/* * Copyright (c) 2004 Mellanox Technologies Ltd. All rights reserved. * Copyright (c) 2004 Infinicon Corporation. All rights reserved. * Copyright (c) 2004 Intel Corporation. All rights reserved. * Copyright (c) 2004 Topspin Corporation. All rights reserved. * Copyright (c) 2004 Voltaire Corporation. All rights reserved. * Copyright (c) 2005 Sun Microsystems, Inc. All rights reserved. * Copyright (c) 2005, 2006 Cisco Systems. All rights reserved. * * This software is available to you under a choice of one of two * licenses. You may choose to be licensed under the terms of the GNU * General Public License (GPL) Version 2, available from the file * COPYING in the main directory of this source tree, or the * OpenIB.org BSD license below: * * Redistribution and use in source and binary forms, with or * without modification, are permitted provided that the following * conditions are met: * * - Redistributions of source code must retain the above * copyright notice, this list of conditions and the following * disclaimer. * * - Redistributions in binary form must reproduce the above * copyright notice, this list of conditions and the following * disclaimer in the documentation and/or other materials * provided with the distribution. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE * SOFTWARE. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "core_priv.h" #include static int ib_resolve_eth_dmac(struct ib_device *device, struct rdma_ah_attr *ah_attr); static const char * const ib_events[] = { [IB_EVENT_CQ_ERR] = "CQ error", [IB_EVENT_QP_FATAL] = "QP fatal error", [IB_EVENT_QP_REQ_ERR] = "QP request error", [IB_EVENT_QP_ACCESS_ERR] = "QP access error", [IB_EVENT_COMM_EST] = "communication established", [IB_EVENT_SQ_DRAINED] = "send queue drained", [IB_EVENT_PATH_MIG] = "path migration successful", [IB_EVENT_PATH_MIG_ERR] = "path migration error", [IB_EVENT_DEVICE_FATAL] = "device fatal error", [IB_EVENT_PORT_ACTIVE] = "port active", [IB_EVENT_PORT_ERR] = "port error", [IB_EVENT_LID_CHANGE] = "LID change", [IB_EVENT_PKEY_CHANGE] = "P_key change", [IB_EVENT_SM_CHANGE] = "SM change", [IB_EVENT_SRQ_ERR] = "SRQ error", [IB_EVENT_SRQ_LIMIT_REACHED] = "SRQ limit reached", [IB_EVENT_QP_LAST_WQE_REACHED] = "last WQE reached", [IB_EVENT_CLIENT_REREGISTER] = "client reregister", [IB_EVENT_GID_CHANGE] = "GID changed", }; const char *__attribute_const__ ib_event_msg(enum ib_event_type event) { size_t index = event; return (index < ARRAY_SIZE(ib_events) && ib_events[index]) ? ib_events[index] : "unrecognized event"; } EXPORT_SYMBOL(ib_event_msg); static const char * const wc_statuses[] = { [IB_WC_SUCCESS] = "success", [IB_WC_LOC_LEN_ERR] = "local length error", [IB_WC_LOC_QP_OP_ERR] = "local QP operation error", [IB_WC_LOC_EEC_OP_ERR] = "local EE context operation error", [IB_WC_LOC_PROT_ERR] = "local protection error", [IB_WC_WR_FLUSH_ERR] = "WR flushed", [IB_WC_MW_BIND_ERR] = "memory management operation error", [IB_WC_BAD_RESP_ERR] = "bad response error", [IB_WC_LOC_ACCESS_ERR] = "local access error", [IB_WC_REM_INV_REQ_ERR] = "invalid request error", [IB_WC_REM_ACCESS_ERR] = "remote access error", [IB_WC_REM_OP_ERR] = "remote operation error", [IB_WC_RETRY_EXC_ERR] = "transport retry counter exceeded", [IB_WC_RNR_RETRY_EXC_ERR] = "RNR retry counter exceeded", [IB_WC_LOC_RDD_VIOL_ERR] = "local RDD violation error", [IB_WC_REM_INV_RD_REQ_ERR] = "remote invalid RD request", [IB_WC_REM_ABORT_ERR] = "operation aborted", [IB_WC_INV_EECN_ERR] = "invalid EE context number", [IB_WC_INV_EEC_STATE_ERR] = "invalid EE context state", [IB_WC_FATAL_ERR] = "fatal error", [IB_WC_RESP_TIMEOUT_ERR] = "response timeout error", [IB_WC_GENERAL_ERR] = "general error", }; const char *__attribute_const__ ib_wc_status_msg(enum ib_wc_status status) { size_t index = status; return (index < ARRAY_SIZE(wc_statuses) && wc_statuses[index]) ? wc_statuses[index] : "unrecognized status"; } EXPORT_SYMBOL(ib_wc_status_msg); __attribute_const__ int ib_rate_to_mult(enum ib_rate rate) { switch (rate) { case IB_RATE_2_5_GBPS: return 1; case IB_RATE_5_GBPS: return 2; case IB_RATE_10_GBPS: return 4; case IB_RATE_20_GBPS: return 8; case IB_RATE_30_GBPS: return 12; case IB_RATE_40_GBPS: return 16; case IB_RATE_60_GBPS: return 24; case IB_RATE_80_GBPS: return 32; case IB_RATE_120_GBPS: return 48; case IB_RATE_14_GBPS: return 6; case IB_RATE_56_GBPS: return 22; case IB_RATE_112_GBPS: return 45; case IB_RATE_168_GBPS: return 67; case IB_RATE_25_GBPS: return 10; case IB_RATE_100_GBPS: return 40; case IB_RATE_200_GBPS: return 80; case IB_RATE_300_GBPS: return 120; case IB_RATE_28_GBPS: return 11; case IB_RATE_50_GBPS: return 20; case IB_RATE_400_GBPS: return 160; case IB_RATE_600_GBPS: return 240; default: return -1; } } EXPORT_SYMBOL(ib_rate_to_mult); __attribute_const__ enum ib_rate mult_to_ib_rate(int mult) { switch (mult) { case 1: return IB_RATE_2_5_GBPS; case 2: return IB_RATE_5_GBPS; case 4: return IB_RATE_10_GBPS; case 8: return IB_RATE_20_GBPS; case 12: return IB_RATE_30_GBPS; case 16: return IB_RATE_40_GBPS; case 24: return IB_RATE_60_GBPS; case 32: return IB_RATE_80_GBPS; case 48: return IB_RATE_120_GBPS; case 6: return IB_RATE_14_GBPS; case 22: return IB_RATE_56_GBPS; case 45: return IB_RATE_112_GBPS; case 67: return IB_RATE_168_GBPS; case 10: return IB_RATE_25_GBPS; case 40: return IB_RATE_100_GBPS; case 80: return IB_RATE_200_GBPS; case 120: return IB_RATE_300_GBPS; case 11: return IB_RATE_28_GBPS; case 20: return IB_RATE_50_GBPS; case 160: return IB_RATE_400_GBPS; case 240: return IB_RATE_600_GBPS; default: return IB_RATE_PORT_CURRENT; } } EXPORT_SYMBOL(mult_to_ib_rate); __attribute_const__ int ib_rate_to_mbps(enum ib_rate rate) { switch (rate) { case IB_RATE_2_5_GBPS: return 2500; case IB_RATE_5_GBPS: return 5000; case IB_RATE_10_GBPS: return 10000; case IB_RATE_20_GBPS: return 20000; case IB_RATE_30_GBPS: return 30000; case IB_RATE_40_GBPS: return 40000; case IB_RATE_60_GBPS: return 60000; case IB_RATE_80_GBPS: return 80000; case IB_RATE_120_GBPS: return 120000; case IB_RATE_14_GBPS: return 14062; case IB_RATE_56_GBPS: return 56250; case IB_RATE_112_GBPS: return 112500; case IB_RATE_168_GBPS: return 168750; case IB_RATE_25_GBPS: return 25781; case IB_RATE_100_GBPS: return 103125; case IB_RATE_200_GBPS: return 206250; case IB_RATE_300_GBPS: return 309375; case IB_RATE_28_GBPS: return 28125; case IB_RATE_50_GBPS: return 53125; case IB_RATE_400_GBPS: return 425000; case IB_RATE_600_GBPS: return 637500; default: return -1; } } EXPORT_SYMBOL(ib_rate_to_mbps); __attribute_const__ enum rdma_transport_type rdma_node_get_transport(unsigned int node_type) { if (node_type == RDMA_NODE_USNIC) return RDMA_TRANSPORT_USNIC; if (node_type == RDMA_NODE_USNIC_UDP) return RDMA_TRANSPORT_USNIC_UDP; if (node_type == RDMA_NODE_RNIC) return RDMA_TRANSPORT_IWARP; if (node_type == RDMA_NODE_UNSPECIFIED) return RDMA_TRANSPORT_UNSPECIFIED; return RDMA_TRANSPORT_IB; } EXPORT_SYMBOL(rdma_node_get_transport); enum rdma_link_layer rdma_port_get_link_layer(struct ib_device *device, u8 port_num) { enum rdma_transport_type lt; if (device->ops.get_link_layer) return device->ops.get_link_layer(device, port_num); lt = rdma_node_get_transport(device->node_type); if (lt == RDMA_TRANSPORT_IB) return IB_LINK_LAYER_INFINIBAND; return IB_LINK_LAYER_ETHERNET; } EXPORT_SYMBOL(rdma_port_get_link_layer); /* Protection domains */ /** * ib_alloc_pd - Allocates an unused protection domain. * @device: The device on which to allocate the protection domain. * @flags: protection domain flags * @caller: caller's build-time module name * * A protection domain object provides an association between QPs, shared * receive queues, address handles, memory regions, and memory windows. * * Every PD has a local_dma_lkey which can be used as the lkey value for local * memory operations. */ struct ib_pd *__ib_alloc_pd(struct ib_device *device, unsigned int flags, const char *caller) { struct ib_pd *pd; int mr_access_flags = 0; int ret; pd = rdma_zalloc_drv_obj(device, ib_pd); if (!pd) return ERR_PTR(-ENOMEM); pd->device = device; pd->uobject = NULL; pd->__internal_mr = NULL; atomic_set(&pd->usecnt, 0); pd->flags = flags; rdma_restrack_new(&pd->res, RDMA_RESTRACK_PD); rdma_restrack_set_name(&pd->res, caller); ret = device->ops.alloc_pd(pd, NULL); if (ret) { rdma_restrack_put(&pd->res); kfree(pd); return ERR_PTR(ret); } rdma_restrack_add(&pd->res); if (device->attrs.device_cap_flags & IB_DEVICE_LOCAL_DMA_LKEY) pd->local_dma_lkey = device->local_dma_lkey; else mr_access_flags |= IB_ACCESS_LOCAL_WRITE; if (flags & IB_PD_UNSAFE_GLOBAL_RKEY) { pr_warn("%s: enabling unsafe global rkey\n", caller); mr_access_flags |= IB_ACCESS_REMOTE_READ | IB_ACCESS_REMOTE_WRITE; } if (mr_access_flags) { struct ib_mr *mr; mr = pd->device->ops.get_dma_mr(pd, mr_access_flags); if (IS_ERR(mr)) { ib_dealloc_pd(pd); return ERR_CAST(mr); } mr->device = pd->device; mr->pd = pd; mr->type = IB_MR_TYPE_DMA; mr->uobject = NULL; mr->need_inval = false; pd->__internal_mr = mr; if (!