// SPDX-License-Identifier: GPL-2.0-only /* * VFIO core * * Copyright (C) 2012 Red Hat, Inc. All rights reserved. * Author: Alex Williamson * * Derived from original vfio: * Copyright 2010 Cisco Systems, Inc. All rights reserved. * Author: Tom Lyon, pugs@cisco.com */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "vfio.h" #define DRIVER_VERSION "0.3" #define DRIVER_AUTHOR "Alex Williamson " #define DRIVER_DESC "VFIO - User Level meta-driver" static struct vfio { struct class *class; struct list_head group_list; struct mutex group_lock; /* locks group_list */ struct ida group_ida; dev_t group_devt; struct class *device_class; struct ida device_ida; } vfio; static DEFINE_XARRAY(vfio_device_set_xa); static const struct file_operations vfio_group_fops; int vfio_assign_device_set(struct vfio_device *device, void *set_id) { unsigned long idx = (unsigned long)set_id; struct vfio_device_set *new_dev_set; struct vfio_device_set *dev_set; if (WARN_ON(!set_id)) return -EINVAL; /* * Atomically acquire a singleton object in the xarray for this set_id */ xa_lock(&vfio_device_set_xa); dev_set = xa_load(&vfio_device_set_xa, idx); if (dev_set) goto found_get_ref; xa_unlock(&vfio_device_set_xa); new_dev_set = kzalloc(sizeof(*new_dev_set), GFP_KERNEL); if (!new_dev_set) return -ENOMEM; mutex_init(&new_dev_set->lock); INIT_LIST_HEAD(&new_dev_set->device_list); new_dev_set->set_id = set_id; xa_lock(&vfio_device_set_xa); dev_set = __xa_cmpxchg(&vfio_device_set_xa, idx, NULL, new_dev_set, GFP_KERNEL); if (!dev_set) { dev_set = new_dev_set; goto found_get_ref; } kfree(new_dev_set); if (xa_is_err(dev_set)) { xa_unlock(&vfio_device_set_xa); return xa_err(dev_set); } found_get_ref: dev_set->device_count++; xa_unlock(&vfio_device_set_xa); mutex_lock(&dev_set->lock); device->dev_set = dev_set; list_add_tail(&device->dev_set_list, &dev_set->device_list); mutex_unlock(&dev_set->lock); return 0; } EXPORT_SYMBOL_GPL(vfio_assign_device_set); static void vfio_release_device_set(struct vfio_device *device) { struct vfio_device_set *dev_set = device->dev_set; if (!dev_set) return; mutex_lock(&dev_set->lock); list_del(&device->dev_set_list); mutex_unlock(&dev_set->lock); xa_lock(&vfio_device_set_xa); if (!--dev_set->device_count) { __xa_erase(&vfio_device_set_xa, (unsigned long)dev_set->set_id); mutex_destroy(&dev_set->lock); kfree(dev_set); } xa_unlock(&vfio_device_set_xa); } /* * Group objects - create, release, get, put, search */ static struct vfio_group * __vfio_group_get_from_iommu(struct iommu_group *iommu_group) { struct vfio_group *group; list_for_each_entry(group, &vfio.group_list, vfio_next) { if (group->iommu_group == iommu_group) { refcount_inc(&group->drivers); return group; } } return NULL; } static struct vfio_group * vfio_group_get_from_iommu(struct iommu_group *iommu_group) { struct vfio_group *group; mutex_lock(&vfio.group_lock); group = __vfio_group_get_from_iommu(iommu_group); mutex_unlock(&vfio.group_lock); return group; } static void vfio_group_release(struct device *dev) { struct vfio_group *group = container_of(dev, struct vfio_group, dev); mutex_destroy(&group->device_lock); mutex_destroy(&group->group_lock); iommu_group_put(group->iommu_group); ida_free(&vfio.group_ida, MINOR(group->dev.devt)); kfree(group); } static struct vfio_group *vfio_group_alloc(struct iommu_group *iommu_group, enum vfio_group_type type) { struct vfio_group *group; int minor; group = kzalloc(sizeof(*group), GFP_KERNEL); if (!group) return ERR_PTR(-ENOMEM); minor = ida_alloc_max(&vfio.group_ida, MINORMASK, GFP_KERNEL); if (minor < 0) { kfree(group); return ERR_PTR(minor); } device_initialize(&group->dev); group->dev.devt = MKDEV(MAJOR(vfio.group_devt), minor); group->dev.class = vfio.class; group->dev.release = vfio_group_release; cdev_init(&group->cdev, &vfio_group_fops); group->cdev.owner = THIS_MODULE; refcount_set(&group->drivers, 1); mutex_init(&group->group_lock); init_swait_queue_head(&group->opened_file_wait); INIT_LIST_HEAD(&group->device_list); mutex_init(&group->device_lock); group->iommu_group = iommu_group; /* put in vfio_group_release() */ iommu_group_ref_get(iommu_group); group->type = type; BLOCKING_INIT_NOTIFIER_HEAD(&group->notifier); return group; } static struct vfio_group *vfio_create_group(struct iommu_group *iommu_group, enum vfio_group_type type) { struct vfio_group *group; struct vfio_group *ret; int err; group = vfio_group_alloc(iommu_group, type); if (IS_ERR(group)) return group; err = dev_set_name(&group->dev, "%s%d", group->type == VFIO_NO_IOMMU ? "noiommu-" : "", iommu_group_id(iommu_group)); if (err) { ret = ERR_PTR(err); goto err_put; } mutex_lock(&vfio.group_lock); /* Did we race creating this group? */ ret = __vfio_group_get_from_iommu(iommu_group); if (ret) goto err_unlock; err = cdev_device_add(&group->cdev, &group->dev); if (err) { ret = ERR_PTR(err); goto err_unlock; } list_add(&group->vfio_next, &vfio.group_list); mutex_unlock(&vfio.group_lock); return group; err_unlock: mutex_unlock(&vfio.group_lock); err_put: put_device(&group->dev); return ret; } static void vfio_device_remove_group(struct vfio_device *device) { struct vfio_group *group = device->group; if (group->type == VFIO_NO_IOMMU || group->type == VFIO_EMULATED_IOMMU) iommu_group_remove_device(device->dev); /* Pairs