/* * linux/fs/f2fs/crypto.c * * Copied from linux/fs/ext4/crypto.c * * Copyright (C) 2015, Google, Inc. * Copyright (C) 2015, Motorola Mobility * * This contains encryption functions for f2fs * * Written by Michael Halcrow, 2014. * * Filename encryption additions * Uday Savagaonkar, 2014 * Encryption policy handling additions * Ildar Muslukhov, 2014 * Remove ext4_encrypted_zeroout(), * add f2fs_restore_and_release_control_page() * Jaegeuk Kim, 2015. * * This has not yet undergone a rigorous security audit. * * The usage of AES-XTS should conform to recommendations in NIST * Special Publication 800-38E and IEEE P1619/D16. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "f2fs.h" #include "xattr.h" /* Encryption added and removed here! (L: */ static unsigned int num_prealloc_crypto_pages = 32; static unsigned int num_prealloc_crypto_ctxs = 128; module_param(num_prealloc_crypto_pages, uint, 0444); MODULE_PARM_DESC(num_prealloc_crypto_pages, "Number of crypto pages to preallocate"); module_param(num_prealloc_crypto_ctxs, uint, 0444); MODULE_PARM_DESC(num_prealloc_crypto_ctxs, "Number of crypto contexts to preallocate"); static mempool_t *f2fs_bounce_page_pool; static LIST_HEAD(f2fs_free_crypto_ctxs); static DEFINE_SPINLOCK(f2fs_crypto_ctx_lock); static struct workqueue_struct *f2fs_read_workqueue; static DEFINE_MUTEX(crypto_init); static struct kmem_cache *f2fs_crypto_ctx_cachep; struct kmem_cache *f2fs_crypt_info_cachep; /** * f2fs_release_crypto_ctx() - Releases an encryption context * @ctx: The encryption context to release. * * If the encryption context was allocated from the pre-allocated pool, returns * it to that pool. Else, frees it. * * If there's a bounce page in the context, this frees that. */ void f2fs_release_crypto_ctx(struct f2fs_crypto_ctx *ctx) { unsigned long flags; if (ctx->flags & F2FS_WRITE_PATH_FL && ctx->w.bounce_page) { mempool_free(ctx->w.bounce_page, f2fs_bounce_page_pool); ctx->w.bounce_page = NULL; } ctx->w.control_page = NULL; if (ctx->flags & F2FS_CTX_REQUIRES_FREE_ENCRYPT_FL) { kmem_cache_free(f2fs_crypto_ctx_cachep, ctx); } else { spin_lock_irqsave(&f2fs_crypto_ctx_lock, flags); list_add(&ctx->free_list, &f2fs_free_crypto_ctxs); spin_unlock_irqrestore(&f2fs_crypto_ctx_lock, flags); } } /** * f2fs_get_crypto_ctx() - Gets an encryption context * @inode: The inode for which we are doing the crypto * * Allocates and initializes an encryption context. * * Return: An allocated and initialized encryption context on success; error * value or NULL otherwise. */ struct f2fs_crypto_ctx *f2fs_get_crypto_ctx(struct inode *inode) { struct f2fs_crypto_ctx *ctx = NULL; unsigned long flags; struct f2fs_crypt_info *ci = F2FS_I(inode)->i_crypt_info; if (ci == NULL) return ERR_PTR(-EACCES); /* * We first try getting the ctx from a free list because in * the common case the ctx will have an allocated and * initialized crypto tfm, so it's probably a worthwhile * optimization. For the bounce page, we first try getting it * from the kernel allocator because that's just about as fast * as getting it from a list and because a cache of free pages * should generally be a "last resort" option for a filesystem * to be able to do its job. */ spin_lock_irqsave(&f2fs_crypto_ctx_lock, flags); ctx = list_first_entry_or_null(&f2fs_free_crypto_ctxs, struct f2fs_crypto_ctx, free_list); if (ctx) list_del(&ctx->free_list); spin_unlock_irqrestore(&f2fs_crypto_ctx_lock, flags); if (!ctx) { ctx = kmem_cache_zalloc(f2fs_crypto_ctx_cachep, GFP_NOFS); if (!ctx) return ERR_PTR(-ENOMEM); ctx->flags |= F2FS_CTX_REQUIRES_FREE_ENCRYPT_FL; } else { ctx->flags &= ~F2FS_CTX_REQUIRES_FREE_ENCRYPT_FL; } ctx->flags &= ~F2FS_WRITE_PATH_FL; return ctx; } /* * Call f2fs_decrypt on every single page, reusing the encryption * context. */ static void completion_pages(struct work_struct *work) { struct f2fs_crypto_ctx *ctx = container_of(work, struct f2fs_crypto_ctx, r.work); struct