/* * Kernel Probes (KProbes) * arch/ppc64/kernel/kprobes.c * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. * * Copyright (C) IBM Corporation, 2002, 2004 * * 2002-Oct Created by Vamsi Krishna S Kernel * Probes initial implementation ( includes contributions from * Rusty Russell). * 2004-July Suparna Bhattacharya added jumper probes * interface to access function arguments. * 2004-Nov Ananth N Mavinakayanahalli kprobes port * for PPC64 */ #include #include #include #include #include #include #include #include static DECLARE_MUTEX(kprobe_mutex); DEFINE_PER_CPU(struct kprobe *, current_kprobe) = NULL; DEFINE_PER_CPU(struct kprobe_ctlblk, kprobe_ctlblk); int __kprobes arch_prepare_kprobe(struct kprobe *p) { int ret = 0; kprobe_opcode_t insn = *p->addr; if ((unsigned long)p->addr & 0x03) { printk("Attempt to register kprobe at an unaligned address\n"); ret = -EINVAL; } else if (IS_MTMSRD(insn) || IS_RFID(insn)) { printk("Cannot register a kprobe on rfid or mtmsrd\n"); ret = -EINVAL; } /* insn must be on a special executable page on ppc64 */ if (!ret) { down(&kprobe_mutex); p->ainsn.insn = get_insn_slot(); up(&kprobe_mutex); if (!p->ainsn.insn) ret = -ENOMEM; } return ret; } void __kprobes arch_copy_kprobe(struct kprobe *p) { memcpy(p->ainsn.insn, p->addr, MAX_INSN_SIZE * sizeof(kprobe_opcode_t)); p->opcode = *p->addr; } void __kprobes arch_arm_kprobe(struct kprobe *p) { *p->addr = BREAKPOINT_INSTRUCTION; flush_icache_range((unsigned long) p->addr, (unsigned long) p->addr + sizeof(kprobe_opcode_t)); } void __kprobes arch_disarm_kprobe(struct kprobe *p) { *p->addr = p->opcode; flush_icache_range((unsigned long) p->addr, (unsigned long) p->addr + sizeof(kprobe_opcode_t)); } void __kprobes arch_remove_kprobe(struct kprobe *p) { down(&kprobe_mutex); free_insn_slot(p->ainsn.insn); up(&kprobe_mutex); } static inline void prepare_singlestep(struct kprobe *p, struct pt_regs *regs) { kprobe_opcode_t insn = *p->ainsn.insn; regs->msr |= MSR_SE; /* single step inline if it is a trap variant */ if (is_trap(insn)) regs->nip = (unsigned long)p->addr; else regs->nip = (unsigned long)p->ainsn.insn; } static inline void save_previous_kprobe(struct kprobe_ctlblk *kcb) { kcb->prev_kprobe.kp = kprobe_running(); kcb->prev_kprobe.status = kcb->kprobe_status; kcb->prev_kprobe.saved_msr = kcb->kprobe_saved_msr; } static inline void restore_previous_kprobe(struct kprobe_ctlblk *kcb) { __get_cpu_var(current_kprobe) = kcb->prev_kprobe.kp; kcb->kprobe_status = kcb->prev_kprobe.status; kcb->kprobe_saved_msr = kcb->prev_kprobe.saved_msr; } static inline void set_current_kprobe(struct kprobe *p, struct pt_regs *regs, struct kprobe_ctlblk *kcb) { __get_cpu_var(current_kprobe) = p; kcb->kprobe_saved_msr = regs->msr; } void __kprobes arch_prepare_kretprobe(struct kretprobe *rp, struct pt_regs *regs) { struct kretprobe_instance *ri; if ((ri = get_free_rp_inst(rp)) != NULL) { ri->rp = rp; ri->task = current; ri->ret_addr = (kprobe_opcode_t *)regs->link; /* Replace the return addr with trampoline addr */ regs->link = (unsigned long)kretprobe_trampoline; add_rp_inst(ri); } else { rp->nmissed++; } } static inline int kprobe_handler(struct pt_regs *regs) { struct kprobe *p; int ret = 0; unsigned int *addr = (unsigned int *)regs->nip; struct kprobe_ctlblk *kcb = get_kprobe_ctlblk(); /* Check we're not actually recursing */ if (kprobe_running()) { /* We *are* holding lock here, so this is safe. Disarm the probe we just hit, and ignore it. */ p = get_kprobe(addr); if (p) { kprobe_opcode_t insn = *p->ainsn.insn; if (kcb->kprobe_status == KPROBE_HIT_SS && is_trap(insn)) { regs->msr &= ~MSR_SE; regs->msr |= kcb->kprobe_saved_msr; unlock_kprobes(); goto no_kprobe; } /* We have reentered