); cpuc->n_events = n0; cpuc->n_added = n1; ctx->nr_active += n1; /* * 1 means successful and events are active * This is not quite true because we defer * actual activation until hw_perf_enable() but * this way we* ensure caller won't try to enable * individual events */ return 1; undo: x86_event_sched_out(leader, cpuctx, cpu); n0 = 1; list_for_each_entry(sub, &leader->sibling_list, group_entry) { if (sub->state == PERF_EVENT_STATE_ACTIVE) { x86_event_sched_out(sub, cpuctx, cpu); if (++n0 == n1) break; } } return ret; } static __read_mostly struct notifier_block perf_event_nmi_notifier = { .notifier_call = perf_event_nmi_handler, .next = NULL, .priority = 1 }; static __initconst struct x86_pmu p6_pmu = { .name = "p6", .handle_irq = p6_pmu_handle_irq, .disable_all = p6_pmu_disable_all, .enable_all = p6_pmu_enable_all, .enable = p6_pmu_enable_event, .disable = p6_pmu_disable_event, .eventsel = MSR_P6_EVNTSEL0, .perfctr = MSR_P6_PERFCTR0, .event_map = p6_pmu_event_map, .raw_event = p6_pmu_raw_event, .max_events = ARRAY_SIZE(p6_perfmon_event_map), .apic = 1, .max_period = (1ULL << 31) - 1, .version = 0, .num_events = 2, /* * Events have 40 bits implemented. However they are designed such * that bits [32-39] are sign extensions of bit 31. As such the * effective width of a event for P6-like PMU is 32 bits only. * * See IA-32 Intel Architecture Software developer manual Vol 3B */ .event_bits = 32, .event_mask = (1ULL << 32) - 1, .get_event_constraints = intel_get_event_constraints, .event_constraints = intel_p6_event_constraints }; static __initconst struct x86_pmu intel_pmu = { .name = "Intel", .handle_irq = intel_pmu_handle_irq, .disable_all = intel_pmu_disable_all, .enable_all = intel_pmu_enable_all, .enable = intel_pmu_enable_event, .disable = intel_pmu_disable_event, .eventsel = MSR_ARCH_PERFMON_EVENTSEL0, .perfctr = MSR_ARCH_PERFMON_PERFCTR0, .event_map = intel_pmu_event_map, .raw_event = intel_pmu_raw_event, .max_events = ARRAY_SIZE(intel_perfmon_event_map), .apic = 1, /* * Intel PMCs cannot be accessed sanely above 32 bit width, * so we install an artificial 1<<31 period regardless of * the generic event period: */ .max_period = (1ULL << 31) - 1, .enable_bts = intel_pmu_enable_bts, .disable_bts = intel_pmu_disable_bts, .get_event_constraints = intel_get_event_constraints }; static __initconst struct x86_pmu amd_pmu = { .name = "AMD", .handle_irq = amd_pmu_handle_irq, .disable_all = amd_pmu_disable_all, .enable_all = amd_pmu_enable_all, .enable = amd_pmu_enable_event, .disable = amd_pmu_disable_event, .eventsel = MSR_K7_EVNTSEL0, .perfctr = MSR_K7_PERFCTR0, .event_map = amd_pmu_event_map, .raw_event = amd_pmu_raw_event, .max_events = ARRAY_SIZE(amd_perfmon_event_map), .num_events = 4, .event_bits = 48, .event_mask = (1ULL << 48) - 1, .apic = 1, /* use highest bit to detect overflow */ .max_period = (1ULL << 47) - 1, .get_event_constraints = amd_get_event_constraints }; static __init int p6_pmu_init(void) { switch (boot_cpu_data.x86_model) { case 1: case 3: /* Pentium Pro */ case 5: case 6: /* Pentium II */ case 7: case 8: case 11: /* Pentium III */ case 9: case 13: /* Pentium M */ break; default: pr_cont("unsupported p6 CPU model %d ", boot_cpu_data.x86_model); return -ENODEV; } x86_pmu = p6_pmu; return 0; } static __init int intel_pmu_init(void) { union cpuid10_edx edx; union cpuid10_eax eax; unsigned int unused; unsigned int ebx; int version; if (!cpu_has(&boot_cpu_data, X86_FEATURE_ARCH_PERFMON)) { /* check for P6 processor family */ if (boot_cpu_data.x86 == 6) { return p6_pmu_init(); } else { return -ENODEV; } } /* * Check whether the Architectural PerfMon supports * Branch Misses Retired hw_event or not. */ cpuid(10, &eax.full, &ebx, &unused, &edx.full); if (eax.split.mask_length <= ARCH_PERFMON_BRANCH_MISSES_RETIRED) return -ENODEV; version = eax.split.version_id; if (version < 2) return -ENODEV; x86_pmu = intel_pmu; x86_pmu.version = version; x86_pmu.num_events = eax.split.num_events; x86_pmu.event_bits = eax.split.bit_width; x86_pmu.event_mask = (1ULL << eax.split.bit_width) - 1; /* * Quirk: v2 perfmon does not report fixed-purpose events, so * assume at least 3 events: */ x86_pmu.num_events_fixed = max((int)edx.split.num_events_fixed, 3); /* * Install the hw-cache-events table: */ switch (boot_cpu_data.x86_model) { case 15: /* original 65 nm celeron/pentium/core2/xeon, "Merom"/"Conroe" */ case 22: /* single-core 65 nm celeron/core2solo "Merom-L"/"Conroe-L" */ case 23: /* current 45 nm celeron/core2/xeon "Penryn"/"Wolfdale" */ case 29: /* six-core 45 nm xeon "Dunnington" */ memcpy(hw_cache_event_ids, core2_hw_cache_event_ids, sizeof(hw_cache_event_ids)); x86_pmu.event_constraints = intel_core_event_constraints; pr_cont("Core2 events, "); break; case 26: memcpy(hw_cache_event_ids, nehalem_hw_cache_event_ids, sizeof(hw_cache_event_ids)); x86_pmu.event_constraints = intel_nehalem_event_constraints; pr_cont("Nehalem/Corei7 events, "); break; case 28: memcpy(hw_cache_event_ids, atom_hw_cache_event_ids, sizeof(hw_cache_event_ids)); x86_pmu.event_constraints = intel_gen_event_constraints; pr_cont("Atom events, "); break; default: /* * default constraints for v2 and up */ x86_pmu.event_constraints = intel_gen_event_constraints; pr_cont("generic architected perfmon, "); } return 0; } static __init int amd_pmu_init(void) { /* Performance-monitoring supported from K7 and later: */ if (boot_cpu_data.x86 < 6) return -ENODEV; x86_pmu = amd_pmu; /* Events are common for all AMDs */ memcpy(hw_cache_event_ids, amd_hw_cache_event_ids, sizeof(hw_cache_event_ids)); return 0; } static void __init pmu_check_apic(void) { if (cpu_has_apic) return; x86_pmu.apic = 0; pr_info("no APIC, boot with the \"lapic\" boot parameter to force-enable it.\n"); pr_info("no hardware sampling interrupt available.\n"); } void __init init_hw_perf_events(void) { int err; pr_info("Performance Events: "); switch (boot_cpu_data.x86_vendor) { case X86_VENDOR_INTEL: err = intel_pmu_init(); break; case X86_VENDOR_AMD: err = amd_pmu_init(); break; default: return; } if (err != 0) { pr_cont("no PMU driver, software events only.\n"); return; } pmu_check_apic(); pr_cont("%s PMU driver.\n", x86_pmu.name); if (x86_pmu.num_events > X86_PMC_MAX_GENERIC) { WARN(1, KERN_ERR "hw perf events %d > max(%d), clipping!", x86_pmu.num_events, X86_PMC_MAX_GENERIC); x86_pmu.num_events = X86_PMC_MAX_GENERIC; } perf_event_mask = (1 << x86_pmu.num_events) - 1; perf_max_events = x86_pmu.num_events; if (x86_pmu.num_events_fixed > X86_PMC_MAX_FIXED) { WARN(1, KERN_ERR "hw perf events fixed %d > max(%d), clipping!", x86_pmu.num_events_fixed, X86_PMC_MAX_FIXED); x86_pmu.num_events_fixed = X86_PMC_MAX_FIXED; } perf_event_mask |= ((1LL << x86_pmu.num_events_fixed)-1) << X86_PMC_IDX_FIXED; x86_pmu.intel_ctrl = perf_event_mask; perf_events_lapic_init(); register_die_notifier(&perf_event_nmi_notifier); unconstrained = (struct event_constraint) EVENT_CONSTRAINT(0, (1ULL << x86_pmu.num_events) - 1, 0); pr_info("... version: %d\n", x86_pmu.version); pr_info("... bit width: %d\n", x86_pmu.event_bits); pr_info("... generic registers: %d\n", x86_pmu.num_events); pr_info("... value mask: %016Lx\n", x86_pmu.event_mask); pr_info("... max period: %016Lx\n", x86_pmu.max_period); pr_info("... fixed-purpose events: %d\n", x86_pmu.num_events_fixed); pr_info("... event mask: %016Lx\n", perf_event_mask); } static inline void x86_pmu_read(struct perf_event *event) { x86_perf_event_update(event, &event->hw, event->hw.idx); } static const struct pmu pmu = { .enable = x86_pmu_enable, .disable = x86_pmu_disable, .read = x86_pmu_read, .unthrottle = x86_pmu_unthrottle, }; /* * validate a single event group * * validation include: * - check events are compatible which each other * - events do not compete for the same counter * - number of events <= number of counters * * validation ensures the group can be loaded onto the * PMU if it was the only group available. */ static int validate_group(struct perf_event *event) { struct perf_event *leader = event->group_leader; struct cpu_hw_events *fake_cpuc; int ret, n; ret = -ENOMEM; fake_cpuc = kmalloc(sizeof(*fake_cpuc), GFP_KERNEL | __GFP_ZERO); if (!fake_cpuc) goto out; /* * the event is not yet connected with its * siblings therefore we must first collect * existing siblings, then add the new event * before we can simulate the scheduling */ ret = -ENOSPC; n = collect_events(fake_cpuc, leader, true); if (n < 0) goto out_free; fake_cpuc->n_events = n; n = collect_events(fake_cpuc, event, false); if (n < 0) goto out_free; fake_cpuc->n_events = n; ret = x86_schedule_events(fake_cpuc, n, NULL); out_free: kfree(fake_cpuc); out: return ret; } const struct pmu *hw_perf_event_init(struct perf_event *event) { const struct pmu *tmp; int err; err = __hw_perf_event_init(event); if (!err) { /* * we temporarily connect event to its pmu * such that validate_group() can classify * it as an x86 event using is_x86_event() */ tmp = event->pmu; event->pmu = &pmu; if (event->group_leader != event) err = validate_group(event); event->pmu = tmp; } if (err) { if (event->destroy) event->destroy(event); return ERR_PTR(err); } return &pmu; } /* * callchain support */ static inline void callchain_store(struct perf_callchain_entry *entry, u64 ip) { if (entry->nr < PERF_MAX_STACK_DEPTH) entry->ip[entry->nr++] = ip; } static DEFINE_PER_CPU(struct perf_callchain_entry, pmc_irq_entry); static DEFINE_PER_CPU(struct perf_callchain_entry, pmc_nmi_entry); static void backtrace_warning_symbol(void *data, char *msg, unsigned long symbol) { /* Ignore warnings */ } static void backtrace_warning(void *data, char *msg) { /* Ignore warnings */ } static int backtrace_stack(void *data, char *name) { return 0; } static void backtrace_address(void *data, unsigned long addr, int reliable) { struct perf_callchain_entry *entry = data; if (reliable) callchain_store(entry, addr); } static const struct stacktrace_ops backtrace_ops = { .warning = backtrace_warning, .warning_symbol = backtrace_warning_symbol, .stack = backtrace_stack, .address = backtrace_address, .walk_stack = print_context_stack_bp, }; #include "../dumpstack.h" static void perf_callchain_kernel(struct pt_regs *regs, struct perf_callchain_entry *entry) { callchain_store(entry, PERF_CONTEXT_KERNEL); callchain_store(entry, regs->ip); dump_trace(NULL, regs, NULL, regs->bp, &backtrace_ops, entry); } /* * best effort, GUP based copy_from_user() that assumes IRQ or NMI context */ static unsigned long copy_from_user_nmi(void *to, const void __user *from, unsigned long n) { unsigned long offset, addr = (unsigned long)from; int type = in_nmi() ? KM_NMI : KM_IRQ0; unsigned long size, len = 0; struct page *page; void *map; int ret; do { ret = __get_user_pages_fast(addr, 1, 0, &page); if (!ret) break; offset = addr & (PAGE_SIZE - 1); size = min(PAGE_SIZE - offset, n - len); map = kmap_atomic(page, type); memcpy(to, map+offset, size); kunmap_atomic(map, type); put_page(page); len += size; to += size; addr += size; } while (len < n); return len; } static int copy_stack_frame(const void __user *fp, struct stack_frame *frame) { unsigned long bytes; bytes = copy_from_user_nmi(frame, fp, sizeof(*frame)); return bytes == sizeof(*frame); } static void perf_callchain_user(struct pt_regs *regs, struct perf_callchain_entry *entry) { struct stack_frame frame; const void __user *fp; if (!user_mode(regs)) regs = task_pt_regs(current); fp = (void __user *)regs->bp; callchain_store(entry, PERF_CONTEXT_USER); callchain_store(entry, regs->ip); while (entry->nr < PERF_MAX_STACK_DEPTH) { frame.next_frame = NULL; frame.return_address = 0; if (!copy_stack_frame(fp, &frame)) break; if ((unsigned long)fp < regs->sp) break; callchain_store(entry, frame.return_address); fp = frame.next_frame; } } static void perf_do_callchain(struct pt_regs *regs, struct perf_callchain_entry *entry) { int is_user; if (!regs) return; is_user = user_mode(regs); if (is_user && current->state != TASK_RUNNING) return; if (!is_user) perf_callchain_kernel(regs, entry); if (current->mm) perf_callchain_user(regs, entry); } struct perf_callchain_entry *perf_callchain(struct pt_regs *regs) { struct perf_callchain_entry *entry; if (in_nmi()) entry = &__get_cpu_var(pmc_nmi_entry); else entry = &__get_cpu_var(pmc_irq_entry); entry->nr = 0; perf_do_callchain(regs, entry); return entry; } void hw_perf_event_setup_online(int cpu) { init_debug_store_on_cpu(cpu); }