/* n2_core.c: Niagara2 Stream Processing Unit (SPU) crypto support. * * Copyright (C) 2010 David S. Miller */ #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "n2_core.h" #define DRV_MODULE_NAME "n2_crypto" #define DRV_MODULE_VERSION "0.1" #define DRV_MODULE_RELDATE "April 29, 2010" static char version[] __devinitdata = DRV_MODULE_NAME ".c:v" DRV_MODULE_VERSION " (" DRV_MODULE_RELDATE ")\n"; MODULE_AUTHOR("David S. Miller (davem@davemloft.net)"); MODULE_DESCRIPTION("Niagara2 Crypto driver"); MODULE_LICENSE("GPL"); MODULE_VERSION(DRV_MODULE_VERSION); #define N2_CRA_PRIORITY 300 static DEFINE_MUTEX(spu_lock); struct spu_queue { cpumask_t sharing; unsigned long qhandle; spinlock_t lock; u8 q_type; void *q; unsigned long head; unsigned long tail; struct list_head jobs; unsigned long devino; char irq_name[32]; unsigned int irq; struct list_head list; }; static struct spu_queue **cpu_to_cwq; static struct spu_queue **cpu_to_mau; static unsigned long spu_next_offset(struct spu_queue *q, unsigned long off) { if (q->q_type == HV_NCS_QTYPE_MAU) { off += MAU_ENTRY_SIZE; if (off == (MAU_ENTRY_SIZE * MAU_NUM_ENTRIES)) off = 0; } else { off += CWQ_ENTRY_SIZE; if (off == (CWQ_ENTRY_SIZE * CWQ_NUM_ENTRIES)) off = 0; } return off; } struct n2_request_common { struct list_head entry; unsigned int offset; }; #define OFFSET_NOT_RUNNING (~(unsigned int)0) /* An async job request records the final tail value it used in * n2_request_common->offset, test to see if that offset is in * the range old_head, new_head, inclusive. */ static inline bool job_finished(struct spu_queue *q, unsigned int offset, unsigned long old_head, unsigned long new_head) { if (old_head <= new_head) { if (offset > old_head && offset <= new_head) return true; } else { if (offset > old_head || offset <= new_head) return true; } return false; } /* When the HEAD marker is unequal to the actual HEAD, we get * a virtual device INO interrupt. We should process the * completed CWQ entries and adjust the HEAD marker to clear * the IRQ. */ static irqreturn_t cwq_intr(int irq, void *dev_id) { unsigned long off, new_head, hv_ret; struct spu_queue *q = dev_id; pr_err("CPU[%d]: Got CWQ interrupt for qhdl[%lx]\n", smp_processor_id(), q->qhandle); spin_lock(&q->lock); hv_ret = sun4v_ncs_gethead(q->qhandle, &new_head); pr_err("CPU[%d]: CWQ gethead[%lx] hv_ret[%lu]\n", smp_processor_id(), new_head, hv_ret); for (off = q->head; off != new_head; off = spu_next_offset(q, off)) { /* XXX ... XXX */ } hv_ret = sun4v_ncs_sethead_marker(q->qhandle, new_head); if (hv_ret == HV_EOK) q->head = new_head; spin_unlock(&q->lock); return IRQ_HANDLED; } static irqreturn_t mau_intr(int irq, void *dev_id) { struct spu_queue *q = dev_id; unsigned long head, hv_ret; spin_lock(&q->lock); pr_err("CPU[%d]: Got MAU interrupt for qhdl[%lx]\n", smp_processor_id(), q->qhandle); hv_ret = sun4v_ncs_gethead(q->qhandle, &head); pr_err("CPU[%d]: MAU gethead[%lx] hv_ret[%lu]\n", smp_processor_id(), head, hv_ret); sun4v_ncs_sethead_marker(q->qhandle, head); spin_unlock(&q->lock); return IRQ_HANDLED; } static void *spu_queue_next(struct spu_queue *q, void *cur) { return q->q + spu_next_offset(q, cur - q->q); } static int spu_queue_num_free(struct spu_queue *q) { unsigned long head = q->head; unsigned long tail = q->tail; unsigned long end = (CWQ_ENTRY_SIZE * CWQ_NUM_ENTRIES); unsigned long diff; if (head > tail) diff = head - tail; else diff = (end - tail) + head; return (diff / CWQ_ENTRY_SIZE) - 1; } static void *spu_queue_alloc(struct spu_queue *q, int num_entries) { int avail = spu_queue_num_free(q); if (avail >= num_entries) return q->q + q->tail; return NULL; } static unsigned long spu_queue_submit(struct spu_queue *q, void *last) { unsigned long hv_ret, new_tail; new_tail = spu_next_offset(q, last - q->q); hv_ret = sun4v_ncs_settail(q->qhandle, new_tail); if (hv_ret == HV_EOK) q->tail = new_tail; return hv_ret; } static u64 control_word_base(unsigned int len, unsigned int hmac_key_len, int enc_type, int auth_type, unsigned int hash_len, bool sfas, bool sob, bool eob, bool encrypt, int opcode) { u64 word = (len - 1) & CONTROL_LEN; word |= ((u64) opcode << CONTROL_OPCODE_SHIFT); word |= ((u64) enc_type << CONTROL_ENC_TYPE_SHIFT); word |= ((u64) auth_type << CONTROL_AUTH_TYPE_SHIFT); if (sfas) word |= CONTROL_STORE_FINAL_AUTH_STATE; if (sob) word |= CONTROL_START_OF_BLOCK; if (eob) word |= CONTROL_END_OF_BLOCK; if (encrypt) word |= CONTROL_ENCRYPT; if (hmac_key_len) word |= ((u64) (hmac_key_len - 1)) << CONTROL_HMAC_KEY_LEN_SHIFT; if (hash_len) word |= ((u64) (hash_len - 1)) << CONTROL_HASH_LEN_SHIFT; return word; } #if 0 static inline bool n2_should_run_async(struct spu_queue *qp, int this_len) { if (this_len >= 64 || qp->head != qp->tail) return true; return false; } #endif struct n2_hash_ctx { struct crypto_ahash *fallback_tfm; }; struct n2_hash_req_ctx { union { struct md5_state md5; struct sha1_state sha1; struct sha256_state sha256; } u; unsigned char hash_key[64]; unsigned char keyed_zero_hash[32]; struct ahash_request fallback_req; }; static int n2_hash_async_init(struct ahash_request *req) { struct n2_hash_req_ctx *rctx = ahash_request_ctx(req); struct crypto_ahash *tfm = crypto_ahash_reqtfm(req); struct n2_hash_ctx *ctx = crypto_ahash_ctx(tfm); ahash_request_set_tfm(&rctx->fallback_req, ctx->fallback_tfm); rctx->fallback_req.base.flags = req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP; return crypto_ahash_init(&rctx->fallback_req); } static int n2_hash_async_update(struct ahash_request *req) { struct n2_hash_req_ctx *rctx = ahash_request_ctx(req); struct crypto_ahash *tfm = crypto_ahash_reqtfm(req); struct n2_hash_ctx *ctx = crypto_ahash_ctx(tfm); ahash_request_set_tfm(&rctx->fallback_req, ctx->fallback_tfm); rctx->fallback_req.base.flags = req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP; rctx->fallback_req.nbytes = req->nbytes; rctx->fallback_req.src = req->src; return crypto_ahash_update(&rctx->fallback_req); } static int n2_hash_async_final(struct ahash_request *req) { struct n2_hash_req_ctx *rctx = ahash_request_ctx(req); struct crypto_ahash *tfm = crypto_ahash_reqtfm(req); struct n2_hash_ctx *ctx = crypto_ahash_ctx(tfm); ahash_request_set_tfm(&rctx->fallback_req, ctx->fallback_tfm); rctx->fallback_req.base.flags = req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP; rctx->fallback_req.result = req->result; return crypto_ahash_final(&rctx->fallback_req); } static int n2_hash_async_finup(struct ahash_request *req) { struct n2_hash_req_ctx *rctx = ahash_request_ctx(req); struct crypto_ahash *tfm = crypto_ahash_reqtfm(req); struct n2_hash_ctx *ctx = crypto_ahash_ctx(tfm); ahash_request_set_tfm(&rctx->fallback_req, ctx->fallback_tfm); rctx->fallback_req.base.flags = req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP; rctx->fallback_req.nbytes = req->nbytes; rctx->fallback_req.src = req->src; rctx->fallback_req.result = req->result; return crypto_ahash_finup(&rctx->fallback_req); } static int n2_hash_cra_init(struct crypto_tfm *tfm) { const char *fallback_driver_name = tfm->__crt_alg->cra_name; struct crypto_ahash *ahash = __crypto_ahash_cast(tfm); struct n2_hash_ctx *ctx = crypto_ahash_ctx(ahash); struct crypto_ahash *fallback_tfm; int err; fallback_tfm = crypto_alloc_ahash(fallback_driver_name, 0, CRYPTO_ALG_NEED_FALLBACK); if (IS_ERR(fallback_tfm)) { pr_warning("Fallback driver '%s' could not be loaded!\n", fallback_driver_name); err = PTR_ERR(fallback_tfm); goto out; } crypto_ahash_set_reqsize(ahash, (sizeof(struct n2_hash_req_ctx) + crypto_ahash_reqsize(fallback_tfm))); ctx->fallback_tfm = fallback_tfm; return 0; out: return err; } static void n2_hash_cra_exit(struct crypto_tfm *tfm) { struct crypto_ahash *ahash = __crypto_ahash_cast(tfm); struct n2_hash_ctx *ctx = crypto_ahash_ctx(ahash); crypto_free_ahash(ctx->fallback_tfm); } static unsigned long wait_for_tail(struct spu_queue *qp) { unsigned long head, hv_ret; do { hv_ret = sun4v_ncs_gethead(qp->qhandle, &head); if (hv_ret != HV_EOK) { pr_err("Hypervisor error on gethead\n"); break; } if (head == qp->tail) { qp->head = head; break; } } while (1); return hv_ret; } static unsigned long submit_and_wait_for_tail(struct spu_queue *qp, struct cwq_initial_entry *ent) { unsigned long hv_ret = spu_queue_submit(qp, ent); if (hv_ret == HV_EOK) hv_ret = wait_for_tail(qp); return hv_ret; } static int n2_hash_async_digest(struct ahash_request *req, unsigned int auth_type, unsigned int digest_size, unsigned int result_size, void *hash_loc) { struct crypto_ahash *tfm = crypto_ahash_reqtfm(req); struct cwq_initial_entry *ent; struct crypto_hash_walk walk; struct spu_queue *qp; unsigned long flags; int err = -ENODEV; int nbytes, cpu; /* The total effective length of the operation may not * exceed 2^16. */ if (unlikely(req->nbytes > (1 << 16))) { struct n2_hash_req_ctx *rctx = ahash_request_ctx(req); struct n2_hash_ctx *ctx = crypto_ahash_ctx(tfm); ahash_request_set_tfm(&rctx->fallback_req, ctx->fallback_tfm); rctx->fallback_req.base.flags = req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP; rctx->fallback_req.nbytes = req->nbytes; rctx->fallback_req.src = req->src; rctx->fallback_req.result = req->result; return crypto_ahash_digest(&rctx->fallback_req); } nbytes = crypto_hash_walk_first(req, &walk); cpu = get_cpu(); qp = cpu_to_cwq[cpu]; if (!qp) goto out; spin_lock_irqsave(&qp->lock, flags); /* XXX can do better, improve this later by doing a by-hand scatterlist * XXX walk, etc. */ ent = qp->q + qp->tail; ent->control = control_word_base(nbytes, 0, 0, auth_type, digest_size, false, true, false, false, OPCODE_INPLACE_BIT | OPCODE_AUTH_MAC); ent->src_addr = __pa(walk.data); ent->auth_key_addr = 0UL; ent->auth_iv_addr = __pa(hash_loc); ent->final_auth_state_addr = 0UL; ent->enc_key_addr = 0UL; ent->enc_iv_addr = 0UL; ent->dest_addr = __pa(hash_loc); nbytes = crypto_hash_walk_done(&walk, 0); while (nbytes > 0) { ent = spu_queue_next(qp, ent); ent->control = (nbytes - 1); ent->src_addr = __pa(walk.data); ent->auth_key_addr = 0UL; ent->auth_iv_addr = 0UL; ent->final_auth_state_addr = 0UL; ent->enc_key_addr = 0UL; ent->enc_iv_addr = 0UL; ent->dest_addr = 0UL; nbytes = crypto_hash_walk_done(&walk, 0); } ent->control |= CONTROL_END_OF_BLOCK; if (submit_and_wait_for_tail(qp, ent) != HV_EOK) err = -EINVAL; else err = 0; spin_unlock_irqrestore(&qp->lock, flags); if (!err) memcpy(req->result, hash_loc, result_size); out: put_cpu(); return err; } static int n2_md5_async_digest(struct ahash_request *req) { struct n2_hash_req_ctx *rctx = ahash_request_ctx(req); struct md5_state *m = &rctx->u.md5; if (unlikely(req->nbytes == 0)) { static const char md5_zero[MD5_DIGEST_SIZE] = { 0xd4, 0x1d, 0x8c, 0xd9, 0x8f, 0x00, 0xb2, 0x04, 0xe9, 0x80, 0x09, 0x98, 0xec, 0xf8, 0x42, 0x7e, }; memcpy(req->result, md5_zero, MD5_DIGEST_SIZE); return 0; } m->hash[0] = cpu_to_le32(0x67452301); m->hash[1] = cpu_to_le32(0xefcdab89); m->hash[2] = cpu_to_le32(0x98badcfe); m->hash[3] = cpu_to_le32(0x10325476); return n2_hash_async_digest(req, AUTH_TYPE_MD5, MD5_DIGEST_SIZE, MD5_DIGEST_SIZE, m->hash); } static int n2_sha1_async_digest(struct ahash_request *req) { struct n2_hash_req_ctx *rctx = ahash_request_ctx(req); struct sha1_state *s = &rctx->u.sha1; if (unlikely(req->nbytes == 0)) { static const char sha1_zero[SHA1_DIGEST_SIZE] = { 0xda, 0x39, 0xa3, 0xee, 0x5e, 0x6b, 0x4b, 0x0d, 0x32, 0x55, 0xbf, 0xef, 0x95, 0x60, 0x18, 0x90, 0xaf, 0xd8, 0x07, 0x09 }; memcpy(req->result, sha1_zero, SHA1_DIGEST_SIZE); return 0; } s->state[0] = SHA1_H0; s->state[1] = SHA1_H1; s->state[2] = SHA1_H2; s->state[3] = SHA1_H3; s->state[4] = SHA1_H4; return n2_hash_async_digest(req, AUTH_TYPE_SHA1, SHA1_DIGEST_SIZE, SHA1_DIGEST_SIZE, s->state); } static int n2_sha256_async_digest(struct ahash_request *req) { struct n2_hash_req_ctx *rctx = ahash_request_ctx(req); struct sha256_state *s = &rctx->u.sha256; if (req->nbytes == 0) { static const char sha256_zero[SHA256_DIGEST_SIZE] = { 0xe3, 0xb0, 0xc4, 0x42, 0x98, 0xfc, 0x1c, 0x14, 0x9a, 0xfb, 0xf4, 0xc8, 0x99, 0x6f, 0xb9, 0x24, 0x27, 0xae, 0x41, 0xe4, 0x64, 0x9b, 0x93, 0x4c, 0xa4, 0x95, 0x99, 0x1b, 0x78, 0x52, 0xb8, 0x55 }; memcpy(req->result, sha256_zero, SHA256_DIGEST_SIZE); return 0; } s->state[0] = SHA256_H0; s->state[1] = SHA256_H1; s->state[2] = SHA256_H2; s->state[3] = SHA256_H3; s->state[4] = SHA256_H4; s->state[5] = SHA256_H5; s->state[6] = SHA256_H6; s->state[7] = SHA256_H7; return n2_hash_async_digest(req, AUTH_TYPE_SHA256, SHA256_DIGEST_SIZE, SHA256_DIGEST_SIZE, s->state); } static int n2_sha224_async_digest(struct ahash_request *req) { struct n2_hash_req_ctx *rctx = ahash_request_ctx(req); struct sha256_state *s = &rctx->u.sha256; if (req->nbytes == 0) { static const char sha224_zero[SHA224_DIGEST_SIZE] = { 0xd1, 0x4a, 0x02, 0x8c, 0x2a, 0x3a, 0x2b, 0xc9, 0x47, 0x61, 0x02, 0xbb, 0x28, 0x82, 0x34, 0xc4, 0x15, 0xa2, 0xb0, 0x1f, 0x82, 0x8e, 0xa6, 0x2a, 0xc5, 0xb3, 0xe4, 0x2f }; memcpy(req->result, sha224_zero, SHA224_DIGEST_SIZE); return 0; } s->state[0] = SHA224_H0; s->state[1] = SHA224_H1; s->state[2] = SHA224_H2; s->state[3] = SHA224_H3; s->state[4] = SHA224_H4; s->state[5] = SHA224_H5; s->state[6] = SHA224_H6; s->state[7] = SHA224_H7; return n2_hash_async_digest(req, AUTH_TYPE_SHA256, SHA256_DIGEST_SIZE, SHA224_DIGEST_SIZE, s->state); } struct n2_cipher_context { int key_len; int enc_type; union { u8 aes[AES_MAX_KEY_SIZE]; u8 des[DES_KEY_SIZE]; u8 des3[3 * DES_KEY_SIZE]; u8 arc4[258]; /* S-box, X, Y */ } key; }; #define N2_CHUNK_ARR_LEN 16 struct n2_crypto_chunk { struct list_head entry; unsigned long iv_paddr : 44; unsigned long arr_len : 20; unsigned long dest_paddr; unsigned long dest_final; struct { unsigned long src_paddr : 44; unsigned long src_len : 20; } arr[N2_CHUNK_ARR_LEN]; }; struct n2_request_context { struct ablkcipher_walk walk; struct list_head chunk_list; struct n2_crypto_chunk chunk; u8 temp_iv[16]; }; /* The SPU allows some level of flexibility for partial cipher blocks * being specified in a descriptor. * * It merely requires that every descriptor's length field is at least * as large as the cipher block size. This means that a cipher block * can span at most 2 descriptors. However, this does not allow a * partial block to span into the final descriptor as that would * violate the rule (since every descriptor's length must be at lest * the block size). So, for example, assuming an 8 byte block size: * * 0xe --> 0xa --> 0x8 * * is a valid length sequence, whereas: * * 0xe --> 0xb --> 0x7 * * is not a valid sequence. */ struct n2_cipher_alg { struct list_head entry; u8 enc_type; struct crypto_alg alg; }; static inline struct n2_cipher_alg *n2_cipher_alg(struct crypto_tfm *tfm) { struct crypto_alg *alg = tfm->__crt_alg; return container_of(alg, struct n2_cipher_alg, alg); } struct n2_cipher_request_context { struct ablkcipher_walk walk; }; static int n2_aes_setkey(struct crypto_ablkcipher *cipher, const u8 *key, unsigned int keylen) { struct crypto_tfm *tfm = crypto_ablkcipher_tfm(cipher); struct n2_cipher_context *ctx = crypto_tfm_ctx(tfm); struct n2_cipher_alg *n2alg = n2_cipher_alg(tfm); ctx->enc_type = (n2alg->enc_type & ENC_TYPE_CHAINING_MASK); switch (keylen) { case AES_KEYSIZE_128: ctx->enc_type |= ENC_TYPE_ALG_AES128; break; case AES_KEYSIZE_192: ctx->enc_type |= ENC_TYPE_ALG_AES192; break; case AES_KEYSIZE_256: ctx->enc_type |= ENC_TYPE_ALG_AES256; break; default: crypto_ablkcipher_set_flags(cipher, CRYPTO_TFM_RES_BAD_KEY_LEN); return -EINVAL; } ctx->key_len = keylen; memcpy(ctx->key.aes, key, keylen); return 0; } static int n2_des_setkey(struct crypto_ablkcipher *cipher, const u8 *key, unsigned int keylen) { struct crypto_tfm *tfm = crypto_ablkcipher_tfm(cipher); struct n2_cipher_context *ctx = crypto_tfm_ctx(tfm); struct n2_cipher_alg *n2alg = n2_cipher_alg(tfm); u32 tmp[DES_EXPKEY_WORDS]; int err; ctx->enc_type = n2alg->enc_type; if (keylen != DES_KEY_SIZE) { crypto_ablkcipher_set_flags(cipher, CRYPTO_TFM_RES_BAD_KEY_LEN); return -EINVAL; } err = des_ekey(tmp, key); if (err == 0 && (tfm->crt_flags & CRYPTO_TFM_REQ_WEAK_KEY)) { tfm->crt_flags |= CRYPTO_TFM_RES_WEAK_KEY; return -EINVAL; } ctx->key_len = keylen; memcpy(ctx->key.des, key, keylen); return 0; } static int n2_3des_setkey(struct crypto_ablkcipher *cipher, const u8 *key, unsigned int keylen) { struct crypto_tfm *tfm = crypto_ablkcipher_tfm(cipher); struct n2_cipher_context *ctx = crypto_tfm_ctx(tfm); struct n2_cipher_alg *n2alg = n2_cipher_alg(tfm); ctx->enc_type = n2alg->enc_type; if (keylen != (3 * DES_KEY_SIZE)) { crypto_ablkcipher_set_flags(cipher, CRYPTO_TFM_RES_BAD_KEY_LEN); return -EINVAL; } ctx->key_len = keylen; memcpy(ctx->key.des3, key, keylen); return 0; } static int n2_arc4_setkey(struct crypto_ablkcipher *cipher, const u8 *key, unsigned int keylen) { struct crypto_tfm *tfm = crypto_ablkcipher_tfm(cipher); struct