the kprobe_handler(), since * another probe was hit while within the handler. * We here save the original kprobes variables and * just single step on the instruction of the new probe * without calling any user handlers. */ save_previous_kprobe(kcb); set_current_kprobe(p, regs, kcb); kcb->kprobe_saved_msr = regs->msr; p->nmissed++; prepare_singlestep(p, regs); kcb->kprobe_status = KPROBE_REENTER; return 1; } else { p = __get_cpu_var(current_kprobe); if (p->break_handler && p->break_handler(p, regs)) { goto ss_probe; } } /* If it's not ours, can't be delete race, (we hold lock). */ goto no_kprobe; } lock_kprobes(); p = get_kprobe(addr); if (!p) { unlock_kprobes(); if (*addr != BREAKPOINT_INSTRUCTION) { /* * PowerPC has multiple variants of the "trap" * instruction. If the current instruction is a * trap variant, it could belong to someone else */ kprobe_opcode_t cur_insn = *addr; if (is_trap(cur_insn)) goto no_kprobe; /* * The breakpoint instruction was removed right * after we hit it. Another cpu has removed * either a probepoint or a debugger breakpoint * at this address. In either case, no further * handling of this interrupt is appropriate. */ ret = 1; } /* Not one of ours: let kernel handle it */ goto no_kprobe; } /* * This preempt_disable() matches the preempt_enable_no_resched() * in post_kprobe_handler(). */ preempt_disable(); kcb->kprobe_status = KPROBE_HIT_ACTIVE; set_current_kprobe(p, regs, kcb); if (p->pre_handler && p->pre_handler(p, regs)) /* handler has already set things up, so skip ss setup */ return 1; ss_probe: prepare_singlestep(p, regs); kcb->kprobe_status = KPROBE_HIT_SS; return 1; no_kprobe: return ret; } /* * Function return probe trampoline: * - init_kprobes() establishes a probepoint here * - When the probed function returns, this probe * causes the handlers to fire */ void kretprobe_trampoline_holder(void) { asm volatile(".global kretprobe_trampoline\n" "kretprobe_trampoline:\n" "nop\n"); } /* * Called when the probe at kretprobe trampoline is hit */ int __kprobes trampoline_probe_handler(struct kprobe *p, struct pt_regs *regs) { struct kretprobe_instance *ri = NULL; struct hlist_head *head; struct hlist_node *node, *tmp; unsigned long orig_ret_address = 0; unsigned long trampoline_address =(unsigned long)&kretprobe_trampoline; head = kretprobe_inst_table_head(current); /* * It is possible to have multiple instances associated with a given * task either because an multiple functions in the call path * have a return probe installed on them, and/or more then one return * return probe was registered for a target function. * * We can handle this because: * - instances are always inserted at the head of the list * - when multiple return probes are registered for the same * function, the first instance's ret_addr will point to the * real return address, and all the rest will point to * kretprobe_trampoline */ hlist_for_each_entry_safe(ri, node, tmp, head, hlist) { if (ri->task != current) /* another task is sharing our hash bucket */ continue; if (ri->rp && ri->rp->handler) ri->rp->handler(ri, regs); orig_ret_address = (unsigned long)ri->ret_addr; recycle_rp_inst(ri); if (orig_ret_address != trampoline_address) /* * This is the real return address. Any other * instances associated with this task are for * other calls deeper on the call stack */ break; } BUG_ON(!orig_ret_address || (orig_ret_address == trampoline_address)); regs->nip = orig_ret_address; reset_current_kprobe(); unlock_kprobes(); preempt_enable_no_resched(); /* * By returning a non-zero value, we are telling * kprobe_handler() that we have handled unlocking * and re-enabling preemption. */ return 1; } /* * Called after single-stepping. p->addr is the address of