with vfio_create_group() / vfio_group_get_from_iommu() */ if (!refcount_dec_and_mutex_lock(&group->drivers, &vfio.group_lock)) return; list_del(&group->vfio_next); /* * We could concurrently probe another driver in the group that might * race vfio_device_remove_group() with vfio_get_group(), so we have to * ensure that the sysfs is all cleaned up under lock otherwise the * cdev_device_add() will fail due to the name aready existing. */ cdev_device_del(&group->cdev, &group->dev); /* * Before we allow the last driver in the group to be unplugged the * group must be sanitized so nothing else is or can reference it. This * is because the group->iommu_group pointer should only be used so long * as a device driver is attached to a device in the group. */ while (group->opened_file) { mutex_unlock(&vfio.group_lock); swait_event_idle_exclusive(group->opened_file_wait, !group->opened_file); mutex_lock(&vfio.group_lock); } mutex_unlock(&vfio.group_lock); /* * These data structures all have paired operations that can only be * undone when the caller holds a live reference on the group. Since all * pairs must be undone these WARN_ON's indicate some caller did not * properly hold the group reference. */ WARN_ON(!list_empty(&group->device_list)); WARN_ON(group->container || group->container_users); WARN_ON(group->notifier.head); group->iommu_group = NULL; put_device(&group->dev); } /* * Device objects - create, release, get, put, search */ /* Device reference always implies a group reference */ static void vfio_device_put_registration(struct vfio_device *device) { if (refcount_dec_and_test(&device->refcount)) complete(&device->comp); } static bool vfio_device_try_get_registration(struct vfio_device *device) { return refcount_inc_not_zero(&device->refcount); } static struct vfio_device *vfio_group_get_device(struct vfio_group *group, struct device *dev) { struct vfio_device *device; mutex_lock(&group->device_lock); list_for_each_entry(device, &group->device_list, group_next) { if (device->dev == dev && vfio_device_try_get_registration(device)) { mutex_unlock(&group->device_lock); return device; } } mutex_unlock(&group->device_lock); return NULL; } /* * VFIO driver API */ /* Release helper called by vfio_put_device() */ static void vfio_device_release(struct device *dev) { struct vfio_device *device = container_of(dev, struct vfio_device, device); vfio_release_device_set(device); ida_free(&vfio.device_ida, device->index); /* * kvfree() cannot be done here due to a life cycle mess in * vfio-ccw. Before the ccw part is fixed all drivers are * required to support @release and call vfio_free_device() * from there. */ device->ops->release(device); } /* * Allocate and initialize vfio_device so it can be registered to vfio * core. * * Drivers should use the wrapper vfio_alloc_device() for allocation. * @size is the size of the structure to be allocated, including any * private data used by the driver. * * Driver may provide an @init callback to cover device private data. * * Use vfio_put_device() to release the structure after success return. */ struct vfio_device *_vfio_alloc_device(size_t size, struct device *dev, const struct vfio_device_ops *ops) { struct vfio_device *device; int ret; if (WARN_ON(size < sizeof(struct vfio_device))) return ERR_PTR(-EINVAL); device = kvzalloc(size, GFP_KERNEL); if (!device) return ERR_PTR(-ENOMEM); ret = vfio_init_device(device, dev, ops); if (ret) goto out_free; return device; out_free: kvfree(device); return ERR_PTR(ret); } EXPORT_SYMBOL_GPL(_vfio_alloc_device); /* * Initialize a vfio_device so it can be registered to vfio core. * * Only vfio-ccw driver should call this interface. */ int vfio_init_device(struct vfio_device *device, struct device *dev, const struct vfio_device_ops *ops) { int ret; ret = ida_alloc_max(&vfio.device_ida, MINORMASK, GFP_KERNEL); if (ret < 0) { dev_dbg(dev, "Error to alloc index\n"); return ret; } device->index = ret; init_completion(&device->comp); device->dev = dev; device->ops = ops; if (ops->init) { ret = ops->init(device); if (ret) goto out_uninit; } device_initialize(&device->device); device->device.release = vfio_device_release; device->device.class = vfio.device_class; device->device.parent = device->dev; return 0; out_uninit: vfio_release_device_set(device); ida_free(&vfio.device_ida, device->index); return ret; } EXPORT_SYMBOL_GPL(vfio_init_device); /* * The helper called by driver @release callback to free the device * structure. Drivers which don't have private data to clean can * simply use this helper as its @release. */ void vfio_free_device(struct vfio_device *device) { kvfree(device); } EXPORT_SYMBOL_GPL(vfio_free_device); static struct vfio_group *vfio_noiommu_group_alloc(struct device *dev, enum vfio_group_type type) { struct iommu_group *iommu_group; struct vfio_group *group; int ret; iommu_group = iommu_group_alloc(); if (IS_ERR(iommu_group)) return ERR_CAST(iommu_group); ret = iommu_group_set_name(iommu_group, "vfio-noiommu"); if (ret) goto out_put_group; ret = iommu_group_add_device(iommu_group, dev); if (ret) goto out_put_group; group = vfio_create_group(iommu_group, type); if (IS_ERR(group)) { ret = PTR_ERR(group); goto out_remove_device; } iommu_group_put(iommu_group); return