n2_cipher_context *ctx = crypto_tfm_ctx(tfm); struct n2_cipher_alg *n2alg = n2_cipher_alg(tfm); u8 *s = ctx->key.arc4; u8 *x = s + 256; u8 *y = x + 1; int i, j, k; ctx->enc_type = n2alg->enc_type; j = k = 0; *x = 0; *y = 0; for (i = 0; i < 256; i++) s[i] = i; for (i = 0; i < 256; i++) { u8 a = s[i]; j = (j + key[k] + a) & 0xff; s[i] = s[j]; s[j] = a; if (++k >= keylen) k = 0; } return 0; } static inline int cipher_descriptor_len(int nbytes, unsigned int block_size) { int this_len = nbytes; this_len -= (nbytes & (block_size - 1)); return this_len > (1 << 16) ? (1 << 16) : this_len; } static int __n2_crypt_chunk(struct crypto_tfm *tfm, struct n2_crypto_chunk *cp, struct spu_queue *qp, bool encrypt) { struct n2_cipher_context *ctx = crypto_tfm_ctx(tfm); struct cwq_initial_entry *ent; bool in_place; int i; ent = spu_queue_alloc(qp, cp->arr_len); if (!ent) { pr_info("queue_alloc() of %d fails\n", cp->arr_len); return -EBUSY; } in_place = (cp->dest_paddr == cp->arr[0].src_paddr); ent->control = control_word_base(cp->arr[0].src_len, 0, ctx->enc_type, 0, 0, false, true, false, encrypt, OPCODE_ENCRYPT | (in_place ? OPCODE_INPLACE_BIT : 0)); ent->src_addr = cp->arr[0].src_paddr; ent->auth_key_addr = 0UL; ent->auth_iv_addr = 0UL; ent->final_auth_state_addr = 0UL; ent->enc_key_addr = __pa(&ctx->key); ent->enc_iv_addr = cp->iv_paddr; ent->dest_addr = (in_place ? 0UL : cp->dest_paddr); for (i = 1; i < cp->arr_len; i++) { ent = spu_queue_next(qp, ent); ent->control = cp->arr[i].src_len - 1; ent->src_addr = cp->arr[i].src_paddr; ent->auth_key_addr = 0UL; ent->auth_iv_addr = 0UL; ent->final_auth_state_addr = 0UL; ent->enc_key_addr = 0UL; ent->enc_iv_addr = 0UL; ent->dest_addr = 0UL; } ent->control |= CONTROL_END_OF_BLOCK; return (spu_queue_submit(qp, ent) != HV_EOK) ? -EINVAL : 0; } static int n2_compute_chunks(struct ablkcipher_request *req) { struct n2_request_context *rctx = ablkcipher_request_ctx(req); struct ablkcipher_walk *walk = &rctx->walk; struct n2_crypto_chunk *chunk; unsigned long dest_prev; unsigned int tot_len; bool prev_in_place; int err, nbytes; ablkcipher_walk_init(walk, req->dst, req->src, req->nbytes); err = ablkcipher_walk_phys(req, walk); if (err) return err; INIT_LIST_HEAD(&rctx->chunk_list); chunk = &rctx->chunk; INIT_LIST_HEAD(&chunk->entry); chunk->iv_paddr = 0UL; chunk->arr_len = 0; chunk->dest_paddr = 0UL; prev_in_place = false; dest_prev = ~0UL; tot_len = 0; while ((nbytes = walk->nbytes) != 0) { unsigned long dest_paddr, src_paddr; bool in_place; int this_len; src_paddr = (page_to_phys(walk->src.page) + walk->src.offset); dest_paddr = (page_to_phys(walk->dst.page) + walk->dst.offset); in_place = (src_paddr == dest_paddr); this_len = cipher_descriptor_len(nbytes, walk->blocksize); if (chunk->arr_len != 0) { if (in_place != prev_in_place || (!prev_in_place && dest_paddr != dest_prev) || chunk->arr_len == N2_CHUNK_ARR_LEN || tot_len + this_len > (1 << 16)) { chunk->dest_final = dest_prev; list_add_tail(&chunk->entry, &rctx->chunk_list); chunk = kzalloc(sizeof(*chunk), GFP_ATOMIC); if (!chunk) { err = -ENOMEM; break; } INIT_LIST_HEAD(&chunk->entry); } } if (chunk->arr_len == 0) { chunk->dest_paddr = dest_paddr; tot_len = 0; } chunk->arr[chunk->arr_len].src_paddr = src_paddr; chunk->arr[chunk->arr_len].src_len = this_len; chunk->arr_len++; dest_prev = dest_paddr + this_len; prev_in_place = in_place; tot_len += this_len; err = ablkcipher_walk_done(req, walk, nbytes - this_len); if (err) break; } if (!err && chunk->arr_len != 0) { chunk->dest_final = dest_prev; list_add_tail(&chunk->entry, &rctx->chunk_list); } return err; } static void n2_chunk_complete(struct ablkcipher_request *req, void *final_iv) { struct n2_request_context *rctx = ablkcipher_request_ctx(req); struct n2_crypto_chunk *c, *tmp; if (final_iv) memcpy(rctx->walk.iv, final_iv, rctx->walk.blocksize); ablkcipher_walk_complete(&rctx->walk); list_for_each_entry_safe(c, tmp, &rctx->chunk_list, entry) { list_del(&c->entry); if (unlikely(c != &rctx->chunk)) kfree(c); } } static int n2_do_ecb(struct ablkcipher_request *req, bool encrypt) { struct n2_request_context *rctx = ablkcipher_request_ctx(req); struct crypto_tfm *tfm = req->base.tfm; int err = n2_compute_chunks(req); struct n2_crypto_chunk *c, *tmp; unsigned long flags, hv_ret; struct spu_queue *qp; if (err) return err; qp = cpu_to_cwq[get_cpu()]; err = -ENODEV; if (!qp) goto out; spin_lock_irqsave(&qp->lock, flags); list_for_each_entry_safe(c, tmp, &rctx->chunk_list, entry) { err = __n2_crypt_chunk(tfm, c, qp, encrypt); if (err) break; list_del(&c->entry); if (unlikely(c != &rctx->chunk)) kfree(c); } if (!err) { hv_ret = wait_for_tail(qp); if (hv_ret != HV_EOK) err = -EINVAL; } spin_unlock_irqrestore(&qp->lock, flags); put_cpu(); out: n2_chunk_complete(req, NULL); return err; } static int n2_encrypt_ecb(struct ablkcipher_request *req) { return n2_do_ecb(req, true); } static int n2_decrypt_ecb(struct ablkcipher_request *req) { return n2_do_ecb(req, false); } static int n2_do_chaining(struct ablkcipher_request *req, bool encrypt) { struct n2_request_context *rctx = ablkcipher_request_ctx(req); struct crypto_tfm *tfm = req->base.tfm; unsigned long flags, hv_ret, iv_paddr; int err = n2_compute_chunks(req); struct n2_crypto_chunk *c, *tmp; struct spu_queue *qp; void *final_iv_addr; final_iv_addr = NULL; if (err) return err; qp = cpu_to_cwq[get_cpu()]; err = -ENODEV; if (!qp) goto out; spin_lock_irqsave(&qp->lock, flags); if (encrypt) { iv_paddr = __pa(rctx->walk.iv); list_for_each_entry_safe(c, tmp, &rctx->chunk_list, entry) { c->iv_paddr = iv_paddr; err = __n2_crypt_chunk(tfm, c, qp, true); if (err) break; iv_paddr = c->dest_final - rctx->walk.blocksize; list_del(&c->entry); if (unlikely(c != &rctx->chunk)) kfree(c); } final_iv_addr = __va(iv_paddr); } else { list_for_each_entry_safe_reverse(c, tmp, &rctx->chunk_list, entry) { if (c == &rctx->chunk) { iv_paddr = __pa(rctx->walk.iv); } else { iv_paddr = (tmp->arr[tmp->arr_len-1].src_paddr + tmp->arr[tmp->arr_len-1].src_len - rctx->walk.blocksize); } if (!final_iv_addr) { unsigned long pa; pa = (c->arr[c->arr_len-1].src_paddr + c->arr[c->arr_len-1].src_len - rctx->walk.blocksize); final_iv_addr = rctx->temp_iv; memcpy(rctx->temp_iv, __va(pa), rctx->walk.blocksize); } c->iv_paddr = iv_paddr; err = __n2_crypt_chunk(tfm, c, qp, false); if (err) break; list_del(&c->entry); if (unlikely(c != &rctx->chunk)) kfree(c); } } if (!err) { hv_ret = wait_for_tail(qp); if (hv_ret != HV_EOK) err = -EINVAL; } spin_unlock_irqrestore(&qp->lock, flags); put_cpu(); out: n2_chunk_complete(req, err ? NULL : final_iv_addr); return err; } static int n2_encrypt_chaining(struct ablkcipher_request *req) { return n2_do_chaining(req, true); } static int n2_decrypt_chaining(struct ablkcipher_request *req) { return n2_do_chaining(req, false); } struct n2_cipher_tmpl { const char *name; const char *drv_name; u8 block_size; u8 enc_type; struct ablkcipher_alg ablkcipher; }; static const struct n2_cipher_tmpl cipher_tmpls[] = { /* ARC4: only ECB is supported (chaining bits ignored) */ { .name = "ecb(arc4)", .drv_name = "ecb-arc4", .block_size = 1, .enc_type = (ENC_TYPE_ALG_RC4_STREAM | ENC_TYPE_CHAINING_ECB), .ablkcipher = { .min_keysize = 1, .max_keysize = 256, .setkey = n2_arc4_setkey, .encrypt = n2_encrypt_ecb, .decrypt = n2_decrypt_ecb, }, }, /* DES: ECB CBC and CFB are supported */ { .name = "ecb(des)", .drv_name = "ecb-des", .block_size = DES_BLOCK_SIZE, .enc_type = (ENC_TYPE_ALG_DES | ENC_TYPE_CHAINING_ECB), .ablkcipher = { .min_keysize = DES_KEY_SIZE, .max_keysize = DES_KEY_SIZE, .setkey = n2_des_setkey, .encrypt = n2_encrypt_ecb, .decrypt = n2_decrypt_ecb, }, }, { .name = "cbc(des)", .drv_name = "cbc-des", .block_size = DES_BLOCK_SIZE, .enc_type = (ENC_TYPE_ALG_DES | ENC_TYPE_CHAINING_CBC), .ablkcipher = { .ivsize = DES_BLOCK_SIZE, .min_keysize = DES_KEY_SIZE, .max_keysize = DES_KEY_SIZE, .setkey = n2_des_setkey, .encrypt = n2_encrypt_chaining, .decrypt = n2_decrypt_chaining, }, }, { .name = "cfb(des)", .drv_name = "cfb-des", .block_size = DES_BLOCK_SIZE, .enc_type = (ENC_TYPE_ALG_DES | ENC_TYPE_CHAINING_CFB), .ablkcipher = { .min_keysize = DES_KEY_SIZE, .max_keysize = DES_KEY_SIZE, .setkey = n2_des_setkey, .encrypt = n2_encrypt_chaining, .decrypt = n2_decrypt_chaining, }, }, /* 3DES: ECB CBC and CFB are supported */ { .name = "ecb(des3_ede)", .drv_name = "ecb-3des", .block_size = DES_BLOCK_SIZE, .enc_type = (ENC_TYPE_ALG_3DES | ENC_TYPE_CHAINING_ECB), .ablkcipher = { .min_keysize = 3 * DES_KEY_SIZE, .max_keysize = 3 * DES_KEY_SIZE, .setkey = n2_3des_setkey, .encrypt = n2_encrypt_ecb, .decrypt = n2_decrypt_ecb, }, }, { .name = "cbc(des3_ede)", .drv_name = "cbc-3des", .block_size = DES_BLOCK_SIZE, .enc_type = (ENC_TYPE_ALG_3DES | ENC_TYPE_CHAINING_CBC), .ablkcipher = { .ivsize = DES_BLOCK_SIZE, .min_keysize = 3 * DES_KEY_SIZE, .max_keysize = 3 * DES_KEY_SIZE, .setkey = n2_3des_setkey, .encrypt = n2_encrypt_chaining, .decrypt = n2_decrypt_chaining, }, }, { .name = "cfb(des3_ede)", .drv_name = "cfb-3des", .block_size = DES_BLOCK_SIZE, .enc_type = (ENC_TYPE_ALG_3DES | ENC_TYPE_CHAINING_CFB), .ablkcipher = { .min_keysize = 3 * DES_KEY_SIZE, .max_keysize = 3 * DES_KEY_SIZE, .setkey = n2_3des_setkey, .encrypt = n2_encrypt_chaining, .decrypt = n2_decrypt_chaining, }, }, /* AES: ECB CBC and CTR are supported */ { .name = "ecb(aes)", .drv_name = "ecb-aes", .block_size = AES_BLOCK_SIZE, .enc_type = (ENC_TYPE_ALG_AES128 | ENC_TYPE_CHAINING_ECB), .ablkcipher = { .min_keysize = AES_MIN_KEY_SIZE, .max_keysize = AES_MAX_KEY_SIZE, .setkey = n2_aes_setkey, .encrypt = n2_encrypt_ecb, .decrypt = n2_decrypt_ecb, }, }, { .name = "cbc(aes)", .drv_name = "cbc-aes", .block_size = AES_BLOCK_SIZE, .enc_type = (ENC_TYPE_ALG_AES128 | ENC_TYPE_CHAINING_CBC), .ablkcipher = { .ivsize = AES_BLOCK_SIZE, .min_keysize = AES_MIN_KEY_SIZE, .max_keysize = AES_MAX_KEY_SIZE, .setkey = n2_aes_setkey, .encrypt = n2_encrypt_chaining, .decrypt = n2_decrypt_chaining, }, }, { .name = "ctr(aes)", .drv_name = "ctr-aes", .block_size = AES_BLOCK_SIZE, .enc_type = (ENC_TYPE_ALG_AES128 | ENC_TYPE_CHAINING_COUNTER), .ablkcipher = { .ivsize = AES_BLOCK_SIZE, .min_keysize = AES_MIN_KEY_SIZE, .max_keysize = AES_MAX_KEY_SIZE, .setkey = n2_aes_setkey, .encrypt = n2_encrypt_chaining, .decrypt = n2_encrypt_chaining, }, }, }; #define NUM_CIPHER_TMPLS ARRAY_SIZE(cipher_tmpls) static LIST_HEAD(cipher_algs); struct n2_hash_tmpl { const char *name; int (*digest)(struct ahash_request *req); u8 digest_size; u8 block_size; }; static const struct n2_hash_tmpl hash_tmpls[] = { { .name = "md5", .digest = n2_md5_async_digest, .digest_size = MD5_DIGEST_SIZE, .block_size = MD5_HMAC_BLOCK_SIZE }, { .name = "sha1", .digest = n2_sha1_async_digest, .digest_size = SHA1_DIGEST_SIZE, .block_size = SHA1_BLOCK_SIZE }, { .name = "sha256", .digest = n2_sha256_async_digest, .digest_size = SHA256_DIGEST_SIZE, .block_size = SHA256_BLOCK_SIZE }, { .name = "sha224", .digest = n2_sha224_async_digest, .digest_size = SHA224_DIGEST_SIZE, .block_size = SHA224_BLOCK_SIZE }, }; #define NUM_HASH_TMPLS ARRAY_SIZE(hash_tmpls) struct n2_ahash_alg { struct list_head entry; struct ahash_alg alg; }; static LIST_HEAD(ahash_algs); static int algs_registered; static void __n2_unregister_algs(void) { struct n2_cipher_alg *cipher, *cipher_tmp; struct n2_ahash_alg *alg, *alg_tmp; list_for_each_entry_safe(cipher, cipher_tmp, &cipher_algs, entry) { crypto_unregister_alg(&cipher->alg); list_del(&cipher->entry); kfree(cipher); } list_for_each_entry_safe(alg, alg_tmp, &ahash_algs, entry) { crypto_unregister_ahash(&alg->alg); list_del(&alg->entry); kfree(alg); } } static int n2_cipher_cra_init(struct crypto_tfm *tfm) { tfm->crt_ablkcipher.reqsize = sizeof(struct n2_request_context); return 0; } static int __devinit __n2_register_one_cipher(const struct n2_cipher_tmpl *tmpl) { struct n2_cipher_alg *p = kzalloc(sizeof(*p), GFP_KERNEL); struct crypto_alg *alg; int err; if (!p) return -ENOMEM; alg = &p->alg; snprintf(alg->cra_name, CRYPTO_MAX_ALG_NAME, "%s", tmpl->name); snprintf(alg->cra_driver_name, CRYPTO_MAX_ALG_NAME, "%s-n2", tmpl->drv_name); alg->cra_priority = N2_CRA_PRIORITY; alg->cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER | CRYPTO_ALG_ASYNC; alg->cra_blocksize = tmpl->block_size; p->enc_type = tmpl->enc_type; alg->cra_ctxsize = sizeof(struct n2_cipher_context); alg->cra_type = &crypto_ablkcipher_type; alg->cra_u.ablkcipher = tmpl->ablkcipher; alg->cra_init = n2_cipher_cra_init; alg->cra_module = THIS_MODULE; list_add(&p->entry, &cipher_algs); err = crypto_register_alg(alg); if (err) { pr_err("%s alg registration failed\n", alg->cra_name); list_del(&p->entry); kfree(p); } else { pr_info("%s alg registered\n", alg->cra_name); } return err; } static int __devinit __n2_register_one_ahash(const struct n2_hash_tmpl *tmpl) { struct n2_ahash_alg *p = kzalloc(sizeof(*p), GFP_KERNEL); struct hash_alg_common *halg; struct crypto_alg *base; struct ahash_alg *ahash; int err; if (!p) return -ENOMEM; ahash = &p->alg; ahash->init = n2_hash_async_init; ahash->update = n2_hash_async_update; ahash->final = n2_hash_async_final; ahash->finup = n2_hash_async_finup; ahash->digest = tmpl->digest; halg = &ahash->halg; halg->digestsize = tmpl->digest_size; base = &halg->base; snprintf(base->cra_name, CRYPTO_MAX_ALG_NAME, "%s", tmpl->name); snprintf(base->cra_driver_name, CRYPTO_MAX_ALG_NAME, "%s-n2", tmpl->name); base->cra_priority = N2_CRA_PRIORITY; base->cra_flags = CRYPTO_ALG_TYPE_AHASH | CRYPTO_ALG_NEED_FALLBACK; base->cra_blocksize = tmpl->block_size; base->cra_ctxsize = sizeof(struct n2_hash_ctx); base->cra_module = THIS_MODULE; base->cra_init = n2_hash_cra_init; base->cra_exit = n2_hash_cra_exit; list_add(&p->entry, &ahash_algs); err = crypto_register_ahash(ahash); if (err) { pr_err("%s alg registration failed\n", base->cra_name); list_del(&p->entry); kfree(p); } else { pr_info("%s alg registered\n", base->cra_name); } return err; } static int __devinit n2_register_algs(void) { int i, err = 0; mutex_lock(&spu_lock); if (algs_registered++) goto out; for (i = 0; i < NUM_HASH_TMPLS; i++) { err = __n2_register_one_ahash(&hash_tmpls[i]); if (err) { __n2_unregister_algs(); goto out; } } for (i = 0; i < NUM_CIPHER_TMPLS; i++) { err = __n2_register_one_cipher(&cipher_tmpls[i]); if (err) { __n2_unregister_algs(); goto out; } } out: mutex_unlock(&spu_lock); return err; } static void __exit n2_unregister_algs(void) { mutex_lock(&spu_lock); if (!--algs_registered) __n2_unregister_algs(); mutex_unlock(&spu_lock); } /* To map CWQ queues to interrupt sources, the hypervisor API provides * a devino. This isn't very useful to us because all of the * interrupts listed in the of_device node have been translated to * Linux virtual IRQ cookie numbers. * * So we have to back-translate, going through the 'intr' and 'ino' * property tables of the n2cp MDESC node, matching it with the OF * 'interrupts' property entries, in order to to figure out which * devino goes to which already-translated IRQ. */ static int find_devino_index(struct of_device *dev, struct spu_mdesc_info *ip, unsigned long dev_ino) { const unsigned int *dev_intrs; unsigned int intr; int i; for (i = 0; i < ip->num_intrs; i++) { if (ip->ino_table[i].ino == dev_ino) break; } if (i == ip->num_intrs) return -ENODEV; intr = ip->ino_table[i].intr; dev_intrs = of_get_property(dev->dev.of_node, "interrupts", NULL); if (!dev_intrs) return -ENODEV; for (i = 0; i < dev->num_irqs; i++) { if (dev_intrs[i] == intr) return i; } return -ENODEV; } static int spu_map_ino(struct of_device *dev, struct spu_mdesc_info *ip, const char *irq_name, struct spu_queue *p, irq_handler_t handler) { unsigned long herr; int index; herr = sun4v_ncs_qhandle_to_devino(p->qhandle, &p->devino); if (herr) return -EINVAL; index = find_devino_index(dev, ip, p->devino); if (index < 0) return index; p->irq = dev->irqs[index]; sprintf(p->irq_name, "%s-%d", irq_name, index); return request_irq(p->irq, handler, IRQF_SAMPLE_RANDOM, p->irq_name, p); } static struct kmem_cache *queue_cache[2]; static void *new_queue(unsigned long q_type) { return kmem_cache_zalloc(queue_cache[q_type - 1], GFP_KERNEL); } static void free_queue(void *p, unsigned long q_type) { return kmem_cache_free(queue_cache[q_type - 1], p); } static int queue_cache_init(void) { if (!queue_cache[HV_NCS_QTYPE_MAU - 1]) queue_cache[HV_NCS_QTYPE_MAU - 1] = kmem_cache_create("mau_queue", (MAU_NUM_ENTRIES * MAU_ENTRY_SIZE), MAU_ENTRY_SIZE, 0, NULL); if (!queue_cache[HV_NCS_QTYPE_MAU - 1]) return -ENOMEM; if (!queue_cache[HV_NCS_QTYPE_CWQ - 1]) queue_cache[HV_NCS_QTYPE_CWQ - 1] = kmem_cache_create("cwq_queue", (CWQ_NUM_ENTRIES * CWQ_ENTRY_SIZE), CWQ_ENTRY_SIZE, 0, NULL); if (!queue_cache[HV_NCS_QTYPE_CWQ - 1]) { kmem_cache_destroy(queue_cache[HV_NCS_QTYPE_MAU - 1]); return -ENOMEM; } return 0; } static void