the * instruction whose first byte has been replaced by the "breakpoint" * instruction. To avoid the SMP problems that can occur when we * temporarily put back the original opcode to single-step, we * single-stepped a copy of the instruction. The address of this * copy is p->ainsn.insn. */ static void __kprobes resume_execution(struct kprobe *p, struct pt_regs *regs) { int ret; unsigned int insn = *p->ainsn.insn; regs->nip = (unsigned long)p->addr; ret = emulate_step(regs, insn); if (ret == 0) regs->nip = (unsigned long)p->addr + 4; } static inline int post_kprobe_handler(struct pt_regs *regs) { struct kprobe *cur = kprobe_running(); struct kprobe_ctlblk *kcb = get_kprobe_ctlblk(); if (!cur) return 0; if ((kcb->kprobe_status != KPROBE_REENTER) && cur->post_handler) { kcb->kprobe_status = KPROBE_HIT_SSDONE; cur->post_handler(cur, regs, 0); } resume_execution(cur, regs); regs->msr |= kcb->kprobe_saved_msr; /*Restore back the original saved kprobes variables and continue. */ if (kcb->kprobe_status == KPROBE_REENTER) { restore_previous_kprobe(kcb); goto out; } reset_current_kprobe(); unlock_kprobes(); out: preempt_enable_no_resched(); /* * if somebody else is singlestepping across a probe point, msr * will have SE set, in which case, continue the remaining processing * of do_debug, as if this is not a probe hit. */ if (regs->msr & MSR_SE) return 0; return 1; } /* Interrupts disabled, kprobe_lock held. */ static inline int kprobe_fault_handler(struct pt_regs *regs, int trapnr) { struct kprobe *cur = kprobe_running(); struct kprobe_ctlblk *kcb = get_kprobe_ctlblk(); if (cur->fault_handler && cur->fault_handler(cur, regs, trapnr)) return 1; if (kcb->kprobe_status & KPROBE_HIT_SS) { resume_execution(cur, regs); regs->msr &= ~MSR_SE; regs->msr |= kcb->kprobe_saved_msr; reset_current_kprobe(); unlock_kprobes(); preempt_enable_no_resched(); } return 0; } /* * Wrapper routine to for handling exceptions. */ int __kprobes kprobe_exceptions_notify(struct notifier_block *self, unsigned long val, void *data) { struct die_args *args = (struct die_args *)data; int ret = NOTIFY_DONE; /* * Interrupts are not disabled here. We need to disable * preemption, because kprobe_running() uses smp_processor_id(). */ preempt_disable(); switch (val) { case DIE_BPT: if (kprobe_handler(args->regs)) ret = NOTIFY_STOP; break; case DIE_SSTEP: if (post_kprobe_handler(args->regs)) ret = NOTIFY_STOP; break; case DIE_PAGE_FAULT: if (kprobe_running() && kprobe_fault_handler(args->regs, args->trapnr)) ret = NOTIFY_STOP; break; default: break; } preempt_enable_no_resched(); return ret; } int __kprobes setjmp_pre_handler(struct kprobe *p, struct pt_regs *regs) { struct jprobe *jp = container_of(p, struct jprobe, kp); struct kprobe_ctlblk *kcb = get_kprobe_ctlblk(); memcpy(&kcb->jprobe_saved_regs, regs, sizeof(struct pt_regs)); /* setup return addr to the jprobe handler routine */ regs->nip = (unsigned long)(((func_descr_t *)jp->entry)->entry); regs->gpr[2] = (unsigned long)(((func_descr_t *)jp->entry)->toc); return 1; } void __kprobes jprobe_return(void) { asm volatile("trap" ::: "memory"); } void __kprobes jprobe_return_end(void) { }; int __kprobes longjmp_break_handler(struct kprobe *p, struct pt_regs *regs) { struct kprobe_ctlblk *kcb = get_kprobe_ctlblk(); /* * FIXME - we should ideally be validating that we got here 'cos * of the "trap" in jprobe_return() above, before restoring the * saved regs... */ memcpy(regs, &kcb->jprobe_saved_regs, sizeof(struct pt_regs)); return 1; } static struct kprobe trampoline_p = { .addr = (kprobe_opcode_t *) &kretprobe_trampoline, .pre_handler = trampoline_probe_handler }; int __init arch_init_kprobes(void) { return register_kprobe(&trampoline_p); }