(device->attrs.device_cap_flags & IB_DEVICE_LOCAL_DMA_LKEY)) pd->local_dma_lkey = pd->__internal_mr->lkey; if (flags & IB_PD_UNSAFE_GLOBAL_RKEY) pd->unsafe_global_rkey = pd->__internal_mr->rkey; } return pd; } EXPORT_SYMBOL(__ib_alloc_pd); /** * ib_dealloc_pd_user - Deallocates a protection domain. * @pd: The protection domain to deallocate. * @udata: Valid user data or NULL for kernel object * * It is an error to call this function while any resources in the pd still * exist. The caller is responsible to synchronously destroy them and * guarantee no new allocations will happen. */ int ib_dealloc_pd_user(struct ib_pd *pd, struct ib_udata *udata) { int ret; if (pd->__internal_mr) { ret = pd->device->ops.dereg_mr(pd->__internal_mr, NULL); WARN_ON(ret); pd->__internal_mr = NULL; } /* uverbs manipulates usecnt with proper locking, while the kabi requires the caller to guarantee we can't race here. */ WARN_ON(atomic_read(&pd->usecnt)); ret = pd->device->ops.dealloc_pd(pd, udata); if (ret) return ret; rdma_restrack_del(&pd->res); kfree(pd); return ret; } EXPORT_SYMBOL(ib_dealloc_pd_user); /* Address handles */ /** * rdma_copy_ah_attr - Copy rdma ah attribute from source to destination. * @dest: Pointer to destination ah_attr. Contents of the destination * pointer is assumed to be invalid and attribute are overwritten. * @src: Pointer to source ah_attr. */ void rdma_copy_ah_attr(struct rdma_ah_attr *dest, const struct rdma_ah_attr *src) { *dest = *src; if (dest->grh.sgid_attr) rdma_hold_gid_attr(dest->grh.sgid_attr); } EXPORT_SYMBOL(rdma_copy_ah_attr); /** * rdma_replace_ah_attr - Replace valid ah_attr with new new one. * @old: Pointer to existing ah_attr which needs to be replaced. * old is assumed to be valid or zero'd * @new: Pointer to the new ah_attr. * * rdma_replace_ah_attr() first releases any reference in the old ah_attr if * old the ah_attr is valid; after that it copies the new attribute and holds * the reference to the replaced ah_attr. */ void rdma_replace_ah_attr(struct rdma_ah_attr *old, const struct rdma_ah_attr *new) { rdma_destroy_ah_attr(old); *old = *new; if (old->grh.sgid_attr) rdma_hold_gid_attr(old->grh.sgid_attr); } EXPORT_SYMBOL(rdma_replace_ah_attr); /** * rdma_move_ah_attr - Move ah_attr pointed by source to destination. * @dest: Pointer to destination ah_attr to copy to. * dest is assumed to be valid or zero'd * @src: Pointer to the new ah_attr. * * rdma_move_ah_attr() first releases any reference in the destination ah_attr * if it is valid. This also transfers ownership of internal references from * src to dest, making src invalid in the process. No new reference of the src * ah_attr is taken. */ void rdma_move_ah_attr(struct rdma_ah_attr *dest, struct rdma_ah_attr *src) { rdma_destroy_ah_attr(dest); *dest = *src; src->grh.sgid_attr = NULL; } EXPORT_SYMBOL(rdma_move_ah_attr); /* * Validate that the rdma_ah_attr is valid for the device before passing it * off to the driver. */ static int rdma_check_ah_attr(struct ib_device *device, struct rdma_ah_attr *ah_attr) { if (!rdma_is_port_valid(device, ah_attr->port_num)) return -EINVAL; if ((rdma_is_grh_required(device, ah_attr->port_num) || ah_attr->type == RDMA_AH_ATTR_TYPE_ROCE) && !(ah_attr->ah_flags & IB_AH_GRH)) return -EINVAL; if (ah_attr->grh.sgid_attr) { /* * Make sure the passed sgid_attr is consistent with the * parameters */ if (ah_attr->grh.sgid_attr->index != ah_attr->grh.sgid_index || ah_attr->grh.sgid_attr->port_num != ah_attr->port_num) return -EINVAL; } return 0; } /* * If the ah requires a GRH then ensure that sgid_attr pointer is filled in. * On success the caller is responsible to call rdma_unfill_sgid_attr(). */ static int rdma_fill_sgid_attr(struct ib_device *device, struct rdma_ah_attr *ah_attr, const struct ib_gid_attr **old_sgid_attr) { const struct ib_gid_attr *sgid_attr; struct ib_global_route *grh; int ret; *old_sgid_attr = ah_attr->grh.sgid_attr; ret = rdma_check_ah_attr(device, ah_attr); if (ret) return ret; if (!(ah_attr->ah_flags & IB_AH_GRH)) return 0; grh = rdma_ah_retrieve_grh(ah_attr); if (grh->sgid_attr) return 0; sgid_attr = rdma_get_gid_attr(device, ah_attr->port_num, grh->sgid_index); if (IS_ERR(sgid_attr)) return PTR_ERR(sgid_attr); /* Move ownerhip of the kref into the ah_attr */ grh->sgid_attr = sgid_attr; return 0; } static void rdma_unfill_sgid_attr(struct rdma_ah_attr *ah_attr, const struct ib_gid_attr *old_sgid_attr) { /* * Fill didn't change anything, the caller retains ownership of * whatever it passed */ if (ah_attr->grh.sgid_attr == old_sgid_attr) return; /* * Otherwise, we need to undo what rdma_fill_sgid_attr so the caller * doesn't see any change in the rdma_ah_attr. If we get here * old_sgid_attr is NULL. */ rdma_destroy_ah_attr(ah_attr); } static const struct ib_gid_attr * rdma_update_sgid_attr(struct rdma_ah_attr *ah_attr, const struct ib_gid_attr *old_attr) { if (old_attr) rdma_put_gid_attr(old_attr); if (ah_attr->ah_flags & IB_AH_GRH) { rdma_hold_gid_attr(ah_attr->grh.sgid_attr); return ah_attr->grh.sgid_attr; } return NULL; } static struct ib_ah *_rdma_create_ah(struct ib_pd *pd, struct rdma_ah_attr *ah_attr, u32 flags, struct ib_udata *udata, struct net_device *xmit_slave) { struct rdma_ah_init_attr init_attr = {}; struct ib_device *device = pd->device; struct ib_ah *ah; int ret; might_sleep_if(flags & RDMA_CREATE_AH_SLEEPABLE); if (!udata && !device->ops.create_ah) return ERR_PTR(-EOPNOTSUPP); ah = rdma_zalloc_drv_obj_gfp( device, ib_ah, (flags & RDMA_CREATE_AH_SLEEPABLE) ? GFP_KERNEL : GFP_ATOMIC); if (!ah) return ERR_PTR(-ENOMEM); ah->device = device; ah->pd = pd; ah->type = ah_attr->type; ah->sgid_attr = rdma_update_sgid_attr(ah_attr, NULL); init_attr.ah_attr = ah_attr; init_attr.flags = flags; init_attr.xmit_slave = xmit_slave; if (udata) ret = device->ops.create_user_ah(ah, &init_attr, udata); else ret = device->ops.create_ah(ah, &init_attr, NULL); if (ret) { kfree(ah); return ERR_PTR(ret); } atomic_inc(&pd->usecnt); return ah; } /** * rdma_create_ah - Creates an address handle for the * given address vector. * @pd: The protection domain associated with the address handle. * @ah_attr: The attributes of the address vector. * @flags: Create address handle flags (see enum rdma_create_ah_flags). * * It returns 0 on success and returns appropriate error code on error. * The address handle is used to reference a local or global destination * in all UD QP post sends. */ struct ib_ah *rdma_create_ah(struct ib_pd *pd, struct rdma_ah_attr *ah_attr, u32 flags) { const struct ib_gid_attr *old_sgid_attr; struct net_device *slave; struct ib_ah *ah; int ret; ret = rdma_fill_sgid_attr(pd->device, ah_attr, &old_sgid_attr); if (ret) return ERR_PTR(ret); slave = rdma_lag_get_ah_roce_slave(pd->device, ah_attr, (flags & RDMA_CREATE_AH_SLEEPABLE) ? GFP_KERNEL : GFP_ATOMIC); if (IS_ERR(slave)) { rdma_unfill_sgid_attr(ah_attr, old_sgid_attr); return (void *)slave; } ah = _rdma_create_ah(pd, ah_attr, flags, NULL, slave); rdma_lag_put_ah_roce_slave(slave); rdma_unfill_sgid_attr(ah_attr, old_sgid_attr); return ah; } EXPORT_SYMBOL(rdma_create_ah); /** * rdma_create_user_ah - Creates an address handle for the * given address vector. * It resolves destination mac address for ah attribute of RoCE type. * @pd: The protection domain associated with the address handle. * @ah_attr: The attributes of the address vector. * @udata: pointer to user's input output buffer information need by * provider driver. * * It returns 0 on success and returns appropriate error code on error. * The address handle is used to reference a local or global destination * in all UD QP post sends. */ struct ib_ah *rdma_create_user_ah(struct ib_pd *pd, struct rdma_ah_attr *ah_attr, struct ib_udata *udata) { const struct ib_gid_attr *old_sgid_attr; struct ib_ah *ah; int err; err = rdma_fill_sgid_attr(pd->device, ah_attr, &old_sgid_attr); if (err) return ERR_PTR(err); if (ah_attr->type == RDMA_AH_ATTR_TYPE_ROCE) { err = ib_resolve_eth_dmac(pd->device, ah_attr); if (err) { ah = ERR_PTR(err); goto out; } } ah = _rdma_create_ah(pd, ah_attr, RDMA_CREATE_AH_SLEEPABLE, udata, NULL); out: rdma_unfill_sgid_attr(ah_attr, old_sgid_attr); return ah; } EXPORT_SYMBOL(rdma_create_user_ah); int ib_get_rdma_header_version(const union rdma_network_hdr *hdr) { const struct iphdr *ip4h = (struct iphdr *)&hdr->roce4grh; struct iphdr ip4h_checked; const struct ipv6hdr *ip6h = (struct ipv6hdr *)&hdr->ibgrh; /* If it's IPv6, the version must be 6, otherwise, the first * 20 bytes (before the IPv4 header) are garbled. */ if (ip6h->version != 6) return (ip4h->version == 4) ? 