group; out_remove_device: iommu_group_remove_device(dev); out_put_group: iommu_group_put(iommu_group); return ERR_PTR(ret); } static struct vfio_group *vfio_group_find_or_alloc(struct device *dev) { struct iommu_group *iommu_group; struct vfio_group *group; iommu_group = iommu_group_get(dev); if (!iommu_group && vfio_noiommu) { /* * With noiommu enabled, create an IOMMU group for devices that * don't already have one, implying no IOMMU hardware/driver * exists. Taint the kernel because we're about to give a DMA * capable device to a user without IOMMU protection. */ group = vfio_noiommu_group_alloc(dev, VFIO_NO_IOMMU); if (!IS_ERR(group)) { add_taint(TAINT_USER, LOCKDEP_STILL_OK); dev_warn(dev, "Adding kernel taint for vfio-noiommu group on device\n"); } return group; } if (!iommu_group) return ERR_PTR(-EINVAL); /* * VFIO always sets IOMMU_CACHE because we offer no way for userspace to * restore cache coherency. It has to be checked here because it is only * valid for cases where we are using iommu groups. */ if (!device_iommu_capable(dev, IOMMU_CAP_CACHE_COHERENCY)) { iommu_group_put(iommu_group); return ERR_PTR(-EINVAL); } group = vfio_group_get_from_iommu(iommu_group); if (!group) group = vfio_create_group(iommu_group, VFIO_IOMMU); /* The vfio_group holds a reference to the iommu_group */ iommu_group_put(iommu_group); return group; } static int __vfio_register_dev(struct vfio_device *device, struct vfio_group *group) { struct vfio_device *existing_device; int ret; /* * In all cases group is the output of one of the group allocation * functions and we have group->drivers incremented for us. */ if (IS_ERR(group)) return PTR_ERR(group); /* * If the driver doesn't specify a set then the device is added to a * singleton set just for itself. */ if (!device->dev_set) vfio_assign_device_set(device, device); existing_device = vfio_group_get_device(group, device->dev); if (existing_device) { dev_WARN(device->dev, "Device already exists on group %d\n", iommu_group_id(group->iommu_group)); vfio_device_put_registration(existing_device); ret = -EBUSY; goto err_out; } /* Our reference on group is moved to the device */ device->group = group; ret = dev_set_name(&device->device, "vfio%d", device->index); if (ret) goto err_out; ret = device_add(&device->device); if (ret) goto err_out; /* Refcounting can't start until the driver calls register */ refcount_set(&device->refcount, 1); mutex_lock(&group->device_lock); list_add(&device->group_next, &group->device_list); mutex_unlock(&group->device_lock); return 0; err_out: vfio_device_remove_group(device); return ret; } int vfio_register_group_dev(struct vfio_device *device) { return __vfio_register_dev(device, vfio_group_find_or_alloc(device->dev)); } EXPORT_SYMBOL_GPL(vfio_register_group_dev); /* * Register a virtual device without IOMMU backing. The user of this * device must not be able to directly trigger unmediated DMA. */ int vfio_register_emulated_iommu_dev(struct vfio_device *device) { return __vfio_register_dev(device, vfio_noiommu_group_alloc(device->dev, VFIO_EMULATED_IOMMU)); } EXPORT_SYMBOL_GPL(vfio_register_emulated_iommu_dev); static struct vfio_device *vfio_device_get_from_name(struct vfio_group *group, char *buf) { struct vfio_device *it, *device = ERR_PTR(-ENODEV); mutex_lock(&group->device_lock); list_for_each_entry(it, &group->device_list, group_next) { int ret; if (it->ops->match) { ret = it->ops->match(it, buf); if (ret < 0) { device = ERR_PTR(ret); break; } } else { ret = !strcmp(dev_name(it->dev), buf); } if (ret && vfio_device_try_get_registration(it)) { device = it; break; } } mutex_unlock(&group->device_lock); return device; } /* * Decrement the device reference count and wait for the device to be * removed. Open file descriptors for the device... */ void vfio_unregister_group_dev(struct vfio_device *device) { struct vfio_group *group = device->group; unsigned int i = 0; bool interrupted = false; long rc; vfio_device_put_registration(device); rc = try_wait_for_completion(&device->comp); while (rc <= 0) { if (device->ops->request) device->ops->request(device, i++); if (interrupted) { rc = wait_for_completion_timeout(&device->comp, HZ * 10); } else { rc = wait_for_completion_interruptible_timeout( &device->comp, HZ * 10); if (rc < 0) { interrupted = true; dev_warn(device->dev, "Device is currently in use, task" " \"%s\" (%d) " "blocked until device is released", current->comm, task_pid_nr(current)); } } } mutex_lock(&group->device_lock); list_del(&device->group_next); mutex_unlock(&group->device_lock); /* Balances device_add in register path */ device_del(&device->device); vfio_device_remove_group(device); } EXPORT_SYMBOL_GPL(vfio_unregister_group_dev); /* * VFIO Group fd, /dev/vfio/$GROUP */ /* * VFIO_GROUP_UNSET_CONTAINER should fail if there are other users or * if there was no container to unset. Since the ioctl is called on * the group, we know that still exists, therefore the only valid * transition here is 1->0. */ static int vfio_group_ioctl_unset_container(struct vfio_group *group) { int ret = 0; mutex_lock(&group->group_lock); if (!group->container) { ret = -EINVAL; goto out_unlock; } if (group->container_users != 1) { ret = -EBUSY; goto out_unlock; } vfio_group_detach_container(group); out_unlock: mutex_unlock(&group->group_lock); return ret; } static int vfio_group_ioctl_set_container(struct vfio_group *group, int __user *arg) { struct vfio_container *container; struct fd f; int ret; int fd; if (get_user(fd, arg)) return -EFAULT; f = fdget(fd); if (!f.file) return -EBADF; mutex_lock(&group->group_lock); if (group->container || WARN_ON(group->container_users)) { ret = -EINVAL; goto out_unlock; } container = vfio_container_from_file(f.file); ret = -EINVAL; if (container) { ret = vfio_container_attach_group(container, group); goto out_unlock; } out_unlock: mutex_unlock(&group->group_lock); fdput(f); return ret; } static const struct file_operations vfio_device_fops; /* true if the vfio_device has open_device() called but not close_device() */ bool vfio_assert_device_open(struct vfio_device *device) { return !WARN_ON_ONCE(!READ_ONCE(device->open_count)); } static struct file *vfio_device_open(struct vfio_device *device) { struct file *filep; int ret; mutex_lock(&device->group->group_lock); ret = vfio_device_assign_container(device); mutex_unlock(&device->group->group_lock); if (ret) return ERR_PTR(ret); if (!try_module_get(device->dev->driver->owner)) { ret = -ENODEV; goto err_unassign_container; } mutex_lock(&device->dev_set->lock); device->open_count++; if (device->open_count == 1) { /* * Here we pass the KVM pointer with the group under the read * lock. If the device driver will use it, it must obtain a * reference and release it during close_device. */ mutex_lock(&device->group->group_lock); device->kvm = device->group->kvm; if (device->ops->open_device) { ret = device->ops->open_device(device); if (ret) goto err_undo_count; } vfio_device_container_register(device); mutex_unlock(&device->group->group_lock); } mutex_unlock(&device->dev_set->lock); /* * We can't use anon_inode_getfd() because we need to modify * the f_mode flags directly to allow more than just ioctls */ filep = anon_inode_getfile("[vfio-device]", &vfio_device_fops, device, O_RDWR); if (IS_ERR(filep)) { ret = PTR_ERR(filep); goto err_close_device; } /* * TODO: add an anon_inode interface to do this. * Appears to be missing by lack of need rather than * explicitly prevented. Now there's need. */ filep->f_mode |= (FMODE_PREAD | FMODE_PWRITE); if (device->group->type == VFIO_NO_IOMMU) dev_warn(device->dev, "vfio-noiommu device opened by user " "(%s:%d)\n", current->comm, task_pid_nr(current)); /* * On success the ref of device is moved to the file and * put in vfio_device_fops_release() */ return filep; err_close_device: mutex_lock(&device->dev_set->lock); mutex_lock(&device->group->group_lock); if (device->open_count == 1 && device->ops->close_device) { device->ops->close_device(device); vfio_device_container_unregister(device); } err_undo_count: mutex_unlock(&device->group->group_lock); device->open_count--; if (device->open_count == 0 && device->kvm) device->kvm = NULL; mutex_unlock(&device->dev_set->lock); module_put(device->dev->driver->owner); err_unassign_container: vfio_device_unassign_container(device); return ERR_PTR(ret); } static int vfio_group_ioctl_get_device_fd(struct vfio_group *group, char __user *arg) { struct vfio_device *device; struct file *filep; char *buf; int fdno; int ret; buf = strndup_user(arg, PAGE_SIZE); if (IS_ERR(buf)) return PTR_ERR(buf); device = vfio_device_get_from_name(group, buf); kfree(buf); if (IS_ERR(device)) return PTR_ERR(device); fdno = get_unused_fd_flags(O_CLOEXEC); if (fdno < 0) { ret = fdno; goto err_put_device; } filep = vfio_device_open(device); if (IS_ERR(filep)) { ret = PTR_ERR(filep); goto err_put_fdno; } fd_install(fdno, filep); return fdno; err_put_fdno: put_unused_fd(fdno); err_put_device: vfio_device_put_registration(device); return ret; } static int vfio_group_ioctl_get_status(struct vfio_group *group, struct vfio_group_status __user *arg) { unsigned long minsz = offsetofend(struct vfio_group_status, flags); struct vfio_group_status status; if (copy_from_user(&status, arg, minsz)) return -EFAULT; if (status.argsz < minsz) return -EINVAL; status.flags = 0; mutex_lock(&group->group_lock); if (group->container) status.flags |= VFIO_GROUP_FLAGS_CONTAINER_SET | VFIO_GROUP_FLAGS_VIABLE; else if (!iommu_group_dma_owner_claimed(group->iommu_group)) status.flags |= VFIO_GROUP_FLAGS_VIABLE; mutex_unlock(&group->group_lock); if (copy_to_user(arg, &status, minsz)) return -EFAULT; return 0; } static long vfio_group_fops_unl_ioctl(struct file *filep, unsigned int cmd, unsigned long arg) { struct vfio_group *group = filep->private_data; void __user *uarg = (void __user *)arg; switch (cmd) { case VFIO_GROUP_GET_DEVICE_FD: return vfio_group_ioctl_get_device_fd(group, uarg); case VFIO_GROUP_GET_STATUS: return vfio_group_ioctl_get_status(group, uarg); case VFIO_GROUP_SET_CONTAINER: return vfio_group_ioctl_set_container(group, uarg); case VFIO_GROUP_UNSET_CONTAINER: return vfio_group_ioctl_unset_container(group); default: return -ENOTTY; } } static int vfio_group_fops_open(struct inode *inode, struct file *filep) { struct vfio_group *group = container_of(inode->i_cdev, struct vfio_group, cdev); int ret; mutex_lock(&group->group_lock); /* * drivers can be zero if this races with vfio_device_remove_group(), it * will be stable at 0 under