queue_cache_destroy(void) { kmem_cache_destroy(queue_cache[HV_NCS_QTYPE_MAU - 1]); kmem_cache_destroy(queue_cache[HV_NCS_QTYPE_CWQ - 1]); } static int spu_queue_register(struct spu_queue *p, unsigned long q_type) { cpumask_var_t old_allowed; unsigned long hv_ret; if (cpumask_empty(&p->sharing)) return -EINVAL; if (!alloc_cpumask_var(&old_allowed, GFP_KERNEL)) return -ENOMEM; cpumask_copy(old_allowed, ¤t->cpus_allowed); set_cpus_allowed_ptr(current, &p->sharing); hv_ret = sun4v_ncs_qconf(q_type, __pa(p->q), CWQ_NUM_ENTRIES, &p->qhandle); if (!hv_ret) sun4v_ncs_sethead_marker(p->qhandle, 0); set_cpus_allowed_ptr(current, old_allowed); free_cpumask_var(old_allowed); return (hv_ret ? -EINVAL : 0); } static int spu_queue_setup(struct spu_queue *p) { int err; p->q = new_queue(p->q_type); if (!p->q) return -ENOMEM; err = spu_queue_register(p, p->q_type); if (err) { free_queue(p->q, p->q_type); p->q = NULL; } return err; } static void spu_queue_destroy(struct spu_queue *p) { unsigned long hv_ret; if (!p->q) return; hv_ret = sun4v_ncs_qconf(p->q_type, p->qhandle, 0, &p->qhandle); if (!hv_ret) free_queue(p->q, p->q_type); } static void spu_list_destroy(struct list_head *list) { struct spu_queue *p, *n; list_for_each_entry_safe(p, n, list, list) { int i; for (i = 0; i < NR_CPUS; i++) { if (cpu_to_cwq[i] == p) cpu_to_cwq[i] = NULL; } if (p->irq) { free_irq(p->irq, p); p->irq = 0; } spu_queue_destroy(p); list_del(&p->list); kfree(p); } } /* Walk the backward arcs of a CWQ 'exec-unit' node, * gathering cpu membership information. */ static int spu_mdesc_walk_arcs(struct mdesc_handle *mdesc, struct of_device *dev, u64 node, struct spu_queue *p, struct spu_queue **table) { u64 arc; mdesc_for_each_arc(arc, mdesc, node, MDESC_ARC_TYPE_BACK) { u64 tgt = mdesc_arc_target(mdesc, arc); const char *name = mdesc_node_name(mdesc, tgt); const u64 *id; if (strcmp(name, "cpu")) continue; id = mdesc_get_property(mdesc, tgt, "id", NULL); if (table[*id] != NULL) { dev_err(&dev->dev, "%s: SPU cpu slot already set.\n", dev->dev.of_node->full_name); return -EINVAL; } cpu_set(*id, p->sharing); table[*id] = p; } return 0; } /* Process an 'exec-unit' MDESC node of type 'cwq'. */ static int handle_exec_unit(struct spu_mdesc_info *ip, struct list_head *list, struct of_device *dev, struct mdesc_handle *mdesc, u64 node, const char *iname, unsigned long q_type, irq_handler_t handler, struct spu_queue **table) { struct spu_queue *p; int err; p = kzalloc(sizeof(struct spu_queue), GFP_KERNEL); if (!p) { dev_err(&dev->dev, "%s: Could not allocate SPU queue.\n", dev->dev.of_node->full_name); return -ENOMEM; } cpus_clear(p->sharing); spin_lock_init(&p->lock); p->q_type = q_type; INIT_LIST_HEAD(&p->jobs); list_add(&p->list, list); err = spu_mdesc_walk_arcs(mdesc, dev, node, p, table); if (err) return err; err = spu_queue_setup(p); if (err) return err; return spu_map_ino(dev, ip, iname, p, handler); } static int spu_mdesc_scan(struct mdesc_handle *mdesc, struct of_device *dev, struct spu_mdesc_info *ip, struct list_head *list, const char *exec_name, unsigned long q_type, irq_handler_t handler, struct spu_queue **table) { int err = 0; u64 node; mdesc_for_each_node_by_name(mdesc, node, "exec-unit") { const char *type; type = mdesc_get_property(mdesc, node, "type", NULL); if (!type || strcmp(type, exec_name)) continue; err = handle_exec_unit(ip, list, dev, mdesc, node, exec_name, q_type, handler, table); if (err) { spu_list_destroy(list); break; } } return err; } static int __devinit get_irq_props(struct mdesc_handle *mdesc, u64 node, struct spu_mdesc_info *ip) { const u64 *intr, *ino; int intr_len, ino_len; int i; intr = mdesc_get_property(mdesc, node, "intr", &intr_len); if (!intr) return -ENODEV; ino = mdesc_get_property(mdesc, node, "ino", &ino_len); if (!intr) return -ENODEV; if (intr_len != ino_len) return -EINVAL; ip->num_intrs = intr_len / sizeof(u64); ip->ino_table = kzalloc((sizeof(struct ino_blob) * ip->num_intrs), GFP_KERNEL); if (!ip->ino_table) return -ENOMEM; for (i = 0; i < ip->num_intrs; i++) { struct ino_blob *b = &ip->ino_table[i]; b->intr = intr[i]; b->ino = ino[i]; } return 0; } static int __devinit grab_mdesc_irq_props(struct mdesc_handle *mdesc, struct of_device *dev, struct spu_mdesc_info *ip, const char *node_name) { const unsigned int *reg; u64 node; reg = of_get_property(dev->dev.of_node, "reg", NULL); if (!reg) return -ENODEV; mdesc_for_each_node_by_name(mdesc, node, "virtual-device") { const char *name; const u64 *chdl; name = mdesc_get_property(mdesc, node, "name", NULL); if (!name || strcmp(name, node_name)) continue; chdl = mdesc_get_property(mdesc, node, "cfg-handle", NULL); if (!chdl || (*chdl != *reg)) continue; ip->cfg_handle = *chdl; return get_irq_props(mdesc, node, ip); } return -ENODEV; } static unsigned long n2_spu_hvapi_major; static unsigned long n2_spu_hvapi_minor; static int __devinit n2_spu_hvapi_register(void) { int err; n2_spu_hvapi_major = 2; n2_spu_hvapi_minor = 0; err = sun4v_hvapi_register(HV_GRP_NCS, n2_spu_hvapi_major, &n2_spu_hvapi_minor); if (!err) pr_info("Registered NCS HVAPI version %lu.%lu\n", n2_spu_hvapi_major, n2_spu_hvapi_minor); return err; } static void n2_spu_hvapi_unregister(void) { sun4v_hvapi_unregister(HV_GRP_NCS); } static int global_ref; static int __devinit grab_global_resources(void) { int err = 0; mutex_lock(&spu_lock); if (global_ref++) goto out; err = n2_spu_hvapi_register(); if (err) goto out; err = queue_cache_init(); if (err) goto out_hvapi_release; err = -ENOMEM; cpu_to_cwq = kzalloc(sizeof(struct spu_queue *) * NR_CPUS, GFP_KERNEL); if (!cpu_to_cwq) goto out_queue_cache_destroy; cpu_to_mau = kzalloc(sizeof(struct spu_queue *) * NR_CPUS, GFP_KERNEL); if (!cpu_to_mau) goto out_free_cwq_table; err = 0; out: if (err) global_ref--; mutex_unlock(&spu_lock); return err; out_free_cwq_table: kfree(cpu_to_cwq); cpu_to_cwq = NULL; out_queue_cache_destroy: queue_cache_destroy(); out_hvapi_release: n2_spu_hvapi_unregister(); goto out; } static void release_global_resources(void) { mutex_lock(&spu_lock); if (!