4 : 0; /* version may be 6 or 4 because the first 20 bytes could be garbled */ /* RoCE v2 requires no options, thus header length * must be 5 words */ if (ip4h->ihl != 5) return 6; /* Verify checksum. * We can't write on scattered buffers so we need to copy to * temp buffer. */ memcpy(&ip4h_checked, ip4h, sizeof(ip4h_checked)); ip4h_checked.check = 0; ip4h_checked.check = ip_fast_csum((u8 *)&ip4h_checked, 5); /* if IPv4 header checksum is OK, believe it */ if (ip4h->check == ip4h_checked.check) return 4; return 6; } EXPORT_SYMBOL(ib_get_rdma_header_version); static enum rdma_network_type ib_get_net_type_by_grh(struct ib_device *device, u8 port_num, const struct ib_grh *grh) { int grh_version; if (rdma_protocol_ib(device, port_num)) return RDMA_NETWORK_IB; grh_version = ib_get_rdma_header_version((union rdma_network_hdr *)grh); if (grh_version == 4) return RDMA_NETWORK_IPV4; if (grh->next_hdr == IPPROTO_UDP) return RDMA_NETWORK_IPV6; return RDMA_NETWORK_ROCE_V1; } struct find_gid_index_context { u16 vlan_id; enum ib_gid_type gid_type; }; static bool find_gid_index(const union ib_gid *gid, const struct ib_gid_attr *gid_attr, void *context) { struct find_gid_index_context *ctx = context; u16 vlan_id = 0xffff; int ret; if (ctx->gid_type != gid_attr->gid_type) return false; ret = rdma_read_gid_l2_fields(gid_attr, &vlan_id, NULL); if (ret) return false; return ctx->vlan_id == vlan_id; } static const struct ib_gid_attr * get_sgid_attr_from_eth(struct ib_device *device, u8 port_num, u16 vlan_id, const union ib_gid *sgid, enum ib_gid_type gid_type) { struct find_gid_index_context context = {.vlan_id = vlan_id, .gid_type = gid_type}; return rdma_find_gid_by_filter(device, sgid, port_num, find_gid_index, &context); } int ib_get_gids_from_rdma_hdr(const union rdma_network_hdr *hdr, enum rdma_network_type net_type, union ib_gid *sgid, union ib_gid *dgid) { struct sockaddr_in src_in; struct sockaddr_in dst_in; __be32 src_saddr, dst_saddr; if (!sgid || !dgid) return -EINVAL; if (net_type == RDMA_NETWORK_IPV4) { memcpy(&src_in.sin_addr.s_addr, &hdr->roce4grh.saddr, 4); memcpy(&dst_in.sin_addr.s_addr, &hdr->roce4grh.daddr, 4); src_saddr = src_in.sin_addr.s_addr; dst_saddr = dst_in.sin_addr.s_addr; ipv6_addr_set_v4mapped(src_saddr, (struct in6_addr *)sgid); ipv6_addr_set_v4mapped(dst_saddr, (struct in6_addr *)dgid); return 0; } else if (net_type == RDMA_NETWORK_IPV6 || net_type == RDMA_NETWORK_IB || RDMA_NETWORK_ROCE_V1) { *dgid = hdr->ibgrh.dgid; *sgid = hdr->ibgrh.sgid; return 0; } else { return -EINVAL; } } EXPORT_SYMBOL(ib_get_gids_from_rdma_hdr); /* Resolve destination mac address and hop limit for unicast destination * GID entry, considering the source GID entry as well. * ah_attribute must have have valid port_num, sgid_index. */ static int ib_resolve_unicast_gid_dmac(struct ib_device *device, struct rdma_ah_attr *ah_attr) { struct ib_global_route *grh = rdma_ah_retrieve_grh(ah_attr); const struct ib_gid_attr *sgid_attr = grh->sgid_attr; int hop_limit = 0xff; int ret = 0; /* If destination is link local and source GID is RoCEv1, * IP stack is not used. */ if (rdma_link_local_addr((struct in6_addr *)grh->dgid.raw) && sgid_attr->gid_type == IB_GID_TYPE_ROCE) { rdma_get_ll_mac((struct in6_addr *)grh->dgid.raw, ah_attr->roce.dmac); return ret; } ret = rdma_addr_find_l2_eth_by_grh(&sgid_attr->gid, &grh->dgid, ah_attr->roce.dmac, sgid_attr, &hop_limit); grh->hop_limit = hop_limit; return ret; } /* * This function initializes address handle attributes from the incoming packet. * Incoming packet has dgid of the receiver node on which this code is * getting executed and, sgid contains the GID of the sender. * * When resolving mac address of destination, the arrived dgid is used * as sgid and, sgid is used as dgid because sgid contains destinations * GID whom to respond to. * * On success the caller is responsible to call rdma_destroy_ah_attr on the * attr. */ int ib_init_ah_attr_from_wc(struct ib_device *device, u8 port_num, const struct ib_wc *wc, const struct ib_grh *grh, struct rdma_ah_attr *ah_attr) { u32 flow_class; int ret; enum rdma_network_type net_type = RDMA_NETWORK_IB; enum ib_gid_type gid_type = IB_GID_TYPE_IB; const struct ib_gid_attr *sgid_attr; int hoplimit = 0xff; union ib_gid dgid; union ib_gid sgid; might_sleep(); memset(ah_attr, 0, sizeof *ah_attr); ah_attr->type = rdma_ah_find_type(device, port_num); if (rdma_cap_eth_ah(device, port_num)) { if (wc->wc_flags & IB_WC_WITH_NETWORK_HDR_TYPE) net_type = wc->network_hdr_type; else net_type = ib_get_net_type_by_grh(device, port_num, grh); gid_type = ib_network_to_gid_type(net_type); } ret = ib_get_gids_from_rdma_hdr((union rdma_network_hdr *)grh, net_type, &sgid, &dgid); if (ret) return ret; rdma_ah_set_sl(ah_attr, wc->sl); rdma_ah_set_port_num(ah_attr, port_num); if (rdma_protocol_roce(device, port_num)) { u16 vlan_id = wc->wc_flags & IB_WC_WITH_VLAN ? wc->vlan_id : 0xffff; if (!(wc->wc_flags & IB_WC_GRH)) return -EPROTOTYPE; sgid_attr = get_sgid_attr_from_eth(device, port_num, vlan_id, &dgid, gid_type); if (IS_ERR(sgid_attr)) return PTR_ERR(sgid_attr); flow_class = be32_to_cpu(grh->version_tclass_flow); rdma_move_grh_sgid_attr(ah_attr, &sgid, flow_class & 0xFFFFF, hoplimit, (flow_class >> 20) & 0xFF, sgid_attr); ret = ib_resolve_unicast_gid_dmac(device, ah_attr); if (ret) rdma_destroy_ah_attr(ah_attr); return ret; } else { rdma_ah_set_dlid(ah_attr, wc->slid); rdma_ah_set_path_bits(ah_attr, wc->dlid_path_bits); if ((wc->wc_flags & IB_WC_GRH) == 0) return 0; if (dgid.global.interface_id != cpu_to_be64(IB_SA_WELL_KNOWN_GUID)) { sgid_attr = rdma_find_gid_by_port( device, &dgid, IB_GID_TYPE_IB, port_num, NULL); } else sgid_attr = rdma_get_gid_attr(device, port_num, 0); if (IS_ERR(sgid_attr)) return PTR_ERR(sgid_attr); flow_class = be32_to_cpu(grh->version_tclass_flow); rdma_move_grh_sgid_attr(ah_attr, &sgid, flow_class & 0xFFFFF, hoplimit, (flow_class >> 20) & 0xFF, sgid_attr); return 0; } } EXPORT_SYMBOL(ib_init_ah_attr_from_wc); /** * rdma_move_grh_sgid_attr - Sets the sgid attribute of GRH, taking ownership * of the reference * * @attr: Pointer to AH attribute structure * @dgid: Destination GID * @flow_label: Flow label * @hop_limit: Hop limit * @traffic_class: traffic class * @sgid_attr: Pointer to SGID attribute * * This takes ownership of the sgid_attr reference. The caller must ensure * rdma_destroy_ah_attr() is called before destroying the rdma_ah_attr after * calling this function. */ void rdma_move_grh_sgid_attr(struct rdma_ah_attr *attr, union ib_gid *dgid, u32 flow_label, u8 hop_limit, u8 traffic_class, const struct ib_gid_attr *sgid_attr) { rdma_ah_set_grh(attr, dgid, flow_label, sgid_attr->index, hop_limit, traffic_class); attr->grh.sgid_attr = sgid_attr; } EXPORT_SYMBOL(rdma_move_grh_sgid_attr); /** * rdma_destroy_ah_attr - Release reference to SGID attribute of * ah attribute. * @ah_attr: Pointer to ah attribute * * Release reference to the SGID attribute of the ah attribute if it is * non NULL. It is safe to call this multiple times, and safe to call it on * a zero initialized ah_attr. */ void rdma_destroy_ah_attr(struct rdma_ah_attr *ah_attr) { if (ah_attr->grh.sgid_attr) { rdma_put_gid_attr(ah_attr->grh.sgid_attr); ah_attr->grh.sgid_attr = NULL; } } EXPORT_SYMBOL(rdma_destroy_ah_attr); struct ib_ah *ib_create_ah_from_wc(struct ib_pd *pd, const struct ib_wc *wc, const struct ib_grh *grh, u8 port_num) { struct rdma_ah_attr ah_attr; struct ib_ah *ah; int ret; ret = ib_init_ah_attr_from_wc(pd->device, port_num, wc, grh, &ah_attr); if (ret) return ERR_PTR(ret); ah = rdma_create_ah(pd, &ah_attr, RDMA_CREATE_AH_SLEEPABLE); rdma_destroy_ah_attr(&ah_attr); return ah; } EXPORT_SYMBOL(ib_create_ah_from_wc); int rdma_modify_ah(struct ib_ah *ah, struct rdma_ah_attr *ah_attr) { const struct ib_gid_attr *old_sgid_attr; int ret; if (ah->type != ah_attr->type) return -EINVAL; ret = rdma_fill_sgid_attr(ah->device, ah_attr, &old_sgid_attr); if (ret) return ret; ret = ah->device->ops.modify_ah ? ah->device->ops.modify_ah(ah, ah_attr) : -EOPNOTSUPP; ah->sgid_attr = rdma_update_sgid_attr(ah_attr, ah->sgid_attr); rdma_unfill_sgid_attr(ah_attr, old_sgid_attr); return ret; } EXPORT_SYMBOL(rdma_modify_ah); int rdma_query_ah(struct ib_ah *ah, struct rdma_ah_attr *ah_attr) { ah_attr->grh.sgid_attr = NULL; return ah->device->ops.query_ah ? ah->device->ops.query_ah(ah, ah_attr) : -EOPNOTSUPP; } EXPORT_SYMBOL(rdma_query_ah); int rdma_destroy_ah_user(struct ib_ah *ah, u32 flags, struct ib_udata *udata) { const struct ib_gid_attr *sgid_attr = ah->sgid_attr; struct ib_pd *pd; int ret; might_sleep_if(flags & RDMA_DESTROY_AH_SLEEPABLE); pd = ah->pd; ret = ah->device->ops.destroy_ah(ah, flags); if (ret) return ret; atomic_dec(&pd->usecnt); if (sgid_attr) rdma_put_gid_attr(sgid_attr); kfree(ah); return ret; } EXPORT_SYMBOL(rdma_destroy_ah_user); /* Shared receive queues */ /** * ib_create_srq_user - Creates a SRQ associated with the specified protection * domain. * @pd: The protection domain associated with the SRQ. * @srq_init_attr: A list of initial attributes required to create the * SRQ. If SRQ creation succeeds, then the attributes are updated to * the actual capabilities of the created SRQ. * @uobject: uobject pointer if this is not a kernel SRQ * @udata: udata pointer if this is not a kernel SRQ * * srq_attr->max_wr and srq_attr->max_sge are read the determine the * requested size of the SRQ, and set to the actual values allocated * on return. If ib_create_srq() succeeds, then max_wr and max_sge * will always be at least as large as the requested values. */ struct ib_srq *ib_create_srq_user(struct ib_pd *pd, struct ib_srq_init_attr *srq_init_attr, struct ib_usrq_object *uobject, struct ib_udata *udata) { struct ib_srq *srq; int ret; srq = rdma_zalloc_drv_obj(pd->device, ib_srq); if (!srq) return ERR_PTR(-ENOMEM); srq->device = pd->device; srq->pd = pd; srq->event_handler = srq_init_attr->event_handler; srq->srq_context = srq_init_attr->srq_context; srq->srq_type = srq_init_attr->srq_type; srq->uobject = uobject; if (ib_srq_has_cq(srq->srq_type)) { srq->ext.cq = srq_init_attr->ext.cq; atomic_inc(&srq->ext.cq->usecnt); } if (srq->srq_type == IB_SRQT_XRC) { srq->ext.xrc.xrcd = srq_init_attr->ext.xrc.xrcd; atomic_inc(&srq->ext.xrc.xrcd->usecnt); } atomic_inc(&pd->usecnt); ret = pd->device->ops.create_srq(srq, srq_init_attr, udata); if (ret) { atomic_dec(&srq->pd->usecnt); if (srq->srq_type == IB_SRQT_XRC) atomic_dec(&srq->ext.xrc.xrcd->usecnt); if (ib_srq_has_cq(srq->srq_type)) atomic_dec(&srq->ext.cq->usecnt); kfree(srq); return ERR_PTR(ret); } return srq; } EXPORT_SYMBOL(ib_create_srq_user); int ib_modify_srq(struct ib_srq *srq, struct ib_srq_attr *srq_attr, enum ib_srq_attr_mask srq_attr_mask) { return srq->device->ops.modify_srq ? srq->device->ops.modify_srq(srq, srq_attr, srq_attr_mask, NULL) : -EOPNOTSUPP; } EXPORT_SYMBOL(ib_modify_srq); int ib_query_srq(struct ib_srq *srq, struct ib_srq_attr *srq_attr) { return srq->device->ops.query_srq ? srq->device->ops.query_srq(srq, srq_attr) : -EOPNOTSUPP; } EXPORT_SYMBOL(ib_query_srq); int ib_destroy_srq_user(struct ib_srq *srq, struct ib_udata *udata) { int ret; if (atomic_read(&srq->usecnt)) return -EBUSY; ret = srq->device->ops.destroy_srq(srq, udata); if (ret) return ret; atomic_dec(&srq->pd->usecnt); if (srq->srq_type == IB_SRQT_XRC) atomic_dec(&srq->ext.xrc.xrcd->usecnt); if (ib_srq_has_cq(srq->srq_type)) atomic_dec(&srq->ext.cq->usecnt); kfree(srq); return ret; } EXPORT_SYMBOL(ib_destroy_srq_user); /* Queue pairs */ static void __ib_shared_qp_event_handler(struct ib_event *event, void *context) { struct ib_qp *qp = context; unsigned long flags; spin_lock_irqsave(&qp->device->qp_open_list_lock, flags); list_for_each_entry(event->element.qp, &qp->open_list, open_list) if (event->element.qp->event_handler) event->element.qp->event_handler(event, event->element.qp->qp_context); spin_unlock_irqrestore(&qp->device->qp_open_list_lock, flags); } static struct ib_qp *__ib_open_qp(struct ib_qp *real_qp, void (*event_handler)(struct ib_event *, void *), void *qp_context) { struct ib_qp *qp; unsigned long flags; int err; qp = kzalloc(sizeof *qp, GFP_KERNEL); if (!qp) return ERR_PTR(-ENOMEM); qp->real_qp = real_qp; err = ib_open_shared_qp_security(qp, real_qp->device); if (err) { kfree(qp); return ERR_PTR(err); } qp->real_qp = real_qp; atomic_inc(&real_qp->usecnt); qp->device = real_qp->device; qp->event_handler = event_handler; qp->qp_context = qp_context; qp->qp_num = real_qp->qp_num; qp->qp_type = real_qp->qp_type; spin_lock_irqsave(&real_qp->device->qp_open_list_lock, flags); list_add(&qp->open_list, &real_qp->open_list); spin_unlock_irqrestore(&real_qp->device->qp_open_list_lock, flags); return qp; } struct ib_qp *ib_open_qp(struct ib_xrcd *xrcd, struct ib_qp_open_attr *qp_open_attr) { struct ib_qp *qp, *real_qp; if (qp_open_attr->qp_type != IB_QPT_XRC_TGT) return ERR_PTR(-EINVAL); down_read(&xrcd->tgt_qps_rwsem); real_qp = xa_load(&xrcd->tgt_qps, qp_open_attr->qp_num); if (!real_qp) { up_read(&xrcd->tgt_qps_rwsem); return ERR_PTR(-EINVAL); } qp = __ib_open_qp(real_qp, qp_open_attr->event_handler, qp_open_attr->qp_context); up_read(&xrcd->tgt_qps_rwsem); return qp; } EXPORT_SYMBOL(ib_open_qp); static struct ib_qp *create_xrc_qp_user(struct ib_qp *qp, struct ib_qp_init_attr *qp_init_attr) { struct ib_qp *real_qp = qp; int err; qp->event_handler = __ib_shared_qp_event_handler; qp->qp_context = qp; qp->pd = NULL; qp->send_cq = qp->recv_cq = NULL; qp->srq = NULL; qp->xrcd = qp_init_attr->xrcd; atomic_inc(&qp_init_attr->xrcd->usecnt); INIT_LIST_HEAD(&qp->open_list); qp = __ib_open_qp(real_qp, qp_init_attr->event_handler, qp_init_attr->qp_context); if (IS_ERR(qp)) return qp; err = xa_err(xa_store(&qp_init_attr->xrcd->tgt_qps, real_qp->qp_num, real_qp, GFP_KERNEL)); if (err) { ib_close_qp(qp); return ERR_PTR(err); } return qp; } /** * ib_create_qp - Creates a kernel QP associated with the specified protection * domain. * @pd: The protection domain associated with the QP. * @qp_init_attr: A list of initial attributes required to create the * QP. If QP creation succeeds, then the attributes are updated to * the actual capabilities of the created QP. * * NOTE: for user qp use ib_create_qp_user with valid udata! */ struct ib_qp *ib_create_qp(struct ib_pd *pd, struct ib_qp_init_attr *qp_init_attr) { struct ib_device *device = pd ? pd->device : qp_init_attr->xrcd->device; struct ib_qp *qp; int ret; if (qp_init_attr->rwq_ind_tbl && (qp_init_attr->recv_cq || qp_init_attr->srq || qp_init_attr->cap.max_recv_wr || qp_init_attr->cap.max_recv_sge)) return ERR_PTR(-EINVAL); if ((qp_init_attr->create_flags & IB_QP_CREATE_INTEGRITY_EN) && !(device->attrs.device_cap_flags & IB_DEVICE_INTEGRITY_HANDOVER)) return ERR_PTR(-EINVAL); /* * If the callers is using the RDMA API calculate the resources * needed for the RDMA READ/WRITE operations. * * Note that these callers need to pass in a port number. */ if (qp_init_attr->cap.max_rdma_ctxs) rdma_rw_init_qp(device, qp_init_attr); qp = _ib_create_qp(device, pd, qp_init_attr, NULL, NULL); if (IS_ERR(qp)) return qp; ret = ib_create_qp_security(qp, device); if (ret) goto err; if (qp_init_attr->qp_type == IB_QPT_XRC_TGT) { struct ib_qp *xrc_qp = create_xrc_qp_user(qp, qp_init_attr); if (IS_ERR(xrc_qp)) { ret = PTR_ERR(xrc_qp); goto err; } return xrc_qp; } qp->event_handler = qp_init_attr->event_handler; qp->qp_context = qp_init_attr->qp_context; if (qp_init_attr->qp_type == IB_QPT_XRC_INI) { qp->recv_cq = NULL; qp->srq = NULL; } else { qp->recv_cq = qp_init_attr->recv_cq; if (qp_init_attr->recv_cq) atomic_inc(&qp_init_attr->recv_cq->usecnt); qp->srq = qp_init_attr->srq; if (qp->srq) atomic_inc(&qp_init_attr->srq->usecnt); } qp->send_cq = qp_init_attr->send_cq; qp->xrcd = NULL; atomic_inc(&pd->usecnt); if (qp_init_attr->send_cq) atomic_inc(&qp_init_attr->send_cq->usecnt); if (qp_init_attr->rwq_ind_tbl) atomic_inc(&qp->rwq_ind_tbl->usecnt); if (qp_init_attr->cap.max_rdma_ctxs) { ret = rdma_rw_init_mrs(qp, qp_init_attr); if (ret) goto err; } /* * Note: all hw drivers guarantee that max_send_sge is lower than * the device RDMA WRITE SGE limit but not all hw drivers ensure that * max_send_sge <= max_sge_rd. */ qp->max_write_sge = qp_init_attr->cap.max_send_sge; qp->max_read_sge = min_t(u32, qp_init_attr->cap.max_send_sge, device->attrs.max_sge_rd); if (qp_init_attr->create_flags & IB_QP_CREATE_INTEGRITY_EN) qp->integrity_en = true; return qp; err: ib_destroy_qp(qp); return ERR_PTR(ret); } EXPORT_SYMBOL(ib_create_qp); static const struct { int valid; enum ib_qp_attr_mask req_param[IB_QPT_MAX]; enum ib_qp_attr_mask opt_param[IB_QPT_MAX]; } qp_state_table[IB_QPS_ERR + 1][IB_QPS_ERR + 1] = { [IB_QPS_RESET] = { [IB_QPS_RESET] = { .valid = 1 }, [IB_QPS_INIT] = { .valid = 1, .req_param = { [IB_QPT_UD] = (IB_QP_PKEY_INDEX | IB_QP_PORT | IB_QP_QKEY), [IB_QPT_RAW_PACKET] = IB_QP_PORT, [IB_QPT_UC] = (IB_QP_PKEY_INDEX | IB_QP_PORT | IB_QP_ACCESS_FLAGS), [IB_QPT_RC] = (IB_QP_PKEY_INDEX | IB_QP_PORT | IB_QP_ACCESS_FLAGS), [IB_QPT_XRC_INI] = (IB_QP_PKEY_INDEX | IB_QP_PORT | IB_QP_ACCESS_FLAGS), [IB_QPT_XRC_TGT] = (IB_QP_PKEY_INDEX | IB_QP_PORT | IB_QP_ACCESS_FLAGS), [IB_QPT_SMI] = (IB_QP_PKEY_INDEX | IB_QP_QKEY), [IB_QPT_GSI] = (IB_QP_PKEY_INDEX | IB_QP_QKEY), } }, }, [IB_QPS_INIT] = { [IB_QPS_RESET] = { .valid = 1 }, [IB_QPS_ERR] = { .valid = 1 }, [IB_QPS_INIT] = { .valid = 1, .opt_param = { [IB_QPT_UD] = (IB_QP_PKEY_INDEX | IB_QP_PORT | IB_QP_QKEY), [IB_QPT_UC] = (IB_QP_PKEY_INDEX | IB_QP_PORT | IB_QP_ACCESS_FLAGS), [IB_QPT_RC] = (IB_QP_PKEY_INDEX | IB_QP_PORT | IB_QP_ACCESS_FLAGS), [IB_QPT_XRC_INI] = (IB_QP_PKEY_INDEX | IB_QP_PORT | IB_QP_ACCESS_FLAGS), [IB_QPT_XRC_TGT] = (IB_QP_PKEY_INDEX | IB_QP_PORT | IB_QP_ACCESS_FLAGS), [IB_QPT_SMI] = (IB_QP_PKEY_INDEX | IB_QP_QKEY), [IB_QPT_GSI] = (IB_QP_PKEY_INDEX | IB_QP_QKEY), } }, [IB_QPS_RTR] = { .valid = 1, .req_param = { [IB_QPT_UC] = (IB_QP_AV | IB_QP_PATH_MTU | IB_QP_DEST_QPN | IB_QP_RQ_PSN), [IB_QPT_RC] = (IB_QP_AV | IB_QP_PATH_MTU | IB_QP_DEST_QPN | IB_QP_RQ_PSN | IB_QP_MAX_DEST_RD_ATOMIC | IB_QP_MIN_RNR_TIMER), [IB_QPT_XRC_INI] = (IB_QP_AV | IB_QP_PATH_MTU | IB_QP_DEST_QPN | IB_QP_RQ_PSN), [IB_QPT_XRC_TGT] = (IB_QP_AV | IB_QP_PATH_MTU | IB_QP_DEST_QPN | IB_QP_RQ_PSN | IB_QP_MAX_DEST_RD_ATOMIC | IB_QP_MIN_RNR_TIMER), }, .opt_param = { [IB_QPT_UD] = (IB_QP_PKEY_INDEX | IB_QP_QKEY), [IB_QPT_UC] = (IB_QP_ALT_PATH | IB_QP_ACCESS_FLAGS | IB_QP_PKEY_INDEX), [IB_QPT_RC] = (IB_QP_ALT_PATH | IB_QP_ACCESS_FLAGS | IB_QP_PKEY_INDEX), [IB_QPT_XRC_INI] = (IB_QP_ALT_PATH | IB_QP_ACCESS_FLAGS | IB_QP_PKEY_INDEX), [IB_QPT_XRC_TGT] = (IB_QP_ALT_PATH | IB_QP_ACCESS_FLAGS | IB_QP_PKEY_INDEX), [IB_QPT_SMI] = (IB_QP_PKEY_INDEX | IB_QP_QKEY), [IB_QPT_GSI] = (IB_QP_PKEY_INDEX | IB_QP_QKEY), }, }, }, [IB_QPS_RTR] = { [IB_QPS_RESET] = { .valid = 1 }, [IB_QPS_ERR] = { .valid = 1 }, [IB_QPS_RTS] = { .valid = 1, .req_param = { [IB_QPT_UD] = IB_QP_SQ_PSN, [IB_QPT_UC] = IB_QP_SQ_PSN, [IB_QPT_RC] = (IB_QP_TIMEOUT | IB_QP_RETRY_CNT | IB_QP_RNR_RETRY | IB_QP_SQ_PSN | IB_QP_MAX_QP_RD_ATOMIC), [IB_QPT_XRC_INI] = (IB_QP_TIMEOUT | IB_QP_RETRY_CNT | IB_QP_RNR_RETRY | IB_QP_SQ_PSN | IB_QP_MAX_QP_RD_ATOMIC), [IB_QPT_XRC_TGT] = (IB_QP_TIMEOUT | IB_QP_SQ_PSN), [IB_QPT_SMI] = IB_QP_SQ_PSN, [IB_QPT_GSI] = IB_QP_SQ_PSN, }, .opt_param = { [IB_QPT_UD] = (IB_QP_CUR_STATE | IB_QP_QKEY), [IB_QPT_UC] = (IB_QP_CUR_STATE | IB_QP_ALT_PATH | IB_QP_ACCESS_FLAGS | IB_QP_PATH_MIG_STATE), [IB_QPT_RC] = (IB_QP_CUR_STATE | IB_QP_ALT_PATH | IB_QP_ACCESS_FLAGS | IB_QP_MIN_RNR_TIMER | IB_QP_PATH_MIG_STATE), [IB_QPT_XRC_INI] = (IB_QP_CUR_STATE | IB_QP_ALT_PATH | IB_QP_ACCESS_FLAGS | IB_QP_PATH_MIG_STATE), [IB_QPT_XRC_TGT] = (IB_QP_CUR_STATE | IB_QP_ALT_PATH | IB_QP_ACCESS_FLAGS | IB_QP_MIN_RNR_TIMER | IB_QP_PATH_MIG_STATE), [IB_QPT_SMI] = (IB_QP_CUR_STATE | IB_QP_QKEY), [IB_QPT_GSI] = (IB_QP_CUR_STATE | IB_QP_QKEY), [IB_QPT_RAW_PACKET] = IB_QP_RATE_LIMIT, } } }, [IB_QPS_RTS] = { [IB_QPS_RESET] = { .valid = 1 }, [IB_QPS_ERR] = { .valid = 1 }, [IB_QPS_RTS] = { .valid = 1, .opt_param = { [IB_QPT_UD] = (IB_QP_CUR_STATE | IB_QP_QKEY), [IB_QPT_UC] = (IB_QP_CUR_STATE | IB_QP_ACCESS_FLAGS | IB_QP_ALT_PATH | IB_QP_PATH_MIG_STATE), [IB_QPT_RC] = (IB_QP_CUR_STATE | IB_QP_ACCESS_FLAGS | IB_QP_ALT_PATH | IB_QP_PATH_MIG_STATE | IB_QP_MIN_RNR_TIMER), [IB_QPT_XRC_INI] = (IB_QP_CUR_STATE | IB_QP_ACCESS_FLAGS | IB_QP_ALT_PATH | IB_QP_PATH_MIG_STATE), [IB_QPT_XRC_TGT] = (IB_QP_CUR_STATE | IB_QP_ACCESS_FLAGS | IB_QP_ALT_PATH | IB_QP_PATH_MIG_STATE | IB_QP_MIN_RNR_TIMER), [IB_QPT_SMI] = (IB_QP_CUR_STATE | IB_QP_QKEY), [IB_QPT_GSI] = (IB_QP_CUR_STATE | IB_QP_QKEY), [IB_QPT_RAW_PACKET] = IB_QP_RATE_LIMIT, } }, [IB_QPS_SQD] = { .valid = 1, .opt_param = { [IB_QPT_UD] = IB_QP_EN_SQD_ASYNC_NOTIFY, [IB_QPT_UC] = IB_QP_EN_SQD_ASYNC_NOTIFY, [IB_QPT_RC] = IB_QP_EN_SQD_ASYNC_NOTIFY, [IB_QPT_XRC_INI] = IB_QP_EN_SQD_ASYNC_NOTIFY, [IB_QPT_XRC_TGT] = IB_QP_EN_SQD_ASYNC_NOTIFY, /* ??? */ [IB_QPT_SMI] = IB_QP_EN_SQD_ASYNC_NOTIFY, [IB_QPT_GSI] = IB_QP_EN_SQD_ASYNC_NOTIFY } }, }, [IB_QPS_SQD] = { [IB_QPS_RESET] = { .valid = 1 }, [IB_QPS_ERR] = { .valid = 1 }, [IB_QPS_RTS] = { .valid = 1, .opt_param = { [IB_QPT_UD] = (IB_QP_CUR_STATE | IB_QP_QKEY), [IB_QPT_UC] = (IB_QP_CUR_STATE | IB_QP_ALT_PATH | IB_QP_ACCESS_FLAGS | IB_QP_PATH_MIG_STATE), [IB_QPT_RC] = (IB_QP_CUR_STATE | IB_QP_ALT_PATH | IB_QP_ACCESS_FLAGS | IB_QP_MIN_RNR_TIMER | IB_QP_PATH_MIG_STATE), [IB_QPT_XRC_INI] = (IB_QP_CUR_STATE | IB_QP_ALT_PATH | IB_QP_ACCESS_FLAGS | IB_QP_PATH_MIG_STATE), [IB_QPT_XRC_TGT] = (IB_QP_CUR_STATE | IB_QP_ALT_PATH | IB_QP_ACCESS_FLAGS | IB_QP_MIN_RNR_TIMER | IB_QP_PATH_MIG_STATE), [IB_QPT_SMI] = (IB_QP_CUR_STATE | IB_QP_QKEY), [IB_QPT_GSI] = (IB_QP_CUR_STATE | IB_QP_QKEY), } }, [IB_QPS_SQD] = { .valid = 1, .opt_param = { [IB_QPT_UD] = (IB_QP_PKEY_INDEX | IB_QP_QKEY), [IB_QPT_UC] = (IB_QP_AV | IB_QP_ALT_PATH | IB_QP_ACCESS_FLAGS | IB_QP_PKEY_INDEX | IB_QP_PATH_MIG_STATE), [IB_QPT_RC] = (IB_QP_PORT | IB_QP_AV | IB_QP_TIMEOUT | IB_QP_RETRY_CNT | IB_QP_RNR_RETRY | IB_QP_MAX_QP_RD_ATOMIC | IB_QP_MAX_DEST_RD_ATOMIC | IB_QP_ALT_PATH | IB_QP_ACCESS_FLAGS | IB_QP_PKEY_INDEX | IB_QP_MIN_RNR_TIMER | IB_QP_PATH_MIG_STATE), [IB_QPT_XRC_INI] = (IB_QP_PORT | IB_QP_AV | IB_QP_TIMEOUT | IB_QP_RETRY_CNT | IB_QP_RNR_RETRY | IB_QP_MAX_QP_RD_ATOMIC | IB_QP_ALT_PATH | IB_QP_ACCESS_FLAGS | IB_QP_PKEY_INDEX | IB_QP_PATH_MIG_STATE), [IB_QPT_XRC_TGT] = (IB_QP_PORT | IB_QP_AV | IB_QP_TIMEOUT | IB_QP_MAX_DEST_RD_ATOMIC | IB_QP_ALT_PATH | IB_QP_ACCESS_FLAGS | IB_QP_PKEY_INDEX | IB_QP_MIN_RNR_TIMER | IB_QP_PATH_MIG_STATE), [IB_QPT_SMI] = (IB_QP_PKEY_INDEX | IB_QP_QKEY), [IB_QPT_GSI] = (IB_QP_PKEY_INDEX | IB_QP_QKEY), } } }, [IB_QPS_SQE] = { [IB_QPS_RESET] = { .valid = 1 }, [IB_QPS_ERR] = { .valid = 1 }, [IB_QPS_RTS] = { .valid = 1, .opt_param = { [IB_QPT_UD] = (IB_QP_CUR_STATE | IB_QP_QKEY), [IB_QPT_UC] = (IB_QP_CUR_STATE | IB_QP_ACCESS_FLAGS), [IB_QPT_SMI] = (IB_QP_CUR_STATE | IB_QP_QKEY), [IB_QPT_GSI] = (IB_QP_CUR_STATE | IB_QP_QKEY), } } }, [IB_QPS_ERR] = { [IB_QPS_RESET] = { .valid = 1 }, [IB_QPS_ERR] = { .valid = 1 } } }; bool ib_modify_qp_is_ok(enum ib_qp_state cur_state, enum ib_qp_state next_state, enum ib_qp_type type, enum ib_qp_attr_mask mask) { enum ib_qp_attr_mask req_param, opt_param; if (mask & IB_QP_CUR_STATE && cur_state != IB_QPS_RTR && cur_state != IB_QPS_RTS && cur_state != IB_QPS_SQD && cur_state != IB_QPS_SQE) return false; if (!qp_state_table[cur_state][next_state].valid) return false; req_param = qp_state_table[cur_state][next_state].req_param[type]; opt_param = qp_state_table[cur_state][next_state].opt_param[type]; if ((mask & req_param) != req_param) return false; if (mask & ~(req_param | opt_param | IB_QP_STATE)) return false; return true; } EXPORT_SYMBOL(ib_modify_qp_is_ok); /** * ib_resolve_eth_dmac - Resolve destination mac address * @device: Device to consider * @ah_attr: address handle attribute which describes the * source and destination parameters * ib_resolve_eth_dmac() resolves destination mac address and L3 hop limit It * returns 0 on success or appropriate error code. It initializes the * necessary ah_attr fields when call is successful. */ static int ib_resolve_eth_dmac(struct ib_device *device, struct rdma_ah_attr *ah_attr) { int ret = 0; if (rdma_is_multicast_addr((struct in6_addr *)ah_attr->grh.dgid.raw)) { if (ipv6_addr_v4mapped((struct in6_addr *)ah_attr->grh.dgid.raw)) { __be32 addr = 0; memcpy(&addr, ah_attr->grh.dgid.raw + 12, 4); ip_eth_mc_map(addr, (char *)ah_attr->roce.dmac); } else { ipv6_eth_mc_map((struct in6_addr *)ah_attr->grh.dgid.raw, (char *)ah_attr->roce.dmac); } } else { ret = ib_resolve_unicast_gid_dmac(device, ah_attr); } return ret; } static bool is_qp_type_connected(const struct ib_qp *qp) { return (qp->qp_type == IB_QPT_UC || qp->qp_type == IB_QPT_RC || qp->qp_type == IB_QPT_XRC_INI || qp->qp_type == IB_QPT_XRC_TGT); } /** * IB core internal function to perform QP attributes modification. */ static int _ib_modify_qp(struct ib_qp *qp, struct ib_qp_attr *attr, int attr_mask, struct ib_udata *udata) { u8 port = attr_mask & IB_QP_PORT ? attr->port_num : qp->port; const struct ib_gid_attr *old_sgid_attr_av; const struct ib_gid_attr *old_sgid_attr_alt_av; int ret; attr->xmit_slave = NULL; if (attr_mask & IB_QP_AV) { ret = rdma_fill_sgid_attr(qp->device, &attr->ah_attr, &old_sgid_attr_av); if (ret) return ret; if (attr->ah_attr.type == RDMA_AH_ATTR_TYPE_ROCE && is_qp_type_connected(qp)) { struct net_device *slave; /* * If the user provided the qp_attr then we have to * resolve it. Kerne users have to provide already * resolved rdma_ah_attr's. */ if (udata) { ret = ib_resolve_eth_dmac(qp->device, &attr->ah_attr); if (ret) goto out_av; } slave = rdma_lag_get_ah_roce_slave(qp->device, &attr->ah_attr, GFP_KERNEL); if (IS_ERR(slave)) { ret = PTR_ERR(slave); goto out_av; } attr->xmit_slave = slave; } } if (attr_mask & IB_QP_ALT_PATH) { /* * FIXME: This does not track the migration state, so if the * user loads a new alternate path after the HW has migrated * from primary->alternate we will keep the wrong * references. This is OK for IB because the reference * counting does not serve any functional purpose. */ ret = rdma_fill_sgid_attr(qp->device, &attr->alt_ah_attr, &old_sgid_attr_alt_av); if (ret) goto out_av; /* * Today the core code can only handle alternate paths and APM * for IB. Ban them in roce mode. */ if (!(rdma_protocol_ib(qp->device, attr->alt_ah_attr.port_num) && rdma_protocol_ib(qp->device, port))) { ret = -EINVAL; goto out; } } if (rdma_ib_or_roce(qp->device, port)) { if (attr_mask & IB_QP_RQ_PSN && attr->rq_psn & ~0xffffff) { dev_warn(&qp->device->dev, "%s rq_psn overflow, masking to 24 bits\n", __func__); attr->rq_psn &= 0xffffff; } if (attr_mask & IB_QP_SQ_PSN && attr->sq_psn & ~0xffffff) { dev_warn(&qp->device->dev, " %s sq_psn overflow, masking to 24 bits\n", __func__); attr->sq_psn &= 0xffffff; } } /* * Bind this qp to a counter automatically based on the rdma counter * rules. This only set in RST2INIT with port specified */ if (!qp->counter && (attr_mask & IB_QP_PORT) && ((attr_mask & IB_QP_STATE) && attr->qp_state == IB_QPS_INIT)) rdma_counter_bind_qp_auto(qp, attr->port_num); ret = ib_security_modify_qp(qp, attr, attr_mask, udata); if (ret) goto out; if (attr_mask & IB_QP_PORT) qp->port = attr->port_num; if (attr_mask & IB_QP_AV) qp->av_sgid_attr = rdma_update_sgid_attr(&attr->ah_attr, qp->av_sgid_attr); if (attr_mask & IB_QP_ALT_PATH) qp->alt_path_sgid_attr = rdma_update_sgid_attr( &attr->alt_ah_attr, qp->alt_path_sgid_attr); out: if (attr_mask & IB_QP_ALT_PATH) rdma_unfill_sgid_attr(&attr->alt_ah_attr, old_sgid_attr_alt_av); out_av: if (attr_mask & IB_QP_AV) { rdma_lag_put_ah_roce_slave(attr->xmit_slave); rdma_unfill_sgid_attr(&attr->ah_attr, old_sgid_attr_av); } return ret; } /** * ib_modify_qp_with_udata - Modifies the attributes for the specified QP. * @ib_qp: The QP to modify. * @attr: On input, specifies the QP attributes to modify. On output, * the current