bio *bio = ctx->r.bio; struct bio_vec *bv; int i; bio_for_each_segment_all(bv, bio, i) { struct page *page = bv->bv_page; int ret = f2fs_decrypt(ctx, page); if (ret) { WARN_ON_ONCE(1); SetPageError(page); } else SetPageUptodate(page); unlock_page(page); } f2fs_release_crypto_ctx(ctx); bio_put(bio); } void f2fs_end_io_crypto_work(struct f2fs_crypto_ctx *ctx, struct bio *bio) { INIT_WORK(&ctx->r.work, completion_pages); ctx->r.bio = bio; queue_work(f2fs_read_workqueue, &ctx->r.work); } static void f2fs_crypto_destroy(void) { struct f2fs_crypto_ctx *pos, *n; list_for_each_entry_safe(pos, n, &f2fs_free_crypto_ctxs, free_list) kmem_cache_free(f2fs_crypto_ctx_cachep, pos); INIT_LIST_HEAD(&f2fs_free_crypto_ctxs); if (f2fs_bounce_page_pool) mempool_destroy(f2fs_bounce_page_pool); f2fs_bounce_page_pool = NULL; } /** * f2fs_crypto_initialize() - Set up for f2fs encryption. * * We only call this when we start accessing encrypted files, since it * results in memory getting allocated that wouldn't otherwise be used. * * Return: Zero on success, non-zero otherwise. */ int f2fs_crypto_initialize(void) { int i, res = -ENOMEM; if (f2fs_bounce_page_pool) return 0; mutex_lock(&crypto_init); if (f2fs_bounce_page_pool) goto already_initialized; for (i = 0; i < num_prealloc_crypto_ctxs; i++) { struct f2fs_crypto_ctx *ctx; ctx = kmem_cache_zalloc(f2fs_crypto_ctx_cachep, GFP_KERNEL); if (!ctx) goto fail; list_add(&ctx->free_list, &f2fs_free_crypto_ctxs); } /* must be allocated at the last step to avoid race condition above */ f2fs_bounce_page_pool = mempool_create_page_pool(num_prealloc_crypto_pages, 0); if (!f2fs_bounce_page_pool) goto fail; already_initialized: mutex_unlock(&crypto_init); return 0; fail: f2fs_crypto_destroy(); mutex_unlock(&crypto_init); return res; } /** * f2fs_exit_crypto() - Shutdown the f2fs encryption system */ void f2fs_exit_crypto(void) { f2fs_crypto_destroy(); if (f2fs_read_workqueue) destroy_workqueue(f2fs_read_workqueue); if (f2fs_crypto_ctx_cachep) kmem_cache_destroy(f2fs_crypto_ctx_cachep); if (f2fs_crypt_info_cachep) kmem_cache_destroy(f2fs_crypt_info_cachep); } int __init f2fs_init_crypto(void) { int res = -ENOMEM; f2fs_read_workqueue = alloc_workqueue("f2fs_crypto", WQ_HIGHPRI, 0); if (!f2fs_read_workqueue) goto fail; f2fs_crypto_ctx_cachep = KMEM_CACHE(f2fs_crypto_ctx, SLAB_RECLAIM_ACCOUNT); if (!f2fs_crypto_ctx_cachep) goto fail; f2fs_crypt_info_cachep = KMEM_CACHE(f2fs_crypt_info, SLAB_RECLAIM_ACCOUNT); if (!f2fs_crypt_info_cachep) goto fail; return 0; fail: f2fs_exit_crypto(); return res; } void f2fs_restore_and_release_control_page(struct page **page) { struct f2fs_crypto_ctx *ctx; struct page *bounce_page; /* The bounce data pages are unmapped. */ if ((*page)->mapping) return; /* The bounce data page is unmapped. */ bounce_page = *page; ctx = (struct f2fs_crypto_ctx *)page_private(bounce_page); /* restore control page */ *page = ctx->w.control_page; f2fs_restore_control_page(bounce_page); } void f2fs_restore_control_page(struct page *data_page) { struct f2fs_crypto_ctx *ctx = (struct f2fs_crypto_ctx *)page_private(data_page); set_page_private(data_page, (unsigned long)NULL); ClearPagePrivate(data_page); unlock_page(data_page); f2fs_release_crypto_ctx(ctx); } /** * f2fs_crypt_complete() - The completion callback for page encryption * @req: The asynchronous encryption request context * @res: The result of the encryption operation */ static void f2fs_crypt_complete(struct crypto_async_request *req, int res) { struct f2fs_completion_result *ecr = req->data; if (res == -EINPROGRESS) return; ecr->res = res; complete(&ecr->completion); } typedef enum { F2FS_DECRYPT = 0, F2FS_ENCRYPT, } f2fs_direction_t; static int f2fs_page_crypto(struct f2fs_crypto_ctx *ctx, struct inode *inode, f2fs_direction_t rw, pgoff_t index, struct page *src_page, struct page *dest_page) { u8 xts_tweak[F2FS_XTS_TWEAK_SIZE]; struct ablkcipher_request *req = NULL; DECLARE_F2FS_COMPLETION_RESULT(ecr); struct scatterlist dst, src; struct f2fs_crypt_info *ci = F2FS_I(inode)->i_crypt_info; struct crypto_ablkcipher *tfm = ci->ci_ctfm; int res = 0; req = ablkcipher_request_alloc(tfm, GFP_NOFS); if (!req) { printk_ratelimited(KERN_ERR "%s: crypto_request_alloc() failed\n", __func__); return -ENOMEM; } ablkcipher_request_set_callback( req, CRYPTO_TFM_REQ_MAY_BACKLOG | CRYPTO_TFM_REQ_MAY_SLEEP, f2fs_crypt_complete, &ecr); BUILD_BUG_ON(F2FS_XTS_TWEAK_SIZE < sizeof(index)); memcpy(xts_tweak, &index, sizeof(index)); memset(&xts_tweak[sizeof(index)], 0, F2FS_XTS_TWEAK_SIZE - sizeof(index)); sg_init_table(&dst, 1); sg_set_page(&dst, dest_page, PAGE_CACHE_SIZE, 0); sg_init_table(&src, 1); sg_set_page(&src, src_page, PAGE_CACHE_SIZE, 0); ablkcipher_request_set_crypt(req, &src, &dst, PAGE_CACHE_SIZE, xts_tweak); if (rw == F2FS_DECRYPT) res = crypto_ablkcipher_decrypt(req); else res = crypto_ablkcipher_encrypt(req); if (res == -EINPROGRESS || res == -EBUSY) { BUG_ON(req->base.data != &ecr); wait_for_completion(&ecr.completion); res = ecr.res; } ablkcipher_request_free(req); if (res) { printk_ratelimited(KERN_ERR "%s: crypto_ablkcipher_encrypt() returned %d\n", __func__, res); return res; } return 0; } /** * f2fs_encrypt() - Encrypts a page * @inode: The inode for which the encryption should take place * @plaintext_page: The page to encrypt. Must be locked. * * Allocates a ciphertext page and encrypts plaintext_page into it using the ctx * encryption context. * * Called on the page write path. The caller must call * f2fs_restore_control_page() on the returned ciphertext page to * release the bounce buffer and the encryption context. * * Return: An allocated page with the encrypted content on success. Else, an * error value or NULL. */ struct page *f2fs_encrypt(struct inode *inode, struct page *plaintext_page) { struct f2fs_crypto_ctx *ctx; struct page *ciphertext_page = NULL; int err; BUG_ON(!PageLocked(plaintext_page)); ctx = f2fs_get_crypto_ctx(inode); if (IS_ERR(ctx)) return (struct page *)ctx; /* The encryption operation will require a bounce page. */ ciphertext_page = mempool_alloc(f2fs_bounce_page_pool, GFP_NOWAIT); if (!ciphertext_page) { err = -ENOMEM; goto err_out; } ctx->flags |= F2FS_WRITE_PATH_FL; ctx->w.bounce_page = ciphertext_page; ctx->w.control_page = plaintext_page; err = f2fs_page_crypto(ctx, inode, F2FS_ENCRYPT, plaintext_page->index, plaintext_page, ciphertext_page); if (err) goto err_out; SetPagePrivate(ciphertext_page); set_page_private(ciphertext_page, (unsigned long)ctx); lock_page(ciphertext_page); return ciphertext_page; err_out: f2fs_release_crypto_ctx(ctx); return ERR_PTR(err); } /** * f2fs_decrypt() - Decrypts a page in-place * @ctx: The encryption context. * @page: The page to decrypt. Must be locked. * * Decrypts page in-place using the ctx encryption context. * * Called from the read completion callback. * * Return: Zero on success, non-zero otherwise. */ int f2fs_decrypt(struct f2fs_crypto_ctx *ctx, struct page *page) { BUG_ON(!PageLocked(page)); return f2fs_page_crypto(ctx, page->mapping->host, F2FS_DECRYPT, page->index, page, page); } /* * Convenience function which takes care of allocating and * deallocating the encryption context */ int f2fs_decrypt_one(struct inode *inode, struct page *page) { struct f2fs_crypto_ctx *ctx = f2fs_get_crypto_ctx(inode); int ret; if (!ctx) return -ENOMEM; ret = f2fs_decrypt(ctx, page); f2fs_release_crypto_ctx(ctx); return ret; } bool f2fs_valid_contents_enc_mode(uint32_t mode) { return (mode == F2FS_ENCRYPTION_MODE_AES_256_XTS); } /** * f2fs_validate_encryption_key_size() - Validate the encryption key size * @mode: The key mode. * @size: The key size to validate. * * Return: The validated key size for @mode. Zero if invalid. */ uint32_t f2fs_validate_encryption_key_size(uint32_t mode, uint32_t size) { if (size == f2fs_encryption_key_size(mode)) return size; return 0; }