--global_ref) { kfree(cpu_to_cwq); cpu_to_cwq = NULL; kfree(cpu_to_mau); cpu_to_mau = NULL; queue_cache_destroy(); n2_spu_hvapi_unregister(); } mutex_unlock(&spu_lock); } static struct n2_crypto * __devinit alloc_n2cp(void) { struct n2_crypto *np = kzalloc(sizeof(struct n2_crypto), GFP_KERNEL); if (np) INIT_LIST_HEAD(&np->cwq_list); return np; } static void free_n2cp(struct n2_crypto *np) { if (np->cwq_info.ino_table) { kfree(np->cwq_info.ino_table); np->cwq_info.ino_table = NULL; } kfree(np); } static void __devinit n2_spu_driver_version(void) { static int n2_spu_version_printed; if (n2_spu_version_printed++ == 0) pr_info("%s", version); } static int __devinit n2_crypto_probe(struct of_device *dev, const struct of_device_id *match) { struct mdesc_handle *mdesc; const char *full_name; struct n2_crypto *np; int err; n2_spu_driver_version(); full_name = dev->dev.of_node->full_name; pr_info("Found N2CP at %s\n", full_name); np = alloc_n2cp(); if (!np) { dev_err(&dev->dev, "%s: Unable to allocate n2cp.\n", full_name); return -ENOMEM; } err = grab_global_resources(); if (err) { dev_err(&dev->dev, "%s: Unable to grab " "global resources.\n", full_name); goto out_free_n2cp; } mdesc = mdesc_grab(); if (!mdesc) { dev_err(&dev->dev, "%s: Unable to grab MDESC.\n", full_name); err = -ENODEV; goto out_free_global; } err = grab_mdesc_irq_props(mdesc, dev, &np->cwq_info, "n2cp"); if (err) { dev_err(&dev->dev, "%s: Unable to grab IRQ props.\n", full_name); mdesc_release(mdesc); goto out_free_global; } err = spu_mdesc_scan(mdesc, dev, &np->cwq_info, &np->cwq_list, "cwq", HV_NCS_QTYPE_CWQ, cwq_intr, cpu_to_cwq); mdesc_release(mdesc); if (err) { dev_err(&dev->dev, "%s: CWQ MDESC scan failed.\n", full_name); goto out_free_global; } err = n2_register_algs(); if (err) { dev_err(&dev->dev, "%s: Unable to register algorithms.\n", full_name); goto out_free_spu_list; } dev_set_drvdata(&dev->dev, np); return 0; out_free_spu_list: spu_list_destroy(&np->cwq_list); out_free_global: release_global_resources(); out_free_n2cp: free_n2cp(np); return err; } static int __devexit n2_crypto_remove(struct of_device *dev) { struct n2_crypto *np = dev_get_drvdata(&dev->dev); n2_unregister_algs(); spu_list_destroy(&np->cwq_list); release_global_resources(); free_n2cp(np); return 0; } static struct n2_mau * __devinit alloc_ncp(void) { struct n2_mau *mp = kzalloc(sizeof(struct n2_mau), GFP_KERNEL); if (mp) INIT_LIST_HEAD(&mp->mau_list); return mp; } static void free_ncp(struct n2_mau *mp) { if (mp->mau_info.ino_table) { kfree(mp->mau_info.ino_table); mp->mau_info.ino_table = NULL; } kfree(mp); } static int __devinit n2_mau_probe(struct of_device *dev, const struct of_device_id *match) { struct mdesc_handle *mdesc; const char *full_name; struct n2_mau *mp; int err; n2_spu_driver_version(); full_name = dev->dev.of_node->full_name; pr_info("Found NCP at %s\n", full_name); mp = alloc_ncp(); if (!mp) { dev_err(&dev->dev, "%s: Unable to allocate ncp.\n", full_name); return -ENOMEM; } err = grab_global_resources(); if (err) { dev_err(&dev->dev, "%s: Unable to grab " "global resources.\n", full_name); goto out_free_ncp; } mdesc = mdesc_grab(); if (!mdesc) { dev_err(&dev->dev, "%s: Unable to grab MDESC.\n", full_name); err = -ENODEV; goto out_free_global; } err = grab_mdesc_irq_props(mdesc, dev, &mp->mau_info, "ncp"); if (err) { dev_err(&dev->dev, "%s: Unable to grab IRQ props.\n", full_name); mdesc_release(mdesc); goto out_free_global; } err = spu_mdesc_scan(mdesc, dev, &mp->mau_info, &mp->mau_list, "mau", HV_NCS_QTYPE_MAU, mau_intr, cpu_to_mau); mdesc_release(mdesc); if (err) { dev_err(&dev->dev, "%s: MAU MDESC scan failed.\n", full_name); goto out_free_global; } dev_set_drvdata(&dev->dev, mp); return 0; out_free_global: release_global_resources(); out_free_ncp: free_ncp(mp); return err; } static int __devexit n2_mau_remove(struct of_device *dev) { struct n2_mau *mp = dev_get_drvdata(&dev->dev); spu_list_destroy(&mp->mau_list); release_global_resources(); free_ncp(mp); return 0; } static struct of_device_id n2_crypto_match[] = { { .name = "n2cp", .compatible = "SUNW,n2-cwq", }, { .name = "n2cp", .compatible = "SUNW,vf-cwq", }, {}, }; MODULE_DEVICE_TABLE(of, n2_crypto_match); static struct of_platform_driver n2_crypto_driver = { .driver = { .name = "n2cp", .owner = THIS_MODULE, .of_match_table = n2_crypto_match, }, .probe = n2_crypto_probe, .remove = __devexit_p(n2_crypto_remove), }; static struct of_device_id n2_mau_match[] = { { .name = "ncp", .compatible = "SUNW,n2-mau", }, { .name = "ncp", .compatible = "SUNW,vf-mau", }, {}, }; MODULE_DEVICE_TABLE(of, n2_mau_match); static struct of_platform_driver n2_mau_driver = { .driver = { .name = "ncp", .owner = THIS_MODULE, .of_match_table = n2_mau_match, }, .probe = n2_mau_probe, .remove = __devexit_p(n2_mau_remove), }; static int __init n2_init(void) { int err = of_register_driver(&n2_crypto_driver, &of_bus_type); if (!err) { err = of_register_driver(&n2_mau_driver, &of_bus_type); if (err) of_unregister_driver(&n2_crypto_driver); } return err; } static void __exit n2_exit(void) { of_unregister_driver(&n2_mau_driver); of_unregister_driver(&n2_crypto_driver); } module_init(n2_init); module_exit(n2_exit);