values of selected QP attributes are returned. * @attr_mask: A bit-mask used to specify which attributes of the QP * are being modified. * @udata: pointer to user's input output buffer information * are being modified. * It returns 0 on success and returns appropriate error code on error. */ int ib_modify_qp_with_udata(struct ib_qp *ib_qp, struct ib_qp_attr *attr, int attr_mask, struct ib_udata *udata) { return _ib_modify_qp(ib_qp->real_qp, attr, attr_mask, udata); } EXPORT_SYMBOL(ib_modify_qp_with_udata); int ib_get_eth_speed(struct ib_device *dev, u8 port_num, u16 *speed, u8 *width) { int rc; u32 netdev_speed; struct net_device *netdev; struct ethtool_link_ksettings lksettings; if (rdma_port_get_link_layer(dev, port_num) != IB_LINK_LAYER_ETHERNET) return -EINVAL; netdev = ib_device_get_netdev(dev, port_num); if (!netdev) return -ENODEV; rtnl_lock(); rc = __ethtool_get_link_ksettings(netdev, &lksettings); rtnl_unlock(); dev_put(netdev); if (!rc && lksettings.base.speed != (u32)SPEED_UNKNOWN) { netdev_speed = lksettings.base.speed; } else { netdev_speed = SPEED_1000; pr_warn("%s speed is unknown, defaulting to %d\n", netdev->name, netdev_speed); } if (netdev_speed <= SPEED_1000) { *width = IB_WIDTH_1X; *speed = IB_SPEED_SDR; } else if (netdev_speed <= SPEED_10000) { *width = IB_WIDTH_1X; *speed = IB_SPEED_FDR10; } else if (netdev_speed <= SPEED_20000) { *width = IB_WIDTH_4X; *speed = IB_SPEED_DDR; } else if (netdev_speed <= SPEED_25000) { *width = IB_WIDTH_1X; *speed = IB_SPEED_EDR; } else if (netdev_speed <= SPEED_40000) { *width = IB_WIDTH_4X; *speed = IB_SPEED_FDR10; } else { *width = IB_WIDTH_4X; *speed = IB_SPEED_EDR; } return 0; } EXPORT_SYMBOL(ib_get_eth_speed); int ib_modify_qp(struct ib_qp *qp, struct ib_qp_attr *qp_attr, int qp_attr_mask) { return _ib_modify_qp(qp->real_qp, qp_attr, qp_attr_mask, NULL); } EXPORT_SYMBOL(ib_modify_qp); int ib_query_qp(struct ib_qp *qp, struct ib_qp_attr *qp_attr, int qp_attr_mask, struct ib_qp_init_attr *qp_init_attr) { qp_attr->ah_attr.grh.sgid_attr = NULL; qp_attr->alt_ah_attr.grh.sgid_attr = NULL; return qp->device->ops.query_qp ? qp->device->ops.query_qp(qp->real_qp, qp_attr, qp_attr_mask, qp_init_attr) : -EOPNOTSUPP; } EXPORT_SYMBOL(ib_query_qp); int ib_close_qp(struct ib_qp *qp) { struct ib_qp *real_qp; unsigned long flags; real_qp = qp->real_qp; if (real_qp == qp) return -EINVAL; spin_lock_irqsave(&real_qp->device->qp_open_list_lock, flags); list_del(&qp->open_list); spin_unlock_irqrestore(&real_qp->device->qp_open_list_lock, flags); atomic_dec(&real_qp->usecnt); if (qp->qp_sec) ib_close_shared_qp_security(qp->qp_sec); kfree(qp); return 0; } EXPORT_SYMBOL(ib_close_qp); static int __ib_destroy_shared_qp(struct ib_qp *qp) { struct ib_xrcd *xrcd; struct ib_qp *real_qp; int ret; real_qp = qp->real_qp; xrcd = real_qp->xrcd; down_write(&xrcd->tgt_qps_rwsem); ib_close_qp(qp); if (atomic_read(&real_qp->usecnt) == 0) xa_erase(&xrcd->tgt_qps, real_qp->qp_num); else real_qp = NULL; up_write(&xrcd->tgt_qps_rwsem); if (real_qp) { ret = ib_destroy_qp(real_qp); if (!ret) atomic_dec(&xrcd->usecnt); } return 0; } int ib_destroy_qp_user(struct ib_qp *qp, struct ib_udata *udata) { const struct ib_gid_attr *alt_path_sgid_attr = qp->alt_path_sgid_attr; const struct ib_gid_attr *av_sgid_attr = qp->av_sgid_attr; struct ib_pd *pd; struct ib_cq *scq, *rcq; struct ib_srq *srq; struct ib_rwq_ind_table *ind_tbl; struct ib_qp_security *sec; int ret; WARN_ON_ONCE(qp->mrs_used > 0); if (atomic_read(&qp->usecnt)) return -EBUSY; if (qp->real_qp != qp) return __ib_destroy_shared_qp(qp); pd = qp->pd; scq = qp->send_cq; rcq = qp->recv_cq; srq = qp->srq; ind_tbl = qp->rwq_ind_tbl; sec = qp->qp_sec; if (sec) ib_destroy_qp_security_begin(sec); if (!qp->uobject) rdma_rw_cleanup_mrs(qp); rdma_counter_unbind_qp(qp, true); rdma_restrack_del(&qp->res); ret = qp->device->ops.destroy_qp(qp, udata); if (!ret) { if (alt_path_sgid_attr) rdma_put_gid_attr(alt_path_sgid_attr); if (av_sgid_attr) rdma_put_gid_attr(av_sgid_attr); if (pd) atomic_dec(&pd->usecnt); if (scq) atomic_dec(&scq->usecnt); if (rcq) atomic_dec(&rcq->usecnt); if (srq) atomic_dec(&srq->usecnt); if (ind_tbl) atomic_dec(&ind_tbl->usecnt); if (sec) ib_destroy_qp_security_end(sec); } else { if (sec) ib_destroy_qp_security_abort(sec); } return ret; } EXPORT_SYMBOL(ib_destroy_qp_user); /* Completion queues */ struct ib_cq *__ib_create_cq(struct ib_device *device, ib_comp_handler comp_handler, void (*event_handler)(struct ib_event *, void *), void *cq_context, const struct ib_cq_init_attr *cq_attr, const char *caller) { struct ib_cq *cq; int ret; cq = rdma_zalloc_drv_obj(device, ib_cq); if (!cq) return ERR_PTR(-ENOMEM); cq->device = device; cq->uobject = NULL; cq->comp_handler = comp_handler; cq->event_handler = event_handler; cq->cq_context = cq_context; atomic_set(&cq->usecnt, 0); rdma_restrack_new(&cq->res, RDMA_RESTRACK_CQ); rdma_restrack_set_name(&cq->res, caller); ret = device->ops.create_cq(cq, cq_attr, NULL); if (ret) { rdma_restrack_put(&cq->res); kfree(cq); return ERR_PTR(ret); } rdma_restrack_add(&cq->res); return cq; } EXPORT_SYMBOL(__ib_create_cq); int rdma_set_cq_moderation(struct ib_cq *cq, u16 cq_count, u16 cq_period) { if (cq->shared) return -EOPNOTSUPP; return cq->device->ops.modify_cq ? cq->device->ops.modify_cq(cq, cq_count, cq_period) : -EOPNOTSUPP; } EXPORT_SYMBOL(rdma_set_cq_moderation); int ib_destroy_cq_user(struct ib_cq *cq, struct ib_udata *udata) { int ret; if (WARN_ON_ONCE(cq->shared)) return -EOPNOTSUPP; if (atomic_read(&cq->usecnt)) return -EBUSY; ret = cq->device->ops.destroy_cq(cq, udata); if (ret) return ret; rdma_restrack_del(&cq->res); kfree(cq); return ret; } EXPORT_SYMBOL(ib_destroy_cq_user); int ib_resize_cq(struct ib_cq *cq, int cqe) { if (cq->shared) return -EOPNOTSUPP; return cq->device->ops.resize_cq ? cq->device->ops.resize_cq(cq, cqe, NULL) : -EOPNOTSUPP; } EXPORT_SYMBOL(ib_resize_cq); /* Memory regions */ struct ib_mr *ib_reg_user_mr(struct ib_pd *pd, u64 start, u64 length, u64 virt_addr, int access_flags) { struct ib_mr *mr; if (access_flags & IB_ACCESS_ON_DEMAND) { if (!(pd->device->attrs.device_cap_flags & IB_DEVICE_ON_DEMAND_PAGING)) { pr_debug("ODP support not available\n"); return ERR_PTR(-EINVAL); } } mr = pd->device->ops.reg_user_mr(pd, start, length, virt_addr, access_flags, NULL); if (IS_ERR(mr)) return mr; mr->device = pd->device; mr->pd = pd; mr->dm = NULL; atomic_inc(&pd->usecnt); rdma_restrack_new(&mr->res, RDMA_RESTRACK_MR); rdma_restrack_parent_name(&mr->res, &pd->res); rdma_restrack_add(&mr->res); return mr; } EXPORT_SYMBOL(ib_reg_user_mr); int ib_advise_mr(struct ib_pd *pd, enum ib_uverbs_advise_mr_advice advice, u32 flags, struct ib_sge *sg_list, u32 num_sge) { if (!pd->device->ops.advise_mr) return -EOPNOTSUPP; if (!num_sge) return 0; return pd->device->ops.advise_mr(pd, advice, flags, sg_list, num_sge, NULL); } EXPORT_SYMBOL(ib_advise_mr); int ib_dereg_mr_user(struct ib_mr *mr, struct ib_udata *udata) { struct ib_pd *pd = mr->pd; struct ib_dm *dm = mr->dm; struct ib_sig_attrs *sig_attrs = mr->sig_attrs; int ret; trace_mr_dereg(mr); rdma_restrack_del(&mr->res); ret = mr->device->ops.dereg_mr(mr, udata); if (!ret) { atomic_dec(&pd->usecnt); if (dm) atomic_dec(&dm->usecnt); kfree(sig_attrs); } return ret; } EXPORT_SYMBOL(ib_dereg_mr_user); /** * ib_alloc_mr() - Allocates a memory region * @pd: protection domain associated with the region * @mr_type: memory region type * @max_num_sg: maximum sg entries available for registration. * * Notes: * Memory registeration page/sg lists must not exceed max_num_sg. * For mr_type IB_MR_TYPE_MEM_REG, the total length cannot exceed * max_num_sg * used_page_size. * */ struct ib_mr *ib_alloc_mr(struct ib_pd *pd, enum ib_mr_type mr_type, u32 max_num_sg) { struct ib_mr *mr; if (!pd->device->ops.alloc_mr) { mr = ERR_PTR(-EOPNOTSUPP); goto out; } if (mr_type == IB_MR_TYPE_INTEGRITY) { WARN_ON_ONCE(1); mr = ERR_PTR(-EINVAL); goto out; } mr = pd->device->ops.alloc_mr(pd, mr_type, max_num_sg); if (IS_ERR(mr)) goto out; mr->device = pd->device; mr->pd = pd; mr->dm = NULL; mr->uobject = NULL; atomic_inc(&pd->usecnt); mr->need_inval = false; mr->type = mr_type; mr->sig_attrs = NULL; rdma_restrack_new(&mr->res, RDMA_RESTRACK_MR); rdma_restrack_parent_name(&mr->res, &pd->res); rdma_restrack_add(&mr->res); out: trace_mr_alloc(pd, mr_type, max_num_sg, mr); return mr; } EXPORT_SYMBOL(ib_alloc_mr); /** * ib_alloc_mr_integrity() - Allocates an integrity memory region * @pd: protection domain associated with the region * @max_num_data_sg: maximum data sg entries available for registration * @max_num_meta_sg: maximum metadata sg entries available for * registration * * Notes: * Memory registration page/sg lists must not exceed max_num_sg, * also the integrity page/sg lists must not exceed max_num_meta_sg. * */ struct ib_mr *ib_alloc_mr_integrity(struct ib_pd *pd, u32 max_num_data_sg, u32 max_num_meta_sg) { struct ib_mr *mr; struct ib_sig_attrs *sig_attrs; if (!pd->device->ops.alloc_mr_integrity || !pd->device->ops.map_mr_sg_pi) { mr = ERR_PTR(-EOPNOTSUPP); goto out; } if (!max_num_meta_sg) { mr = ERR_PTR(-EINVAL); goto out; } sig_attrs = kzalloc(sizeof(struct ib_sig_attrs), GFP_KERNEL); if (!sig_attrs) { mr = ERR_PTR(-ENOMEM); goto out; } mr = pd->device->ops.alloc_mr_integrity(pd, max_num_data_sg, max_num_meta_sg); if (IS_ERR(mr)) { kfree(sig_attrs); goto out; } mr->device = pd->device; mr->pd = pd; mr->dm = NULL; mr->uobject = NULL; atomic_inc(&pd->usecnt); mr->need_inval = false; mr->type = IB_MR_TYPE_INTEGRITY; mr->sig_attrs = sig_attrs; rdma_restrack_new(&mr->res, RDMA_RESTRACK_MR); rdma_restrack_parent_name(&mr->res, &pd->res); rdma_restrack_add(&mr->res); out: trace_mr_integ_alloc(pd, max_num_data_sg, max_num_meta_sg, mr); return mr; } EXPORT_SYMBOL(ib_alloc_mr_integrity); /* Multicast groups */ static bool is_valid_mcast_lid(struct ib_qp *qp, u16 lid) { struct ib_qp_init_attr init_attr = {}; struct ib_qp_attr attr = {}; int num_eth_ports = 0; int port; /* If QP state >= init, it is assigned to a port and we can check this * port only. */ if (!ib_query_qp(qp, &attr, IB_QP_STATE | IB_QP_PORT, &init_attr)) { if (attr.qp_state >= IB_QPS_INIT) { if (rdma_port_get_link_layer(qp->device, attr.port_num) != IB_LINK_LAYER_INFINIBAND) return true; goto lid_check; } } /* Can't get a quick answer, iterate over all ports */ for (port = 0; port < qp->device->phys_port_cnt; port++) if (rdma_port_get_link_layer(qp->device, port) != IB_LINK_LAYER_INFINIBAND) num_eth_ports++; /* If we have at lease one Ethernet port, RoCE annex declares that * multicast LID should be ignored. We can't tell at this step if the * QP belongs to an IB or Ethernet port. */ if (num_eth_ports) return true; /* If all the ports are IB, we can check according to IB spec. */ lid_check: return !(lid < be16_to_cpu(IB_MULTICAST_LID_BASE) || lid == be16_to_cpu(IB_LID_PERMISSIVE)); } int ib_attach_mcast(struct ib_qp *qp, union ib_gid *gid, u16 lid) { int ret; if (!qp->device->ops.attach_mcast) return -EOPNOTSUPP; if (!rdma_is_multicast_addr((struct in6_addr *)gid->raw) || qp->qp_type != IB_QPT_UD || !is_valid_mcast_lid(qp, lid)) return -EINVAL; ret = qp->device->ops.attach_mcast(qp, gid, lid); if (!ret) atomic_inc(&qp->usecnt); return ret; } EXPORT_SYMBOL(ib_attach_mcast); int ib_detach_mcast(struct ib_qp *qp, union ib_gid *gid, u16 lid) { int ret; if (!qp->device->ops.detach_mcast) return -EOPNOTSUPP; if (!rdma_is_multicast_addr((struct in6_addr *)gid->raw) || qp->qp_type != IB_QPT_UD || !is_valid_mcast_lid(qp, lid)) return -EINVAL; ret = qp->device->ops.detach_mcast(qp, gid, lid); if (!ret) atomic_dec(&qp->usecnt); return ret; } EXPORT_SYMBOL(ib_detach_mcast); /** * ib_alloc_xrcd_user - Allocates an XRC domain. * @device: The device on which to allocate the XRC domain. * @inode: inode to connect XRCD * @udata: Valid user data or NULL for kernel object */ struct ib_xrcd *ib_alloc_xrcd_user(struct ib_device *device, struct inode *inode, struct ib_udata *udata) { struct ib_xrcd *xrcd; int ret; if (!device->ops.alloc_xrcd) return ERR_PTR(-EOPNOTSUPP); xrcd = rdma_zalloc_drv_obj(device, ib_xrcd); if (!xrcd) return ERR_PTR(-ENOMEM); xrcd->device = device; xrcd->inode = inode; atomic_set(&xrcd->usecnt, 0); init_rwsem(&xrcd->tgt_qps_rwsem); xa_init(&xrcd->tgt_qps); ret = device->ops.alloc_xrcd(xrcd, udata); if (ret) goto err; return xrcd; err: kfree(xrcd); return ERR_PTR(ret); } EXPORT_SYMBOL(ib_alloc_xrcd_user); /** * ib_dealloc_xrcd_user - Deallocates an XRC domain. * @xrcd: The XRC domain to deallocate. * @udata: Valid user data or NULL for kernel object */ int ib_dealloc_xrcd_user(struct ib_xrcd *xrcd, struct ib_udata *udata) { int ret; if (atomic_read(&xrcd->usecnt)) return -EBUSY; WARN_ON(!xa_empty(&xrcd->tgt_qps)); ret = xrcd->device->ops.dealloc_xrcd(xrcd, udata); if (ret) return ret; kfree(xrcd); return ret; } EXPORT_SYMBOL(ib_dealloc_xrcd_user); /** * ib_create_wq - Creates a WQ associated with the specified protection * domain. * @pd: The protection domain associated with the WQ. * @wq_attr: A list of initial attributes required to create the * WQ. If WQ creation succeeds, then the attributes are updated to * the actual capabilities of the created WQ. * * wq_attr->max_wr and wq_attr->max_sge determine * the requested size of the WQ, and set to the actual values allocated * on return. * If ib_create_wq() succeeds, then max_wr and max_sge will always be * at least as large as the requested values. */ struct ib_wq *ib_create_wq(struct ib_pd *pd, struct ib_wq_init_attr *wq_attr) { struct ib_wq *wq; if (!pd->device->ops.create_wq) return ERR_PTR(-EOPNOTSUPP); wq = pd->device->ops.create_wq(pd, wq_attr, NULL); if (!IS_ERR(wq)) { wq->event_handler = wq_attr->event_handler; wq->wq_context = wq_attr->wq_context; wq->wq_type = wq_attr->wq_type; wq->cq = wq_attr->cq; wq->device = pd->device; wq->pd = pd; wq->uobject = NULL; atomic_inc(&pd->usecnt); atomic_inc(&wq_attr->cq->usecnt); atomic_set(&wq->usecnt, 0); } return wq; } EXPORT_SYMBOL(ib_create_wq); /** * ib_destroy_wq_user - Destroys the specified user WQ. * @wq: The WQ to destroy. * @udata: Valid user data */ int ib_destroy_wq_user(struct ib_wq *wq, struct ib_udata *udata) { struct ib_cq *cq = wq->cq; struct ib_pd *pd = wq->pd; int ret; if (atomic_read(&wq->usecnt)) return -EBUSY; ret = wq->device->ops.destroy_wq(wq, udata); if (ret) return ret; atomic_dec(&pd->usecnt); atomic_dec(&cq->usecnt); return ret; } EXPORT_SYMBOL(ib_destroy_wq_user); /** * ib_modify_wq - Modifies the specified WQ. * @wq: The WQ to modify. * @wq_attr: On input, specifies the WQ attributes to modify. * @wq_attr_mask: A bit-mask used to specify which attributes of the WQ * are being modified. * On output, the current values of selected WQ attributes are returned. */ int ib_modify_wq(struct ib_wq *wq, struct ib_wq_attr *wq_attr, u32 wq_attr_mask) { int err; if (!wq->device->ops.modify_wq) return -EOPNOTSUPP; err = wq->device->ops.modify_wq(wq, wq_attr, wq_attr_mask, NULL); return err; } EXPORT_SYMBOL(ib_modify_wq); int ib_check_mr_status(struct ib_mr *mr, u32 check_mask, struct ib_mr_status *mr_status) { if (!mr->device->ops.check_mr_status) return -EOPNOTSUPP; return mr->device->ops.check_mr_status(mr, check_mask, mr_status); } EXPORT_SYMBOL(ib_check_mr_status); int ib_set_vf_link_state(struct ib_device *device, int vf, u8 port, int state) { if (!device->ops.set_vf_link_state) return -EOPNOTSUPP; return device->ops.set_vf_link_state(device, vf, port, state); } EXPORT_SYMBOL(ib_set_vf_link_state); int ib_get_vf_config(struct ib_device *device, int vf, u8 port, struct ifla_vf_info *info) { if (!device->ops.get_vf_config) return -EOPNOTSUPP; return device->ops.get_vf_config(device, vf, port, info); } EXPORT_SYMBOL(ib_get_vf_config); int ib_get_vf_stats(struct ib_device *device, int vf, u8 port, struct ifla_vf_stats *stats) { if (!device->ops.get_vf_stats) return -EOPNOTSUPP; return device->ops.get_vf_stats(device, vf, port, stats); } EXPORT_SYMBOL(ib_get_vf_stats); int ib_set_vf_guid(struct ib_device *device, int vf, u8 port, u64 guid, int type) { if (!device->ops.set_vf_guid) return -EOPNOTSUPP; return device->ops.set_vf_guid(device, vf, port, guid, type); } EXPORT_SYMBOL(ib_set_vf_guid); int ib_get_vf_guid(struct ib_device *device, int vf, u8 port, struct ifla_vf_guid *node_guid, struct ifla_vf_guid *port_guid) { if (!device->ops.get_vf_guid) return -EOPNOTSUPP; return device->ops.get_vf_guid(device, vf, port, node_guid, port_guid); } EXPORT_SYMBOL(ib_get_vf_guid); /** * ib_map_mr_sg_pi() - Map the dma mapped SG lists for PI (protection * information) and set an appropriate memory region for registration. * @mr: memory region * @data_sg: dma mapped scatterlist for data * @data_sg_nents: number of entries in data_sg * @data_sg_offset: offset in bytes into data_sg * @meta_sg: dma mapped scatterlist for metadata * @meta_sg_nents: number of entries in meta_sg * @meta_sg_offset: offset in bytes into meta_sg * @page_size: page vector desired page size * * Constraints: * - The MR must be allocated with type IB_MR_TYPE_INTEGRITY. * * Return: 0 on success. * * After this completes successfully, the memory region * is ready for registration. */ int ib_map_mr_sg_pi(struct ib_mr *mr, struct scatterlist *data_sg, int data_sg_nents, unsigned int *data_sg_offset, struct scatterlist *meta_sg, int meta_sg_nents, unsigned int *meta_sg_offset, unsigned int page_size) { if (unlikely(!mr->device->ops.map_mr_sg_pi || WARN_ON_ONCE(mr->type != IB_MR_TYPE_INTEGRITY))) return -EOPNOTSUPP; mr->page_size = page_size; return mr->device->ops.map_mr_sg_pi(mr, data_sg, data_sg_nents, data_sg_offset, meta_sg, meta_sg_nents, meta_sg_offset); } EXPORT_SYMBOL(ib_map_mr_sg_pi); /** * ib_map_mr_sg() - Map the largest prefix of a dma mapped SG list * and set it the memory region. * @mr: memory region * @sg: dma mapped scatterlist * @sg_nents: number of entries in sg * @sg_offset: offset in bytes into sg * @page_size: page vector desired page size * * Constraints: * * - The first sg element is allowed to have an offset. * - Each sg element must either be aligned to page_size or virtually * contiguous to the previous element. In case an sg element has a * non-contiguous offset, the mapping prefix will not include it. * - The last sg element is allowed to have length less than page_size. * - If sg_nents total byte length exceeds the mr max_num_sge * page_size * then only max_num_sg entries will be mapped. * - If the MR was allocated with type IB_MR_TYPE_SG_GAPS, none of these * constraints holds and the page_size argument is ignored. * * Returns the number of sg elements that were mapped to the memory region. * * After this completes successfully, the memory region * is ready for registration. */ int ib_map_mr_sg(struct ib_mr *mr, struct scatterlist *sg, int sg_nents, unsigned int *sg_offset, unsigned int page_size) { if (unlikely(!mr->device->ops.map_mr_sg)) return -EOPNOTSUPP; mr->page_size = page_size; return mr->device->ops.map_mr_sg(mr, sg, sg_nents, sg_offset); } EXPORT_SYMBOL(ib_map_mr_sg); /** * ib_sg_to_pages() - Convert the largest prefix of a sg list * to a page vector * @mr: memory region * @sgl: dma mapped scatterlist * @sg_nents: number of entries in sg * @sg_offset_p: ==== ======================================================= * IN start offset in bytes into sg * OUT offset in bytes for element n of the sg of the first * byte that has not been processed where n is the return * value of this function. * ==== ======================================================= * @set_page: driver page assignment function pointer * * Core service helper for drivers to convert the largest * prefix of given sg list to a page vector. The sg list * prefix converted is the prefix that meet the requirements * of ib_map_mr_sg. * * Returns the number of sg elements that were assigned to * a page vector. */ int ib_sg_to_pages(struct ib_mr *mr, struct scatterlist *sgl, int sg_nents, unsigned int *sg_offset_p, int (*set_page)(struct ib_mr *, u64)) { struct scatterlist *sg; u64 last_end_dma_addr = 0; unsigned int sg_offset = sg_offset_p ? *sg_offset_p : 0; unsigned int last_page_off = 0; u64 page_mask = ~((u64)mr->page_size - 1); int i, ret; if (unlikely(sg_nents <= 0 || sg_offset > sg_dma_len(&sgl[0]))) return -EINVAL; mr->iova = sg_dma_address(&sgl[0]) + sg_offset; mr->length = 0; for_each_sg(sgl, sg, sg_nents, i) { u64 dma_addr = sg_dma_address(sg) + sg_offset; u64 prev_addr = dma_addr; unsigned int dma_len = sg_dma_len(sg) - sg_offset; u64 end_dma_addr = dma_addr + dma_len; u64 page_addr = dma_addr & page_mask; /* * For the second and later elements, check whether either the * end of element i-1 or the start of element i is not aligned * on a page boundary. */ if (i && (last_page_off != 0 || page_addr != dma_addr)) { /* Stop mapping if there is a gap. */ if (last_end_dma_addr != dma_addr) break; /* * Coalesce this element with the last. If it is small * enough just update mr->length. Otherwise start * mapping from the next page. */ goto next_page; } do { ret = set_page(mr, page_addr); if (unlikely(ret < 0)) { sg_offset = prev_addr - sg_dma_address(sg); mr->length += prev_addr - dma_addr; if (sg_offset_p) *sg_offset_p = sg_offset; return i || sg_offset ? i : ret; } prev_addr = page_addr; next_page: page_addr += mr->page_size; } while (page_addr < end_dma_addr); mr->length += dma_len; last_end_dma_addr = end_dma_addr; last_page_off = end_dma_addr & ~page_mask; sg_offset = 0; } if (sg_offset_p) *sg_offset_p = 0; return i; } EXPORT_SYMBOL(ib_sg_to_pages); struct ib_drain_cqe { struct ib_cqe cqe; struct completion done; }; static void ib_drain_qp_done(struct ib_cq *cq, struct ib_wc *wc) { struct ib_drain_cqe *cqe = container_of(wc->wr_cqe, struct ib_drain_cqe, cqe); complete(&cqe->done); } /* * Post a WR and block until its completion is reaped for the SQ. */ static void __ib_drain_sq(struct ib_qp *qp) { struct ib_cq *cq = qp->send_cq; struct ib_qp_attr attr = { .qp_state = IB_QPS_ERR }; struct ib_drain_cqe sdrain; struct ib_rdma_wr swr = { .wr = { .next = NULL, { .wr_cqe = &sdrain.cqe, }, .opcode = IB_WR_RDMA_WRITE, }, }; int ret; ret = ib_modify_qp(qp, &attr, IB_QP_STATE); if (ret) { WARN_ONCE(ret, "failed to drain send queue: %d\n", ret); return; } sdrain.cqe.done = ib_drain_qp_done; init_completion(&sdrain.done); ret = ib_post_send(qp, &swr.wr, NULL); if (ret) { WARN_ONCE(ret, "failed to drain send queue: %d\n", ret); return; } if (cq->poll_ctx == IB_POLL_DIRECT) while (wait_for_completion_timeout(&sdrain.done, HZ / 10) <= 0) ib_process_cq_direct(cq, -1); else wait_for_completion(&sdrain.done); } /* * Post a WR and block until its completion is reaped for the RQ. */ static void __ib_drain_rq(struct ib_qp *qp) { struct ib_cq *cq = qp->recv_cq; struct ib_qp_attr attr = { .qp_state = IB_QPS_ERR }; struct ib_drain_cqe rdrain; struct ib_recv_wr rwr = {}; int ret; ret = ib_modify_qp(qp, &attr, IB_QP_STATE); if (ret) { WARN_ONCE(ret, "failed to drain recv queue: %d\n", ret); return; } rwr.wr_cqe = &rdrain.cqe; rdrain.cqe.done = ib_drain_qp_done; init_completion(&rdrain.done); ret = ib_post_recv(qp, &rwr, NULL); if (ret) { WARN_ONCE(ret, "failed to drain recv queue: %d\n", ret); return; } if (cq->poll_ctx == IB_POLL_DIRECT) while (wait_for_completion_timeout(&rdrain.done, HZ / 10) <= 0) ib_process_cq_direct(cq, -1); else wait_for_completion(&rdrain.done); } /** * ib_drain_sq() - Block until all SQ CQEs have been consumed by the * application. * @qp: queue pair to drain * * If the device has a provider-specific drain function, then * call that. Otherwise call the generic drain function * __ib_drain_sq(). * * The caller must: * * ensure there is room in the CQ and SQ for the drain work request and * completion. * * allocate the CQ using ib_alloc_cq(). * * ensure that there are no other contexts that are posting WRs concurrently. * Otherwise the drain is not guaranteed. */ void ib_drain_sq(struct ib_qp *qp) { if (qp->device->ops.drain_sq) qp->device->ops.drain_sq(qp); else __ib_drain_sq(qp); trace_cq_drain_complete(qp->send_cq); } EXPORT_SYMBOL(ib_drain_sq); /** * ib_drain_rq() - Block until all RQ CQEs have been consumed by the * application. * @qp: queue pair to drain * * If the device has a provider-specific drain function, then * call that. Otherwise call the generic drain function * __ib_drain_rq(). * * The caller must: * * ensure there is room in the CQ and RQ for the drain work request and * completion. * * allocate the CQ using ib_alloc_cq(). * * ensure that there are no other contexts that are posting WRs concurrently. * Otherwise the drain is not guaranteed. */ void ib_drain_rq(struct ib_qp *qp) { if (qp->device->ops.drain_rq) qp->device->ops.drain_rq(qp); else __ib_drain_rq(qp); trace_cq_drain_complete(qp->recv_cq); } EXPORT_SYMBOL(ib_drain_rq); /** * ib_drain_qp() - Block until all CQEs have been consumed by the * application on both the RQ and SQ. * @qp: queue pair to drain * * The caller must: * * ensure there is room in the CQ(s), SQ, and RQ for drain work requests * and completions. * * allocate the CQs using ib_alloc_cq(). * * ensure that there are no other contexts that are posting WRs concurrently. * Otherwise the drain is not guaranteed. */ void ib_drain_qp(struct ib_qp *qp) { ib_drain_sq(qp); if (!qp->srq) ib_drain_rq(qp); } EXPORT_SYMBOL(ib_drain_qp); struct net_device *rdma_alloc_netdev(struct ib_device *device, u8 port_num, enum rdma_netdev_t type, const char *name, unsigned char name_assign_type, void (*setup)(struct net_device *)) { struct rdma_netdev_alloc_params params; struct net_device *netdev; int rc; if (!device->ops.rdma_netdev_get_params) return ERR_PTR(-EOPNOTSUPP); rc = device->ops.rdma_netdev_get_params(device, port_num, type, ¶ms); if (rc) return ERR_PTR(rc); netdev = alloc_netdev_mqs(params.sizeof_priv, name, name_assign_type, setup, params.txqs, params.rxqs); if (!netdev) return ERR_PTR(-ENOMEM); return netdev; } EXPORT_SYMBOL(rdma_alloc_netdev); int rdma_init_netdev(struct ib_device *device, u8 port_num, enum rdma_netdev_t type, const char *name, unsigned char name_assign_type, void (*setup)(struct net_device *), struct net_device *netdev) { struct rdma_netdev_alloc_params params; int rc; if (!device->ops.rdma_netdev_get_params) return -EOPNOTSUPP; rc = device->ops.rdma_netdev_get_params(device, port_num, type, ¶ms); if (rc) return rc; return params.initialize_rdma_netdev(device, port_num, netdev, params.param); } EXPORT_SYMBOL(rdma_init_netdev); void __rdma_block_iter_start(struct ib_block_iter *biter, struct scatterlist *sglist, unsigned int nents, unsigned long pgsz) { memset(biter, 0, sizeof(struct ib_block_iter)); biter->__sg = sglist; biter->__sg_nents = nents; /* Driver provides best block size to use */ biter->__pg_bit = __fls(pgsz); } EXPORT_SYMBOL(__rdma_block_iter_start); bool __rdma_block_iter_next(struct ib_block_iter *biter) { unsigned int block_offset; if (!biter->__sg_nents || !biter->__sg) return false; biter->__dma_addr = sg_dma_address(biter->__sg) + biter->__sg_advance; block_offset = biter->__dma_addr & (BIT_ULL(biter->__pg_bit) - 1); biter->__sg_advance += BIT_ULL(biter->__pg_bit) - block_offset; if (biter->__sg_advance >= sg_dma_len(biter->__sg)) { biter->__sg_advance = 0; biter->__sg = sg_next(biter->__sg); biter->__sg_nents--; } return true; } EXPORT_SYMBOL(__rdma_block_iter_next);