the group rwsem */ if (refcount_read(&group->drivers) == 0) { ret = -ENODEV; goto out_unlock; } if (group->type == VFIO_NO_IOMMU && !capable(CAP_SYS_RAWIO)) { ret = -EPERM; goto out_unlock; } /* * Do we need multiple instances of the group open? Seems not. */ if (group->opened_file) { ret = -EBUSY; goto out_unlock; } group->opened_file = filep; filep->private_data = group; ret = 0; out_unlock: mutex_unlock(&group->group_lock); return ret; } static int vfio_group_fops_release(struct inode *inode, struct file *filep) { struct vfio_group *group = filep->private_data; filep->private_data = NULL; mutex_lock(&group->group_lock); /* * Device FDs hold a group file reference, therefore the group release * is only called when there are no open devices. */ WARN_ON(group->notifier.head); if (group->container) vfio_group_detach_container(group); group->opened_file = NULL; mutex_unlock(&group->group_lock); swake_up_one(&group->opened_file_wait); return 0; } static const struct file_operations vfio_group_fops = { .owner = THIS_MODULE, .unlocked_ioctl = vfio_group_fops_unl_ioctl, .compat_ioctl = compat_ptr_ioctl, .open = vfio_group_fops_open, .release = vfio_group_fops_release, }; /* * Wrapper around pm_runtime_resume_and_get(). * Return error code on failure or 0 on success. */ static inline int vfio_device_pm_runtime_get(struct vfio_device *device) { struct device *dev = device->dev; if (dev->driver && dev->driver->pm) { int ret; ret = pm_runtime_resume_and_get(dev); if (ret) { dev_info_ratelimited(dev, "vfio: runtime resume failed %d\n", ret); return -EIO; } } return 0; } /* * Wrapper around pm_runtime_put(). */ static inline void vfio_device_pm_runtime_put(struct vfio_device *device) { struct device *dev = device->dev; if (dev->driver && dev->driver->pm) pm_runtime_put(dev); } /* * VFIO Device fd */ static int vfio_device_fops_release(struct inode *inode, struct file *filep) { struct vfio_device *device = filep->private_data; mutex_lock(&device->dev_set->lock); vfio_assert_device_open(device); mutex_lock(&device->group->group_lock); if (device->open_count == 1 && device->ops->close_device) device->ops->close_device(device); vfio_device_container_unregister(device); mutex_unlock(&device->group->group_lock); device->open_count--; if (device->open_count == 0) device->kvm = NULL; mutex_unlock(&device->dev_set->lock); module_put(device->dev->driver->owner); vfio_device_unassign_container(device); vfio_device_put_registration(device); return 0; } /* * vfio_mig_get_next_state - Compute the next step in the FSM * @cur_fsm - The current state the device is in * @new_fsm - The target state to reach * @next_fsm - Pointer to the next step to get to new_fsm * * Return 0 upon success, otherwise -errno * Upon success the next step in the state progression between cur_fsm and * new_fsm will be set in next_fsm. * * This breaks down requests for combination transitions into smaller steps and * returns the next step to get to new_fsm. The function may need to be called * multiple times before reaching new_fsm. * */ int vfio_mig_get_next_state(struct vfio_device *device, enum vfio_device_mig_state cur_fsm, enum vfio_device_mig_state new_fsm, enum vfio_device_mig_state *next_fsm) { enum { VFIO_DEVICE_NUM_STATES = VFIO_DEVICE_STATE_RUNNING_P2P + 1 }; /* * The coding in this table requires the driver to implement the * following FSM arcs: * RESUMING -> STOP * STOP -> RESUMING * STOP -> STOP_COPY * STOP_COPY -> STOP * * If P2P is supported then the driver must also implement these FSM * arcs: * RUNNING -> RUNNING_P2P * RUNNING_P2P -> RUNNING * RUNNING_P2P -> STOP * STOP -> RUNNING_P2P * Without P2P the driver must implement: * RUNNING -> STOP * STOP -> RUNNING * * The coding will step through multiple states for some combination * transitions; if all optional features are supported, this means the * following ones: * RESUMING -> STOP -> RUNNING_P2P * RESUMING -> STOP -> RUNNING_P2P -> RUNNING * RESUMING -> STOP -> STOP_COPY * RUNNING -> RUNNING_P2P -> STOP * RUNNING -> RUNNING_P2P -> STOP -> RESUMING * RUNNING -> RUNNING_P2P -> STOP -> STOP_COPY * RUNNING_P2P -> STOP -> RESUMING * RUNNING_P2P -> STOP -> STOP_COPY * STOP -> RUNNING_P2P -> RUNNING * STOP_COPY -> STOP -> RESUMING * STOP_COPY -> STOP -> RUNNING_P2P * STOP_COPY -> STOP -> RUNNING_P2P -> RUNNING */ static const u8 vfio_from_fsm_table[VFIO_DEVICE_NUM_STATES][VFIO_DEVICE_NUM_STATES] = { [VFIO_DEVICE_STATE_STOP] = { [VFIO_DEVICE_STATE_STOP] = VFIO_DEVICE_STATE_STOP, [VFIO_DEVICE_STATE_RUNNING] = VFIO_DEVICE_STATE_RUNNING_P2P, [VFIO_DEVICE_STATE_STOP_COPY] = VFIO_DEVICE_STATE_STOP_COPY, [VFIO_DEVICE_STATE_RESUMING] = VFIO_DEVICE_STATE_RESUMING, [VFIO_DEVICE_STATE_RUNNING_P2P] = VFIO_DEVICE_STATE_RUNNING_P2P, [VFIO_DEVICE_STATE_ERROR] = VFIO_DEVICE_STATE_ERROR, }, [VFIO_DEVICE_STATE_RUNNING] = { [VFIO_DEVICE_STATE_STOP] = VFIO_DEVICE_STATE_RUNNING_P2P, [VFIO_DEVICE_STATE_RUNNING] = VFIO_DEVICE_STATE_RUNNING, [VFIO_DEVICE_STATE_STOP_COPY] = VFIO_DEVICE_STATE_RUNNING_P2P, [VFIO_DEVICE_STATE_RESUMING] = VFIO_DEVICE_STATE_RUNNING_P2P, [VFIO_DEVICE_STATE_RUNNING_P2P] = VFIO_DEVICE_STATE_RUNNING_P2P, [VFIO_DEVICE_STATE_ERROR] = VFIO_DEVICE_STATE_ERROR, }, [VFIO_DEVICE_STATE_STOP_COPY] = { [VFIO_DEVICE_STATE_STOP] = VFIO_DEVICE_STATE_STOP, [VFIO_DEVICE_STATE_RUNNING] = VFIO_DEVICE_STATE_STOP, [VFIO_DEVICE_STATE_STOP_COPY] = VFIO_DEVICE_STATE_STOP_COPY, [VFIO_DEVICE_STATE_RESUMING] = VFIO_DEVICE_STATE_STOP, [VFIO_DEVICE_STATE_RUNNING_P2P] = VFIO_DEVICE_STATE_STOP, [VFIO_DEVICE_STATE_ERROR] = VFIO_DEVICE_STATE_ERROR, }, [VFIO_DEVICE_STATE_RESUMING] = { [VFIO_DEVICE_STATE_STOP] = VFIO_DEVICE_STATE_STOP, [VFIO_DEVICE_STATE_RUNNING] = VFIO_DEVICE_STATE_STOP, [VFIO_DEVICE_STATE_STOP_COPY] = VFIO_DEVICE_STATE_STOP, [VFIO_DEVICE_STATE_RESUMING] = VFIO_DEVICE_STATE_RESUMING, [VFIO_DEVICE_STATE_RUNNING_P2P] = VFIO_DEVICE_STATE_STOP, [VFIO_DEVICE_STATE_ERROR] = VFIO_DEVICE_STATE_ERROR, }, [VFIO_DEVICE_STATE_RUNNING_P2P] = { [VFIO_DEVICE_STATE_STOP] = VFIO_DEVICE_STATE_STOP, [VFIO_DEVICE_STATE_RUNNING] = VFIO_DEVICE_STATE_RUNNING, [VFIO_DEVICE_STATE_STOP_COPY] = VFIO_DEVICE_STATE_STOP, [VFIO_DEVICE_STATE_RESUMING] = VFIO_DEVICE_STATE_STOP, [VFIO_DEVICE_STATE_RUNNING_P2P] = VFIO_DEVICE_STATE_RUNNING_P2P, [VFIO_DEVICE_STATE_ERROR] = VFIO_DEVICE_STATE_ERROR, }, [VFIO_DEVICE_STATE_ERROR] = { [VFIO_DEVICE_STATE_STOP] = VFIO_DEVICE_STATE_ERROR, [VFIO_DEVICE_STATE_RUNNING] = VFIO_DEVICE_STATE_ERROR, [VFIO_DEVICE_STATE_STOP_COPY] = VFIO_DEVICE_STATE_ERROR, [VFIO_DEVICE_STATE_RESUMING] = VFIO_DEVICE_STATE_ERROR, [VFIO_DEVICE_STATE_RUNNING_P2P] = VFIO_DEVICE_STATE_ERROR, [VFIO_DEVICE_STATE_ERROR] = VFIO_DEVICE_STATE_ERROR, }, }; static const unsigned int state_flags_table[VFIO_DEVICE_NUM_STATES] = { [VFIO_DEVICE_STATE_STOP] = VFIO_MIGRATION_STOP_COPY, [VFIO_DEVICE_STATE_RUNNING] = VFIO_MIGRATION_STOP_COPY, [VFIO_DEVICE_STATE_STOP_COPY] = VFIO_MIGRATION_STOP_COPY, [VFIO_DEVICE_STATE_RESUMING] = VFIO_MIGRATION_STOP_COPY, [VFIO_DEVICE_STATE_RUNNING_P2P] = VFIO_MIGRATION_STOP_COPY | VFIO_MIGRATION_P2P, [VFIO_DEVICE_STATE_ERROR] = ~0U, }; if (WARN_ON(cur_fsm >= ARRAY_SIZE(vfio_from_fsm_table) || (state_flags_table[cur_fsm] & device->migration_flags) != state_flags_table[cur_fsm])) return -EINVAL; if (new_fsm >= ARRAY_SIZE(vfio_from_fsm_table) || (state_flags_table[new_fsm] & device->migration_flags) != state_flags_table[new_fsm]) return -EINVAL; /* * Arcs touching optional and unsupported states are skipped over. The * driver will instead see an arc from the original state to the next * logical state, as per the above comment. */ *next_fsm = vfio_from_fsm_table[cur_fsm][new_fsm]; while ((state_flags_table[*next_fsm] & device->migration_flags) != state_flags_table[*next_fsm]) *next_fsm = vfio_from_fsm_table[*next_fsm][new_fsm]; return (*next_fsm != VFIO_DEVICE_STATE_ERROR) ? 0 : -EINVAL; } EXPORT_SYMBOL_GPL(vfio_mig_get_next_state); /* * Convert the drivers's struct file into a FD number and return it to userspace */ static int vfio_ioct_mig_return_fd(struct file *filp, void __user *arg, struct vfio_device_feature_mig_state *mig) { int ret; int fd; fd = get_unused_fd_flags(O_CLOEXEC); if (fd < 0) { ret = fd; goto out_fput; } mig->data_fd = fd; if (copy_to_user(arg, mig, sizeof(*mig))) { ret = -EFAULT; goto out_put_unused; } fd_install(fd, filp); return 0; out_put_unused: put_unused_fd(fd); out_fput: fput(filp); return ret; } static int vfio_ioctl_device_feature_mig_device_state(struct vfio_device *device, u32 flags, void __user *arg, size_t argsz) { size_t minsz = offsetofend(struct vfio_device_feature_mig_state, data_fd); struct vfio_device_feature_mig_state mig; struct file *filp = NULL; int ret; if (!device->mig_ops) return -ENOTTY; ret = vfio_check_feature(flags, argsz, VFIO_DEVICE_FEATURE_SET | VFIO_DEVICE_FEATURE_GET, sizeof(mig)); if (ret != 1) return ret; if (copy_from_user(&mig, arg, minsz)) return -EFAULT; if (flags & VFIO_DEVICE_FEATURE_GET) { enum vfio_device_mig_state curr_state; ret = device->mig_ops->migration_get_state(device, &curr_state); if (ret) return ret; mig.device_state = curr_state; goto out_copy; } /* Handle the VFIO_DEVICE_FEATURE_SET */ filp = device->mig_ops->migration_set_state(device, mig.device_state); if (IS_ERR(filp) || !filp) goto out_copy; return vfio_ioct_mig_return_fd(filp, arg, &mig); out_copy: mig.data_fd = -1; if (copy_to_user(arg, &mig, sizeof(mig))) return -EFAULT; if (IS_ERR(filp)) return PTR_ERR(filp); return 0; } static int vfio_ioctl_device_feature_migration(struct vfio_device *device, u32 flags, void __user *arg, size_t argsz) { struct vfio_device_feature_migration mig = { .flags = device->migration_flags, }; int ret; if (!device->mig_ops) return -ENOTTY; ret = vfio_check_feature(flags, argsz, VFIO_DEVICE_FEATURE_GET, sizeof(mig)); if (ret != 1) return ret; if (copy_to_user(arg, &mig, sizeof(mig))) return -EFAULT; return 0; } /* Ranges should fit into a single kernel page */ #define LOG_MAX_RANGES \ (PAGE_SIZE / sizeof(struct vfio_device_feature_dma_logging_range)) static int vfio_ioctl_device_feature_logging_start(struct vfio_device *device, u32 flags, void __user *arg, size_t argsz) { size_t minsz = offsetofend(struct vfio_device_feature_dma_logging_control, ranges); struct vfio_device_feature_dma_logging_range __user *ranges; struct vfio_device_feature_dma_logging_control control; struct vfio_device_feature_dma_logging_range range; struct rb_root_cached root = RB_ROOT_CACHED; struct interval_tree_node *nodes; u64 iova_end; u32 nnodes; int i, ret; if (!device->log_ops) return -ENOTTY; ret = vfio_check_feature(flags, argsz, VFIO_DEVICE_FEATURE_SET, sizeof(control)); if (ret != 1) return ret; if (copy_from_user(&control, arg, minsz)) return -EFAULT; nnodes = control.num_ranges; if (!nnodes) return -EINVAL; if (nnodes > LOG_MAX_RANGES) return -E2BIG; ranges = u64_to_user_ptr(control.ranges); nodes = kmalloc_array(nnodes, sizeof(struct interval_tree_node), GFP_KERNEL); if (!nodes) return -ENOMEM; for (i = 0; i < nnodes; i++) { if (copy_from_user(&range, &ranges[i], sizeof(range))) { ret = -EFAULT; goto end; } if (!IS_ALIGNED(range.iova, control.page_size) || !IS_ALIGNED(range.length, control.page_size)) { ret = -EINVAL; goto end; } if (check_add_overflow(range.iova, range.length, &iova_end) || iova_end > ULONG_MAX) { ret = -EOVERFLOW; goto end; } nodes[i].start = range.iova; nodes[i].last = range.iova + range.length - 1; if (interval_tree_iter_first(&root, nodes[i].start, nodes[i].last)) { /* Range overlapping */ ret = -EINVAL; goto end; } interval_tree_insert(nodes + i, &root); } ret = device->log_ops->log_start(device, &root, nnodes, &control.page_size); if (ret) goto end; if (copy_to_user(arg, &control, sizeof(control))) { ret = -EFAULT; device->log_ops->log_stop(device); } end: kfree(nodes); return ret; } static int vfio_ioctl_device_feature_logging_stop(struct vfio_device *device, u32 flags, void __user *arg, size_t argsz) { int ret; if (!device->log_ops) return -ENOTTY; ret = vfio_check_feature(flags, argsz, VFIO_DEVICE_FEATURE_SET, 0); if (ret != 1) return ret; return device->log_ops->log_stop(device); } static int vfio_device_log_read_and_clear(struct iova_bitmap *iter, unsigned long iova, size_t length, void *opaque) { struct vfio_device *device = opaque; return device->log_ops->log_read_and_clear(device, iova, length, iter); } static int vfio_ioctl_device_feature_logging_report(struct vfio_device *device, u32 flags, void __user *arg, size_t argsz) { size_t minsz = offsetofend(struct vfio_device_feature_dma_logging_report, bitmap); struct vfio_device_feature_dma_logging_report report; struct iova_bitmap *iter; u64 iova_end; int ret; if (!device->log_ops) return -ENOTTY; ret = vfio_check_feature(flags, argsz, VFIO_DEVICE_FEATURE_GET, sizeof(report)); if (ret != 1) return ret; if (copy_from_user(&report, arg, minsz)) return -EFAULT; if (report.page_size < SZ_4K || !is_power_of_2(report.page_size)) return -EINVAL; if (check_add_overflow(report.iova, report.length, &iova_end) || iova_end > ULONG_MAX) return -EOVERFLOW; iter = iova_bitmap_alloc(report.iova, report.length, report.page_size, u64_to_user_ptr(report.bitmap)); if (IS_ERR(iter)) return PTR_ERR(iter); ret = iova_bitmap_for_each(iter, device, vfio_device_log_read_and_clear); iova_bitmap_free(iter); return ret; } static int vfio_ioctl_device_feature(struct vfio_device *device, struct vfio_device_feature __user *arg) { size_t minsz = offsetofend(struct vfio_device_feature, flags); struct vfio_device_feature feature; if (copy_from_user(&feature, arg, minsz)) return -EFAULT; if (feature.argsz < minsz) return -EINVAL; /* Check unknown flags */ if (feature.flags & ~(VFIO_DEVICE_FEATURE_MASK | VFIO_DEVICE_FEATURE_SET | VFIO_DEVICE_FEATURE_GET | VFIO_DEVICE_FEATURE_PROBE)) return -EINVAL; /* GET & SET are mutually exclusive except with PROBE */ if (!(feature.flags & VFIO_DEVICE_FEATURE_PROBE) && (feature.flags & VFIO_DEVICE_FEATURE_SET) && (feature.flags & VFIO_DEVICE_FEATURE_GET)) return -EINVAL; switch (feature.flags & VFIO_DEVICE_FEATURE_MASK) { case VFIO_DEVICE_FEATURE_MIGRATION: return vfio_ioctl_device_feature_migration( device, feature.flags, arg->data, feature.argsz - minsz); case VFIO_DEVICE_FEATURE_MIG_DEVICE_STATE: return vfio_ioctl_device_feature_mig_device_state( device, feature.flags, arg->data, feature.argsz - minsz); case VFIO_DEVICE_FEATURE_DMA_LOGGING_START: return vfio_ioctl_device_feature_logging_start( device, feature.flags, arg->data, feature.argsz - minsz); case VFIO_DEVICE_FEATURE_DMA_LOGGING_STOP: return vfio_ioctl_device_feature_logging_stop( device, feature.flags, arg->data, feature.argsz - minsz); case VFIO_DEVICE_FEATURE_DMA_LOGGING_REPORT: return vfio_ioctl_device_feature_logging_report( device, feature.flags, arg->data, feature.argsz - minsz); default: if (unlikely(!device->ops->device_feature)) return -EINVAL; return device->ops->device_feature(device, feature.flags, arg->data, feature.argsz - minsz); } } static long vfio_device_fops_unl_ioctl(struct file *filep, unsigned int cmd, unsigned long arg) { struct vfio_device *device = filep->private_data; int ret; ret = vfio_device_pm_runtime_get(device); if (ret) return ret; switch (cmd) { case VFIO_DEVICE_FEATURE: ret = vfio_ioctl_device_feature(device, (void __user *)arg); break; default: if (unlikely(!device->ops->ioctl)) ret = -EINVAL; else ret = device->ops->ioctl(device, cmd, arg); break; } vfio_device_pm_runtime_put(device); return ret; } static ssize_t vfio_device_fops_read(struct file *filep, char __user *buf, size_t count, loff_t *ppos) { struct vfio_device *device = filep->private_data; if (unlikely(!device->ops->read)) return -EINVAL; return device->ops->read(device, buf, count, ppos); } static ssize_t vfio_device_fops_write(struct file *filep, const char __user *buf, size_t count, loff_t *ppos) { struct vfio_device *device = filep->private_data; if (unlikely(!device->ops->write)) return -EINVAL; return device->ops->write(device, buf, count, ppos); } static int vfio_device_fops_mmap(struct file *filep, struct vm_area_struct *vma) { struct vfio_device *device = filep->private_data; if (unlikely(!device->ops->mmap)) return -EINVAL; return device->ops->mmap(device, vma); } static const struct file_operations vfio_device_fops = { .owner = THIS_MODULE, .release = vfio_device_fops_release, .read = vfio_device_fops_read, .write = vfio_device_fops_write, .unlocked_ioctl = vfio_device_fops_unl_ioctl, .compat_ioctl = compat_ptr_ioctl, .mmap = vfio_device_fops_mmap, }; /** * vfio_file_iommu_group - Return the struct iommu_group for the vfio group file * @file: VFIO group file * * The returned iommu_group is valid as long as a ref is held on the file. * This function is deprecated, only the SPAPR path in kvm should call it. */ struct iommu_group *vfio_file_iommu_group(struct file *file) { struct vfio_group *group = file->private_data; if (!IS_ENABLED(CONFIG_SPAPR_TCE_IOMMU)) return NULL; if (!vfio_file_is_group(file)) return NULL; return group->iommu_group; } EXPORT_SYMBOL_GPL(vfio_file_iommu_group); /** * vfio_file_is_group - True if the file is usable with VFIO aPIS * @file: VFIO group file */ bool vfio_file_is_group(struct file *file) { return file->f_op == &vfio_group_fops; } EXPORT_SYMBOL_GPL(vfio_file_is_group); /** * vfio_file_enforced_coherent - True if the DMA associated with the VFIO file * is always CPU cache coherent * @file: VFIO group file * * Enforced coherency means that the IOMMU ignores things like the PCIe no-snoop * bit in DMA transactions. A return of false indicates that the user has * rights to access additional instructions such as wbinvd on x86. */ bool vfio_file_enforced_coherent(struct file *file) { struct vfio_group *group = file->private_data; bool ret; if (file->f_op != &vfio_group_fops) return true; mutex_lock(&group->group_lock); if (group->container) { ret = vfio_container_ioctl_check_extension(group->container, VFIO_DMA_CC_IOMMU); } else { /* * Since the coherency state is determined only once a container * is attached the user must do so before they can prove they * have permission. */ ret = true; } mutex_unlock(&group->group_lock); return ret; } EXPORT_SYMBOL_GPL(vfio_file_enforced_coherent); /** * vfio_file_set_kvm - Link a kvm with VFIO drivers * @file: VFIO group file * @kvm: KVM to link * * When a VFIO device is first opened the KVM will be available in * device->kvm if one was associated with the group. */ void vfio_file_set_kvm(struct file *file, struct kvm *kvm) { struct vfio_group *group = file->private_data; if (file->f_op != &vfio_group_fops) return; mutex_lock(&group->group_lock); group->kvm = kvm; mutex_unlock(&group->group_lock); } EXPORT_SYMBOL_GPL(vfio_file_set_kvm); /** * vfio_file_has_dev - True if the VFIO file is a handle for device * @file: VFIO file to check * @device: Device that must be part of the file * * Returns true if given file has permission to manipulate the given device. */ bool vfio_file_has_dev(struct file *file, struct vfio_device *device) { struct vfio_group *group = file->private_data; if (file->f_op != &vfio_group_fops) return false; return group == device->group; } EXPORT_SYMBOL_GPL(vfio_file_has_dev); /* * Sub-module support */ /* * Helper for managing a buffer of info chain capabilities, allocate or * reallocate a buffer with additional @size, filling in @id and @version * of the capability. A pointer to the new capability is returned. * * NB. The chain is based at the head of the buffer, so new entries are * added to the tail, vfio_info_cap_shift() should be called to fixup the * next offsets prior to copying to the user buffer. */ struct vfio_info_cap_header *vfio_info_cap_add(struct vfio_info_cap *caps, size_t size, u16 id, u16 version) { void *buf; struct vfio_info_cap_header *header, *tmp; buf = krealloc(caps->buf, caps->size + size, GFP_KERNEL); if (!buf) { kfree(caps->buf); caps->buf = NULL; caps->size = 0; return ERR_PTR(-ENOMEM); } caps->buf = buf; header = buf + caps->size; /* Eventually copied to user buffer, zero */ memset(header, 0, size); header->id = id; header->version = version; /* Add to the end of the capability chain */ for (tmp = buf; tmp->next; tmp = buf + tmp->next) ; /* nothing */ tmp->next = caps->size; caps->size += size; return header; } EXPORT_SYMBOL_GPL(vfio_info_cap_add); void vfio_info_cap_shift(struct vfio_info_cap *caps, size_t offset) { struct vfio_info_cap_header *tmp; void *buf = (void *)caps->buf; for (tmp = buf; tmp->next; tmp = buf + tmp->next - offset) tmp->next += offset; } EXPORT_SYMBOL(vfio_info_cap_shift); int vfio_info_add_capability(struct vfio_info_cap *caps, struct vfio_info_cap_header *cap, size_t size) { struct vfio_info_cap_header *header; header = vfio_info_cap_add(caps, size, cap->id, cap->version); if (IS_ERR(header)) return PTR_ERR(header); memcpy(header + 1, cap + 1, size - sizeof(*header)); return 0; } EXPORT_SYMBOL(vfio_info_add_capability); int vfio_set_irqs_validate_and_prepare(struct vfio_irq_set *hdr, int num_irqs, int max_irq_type, size_t *data_size) { unsigned long minsz; size_t size; minsz = offsetofend(struct vfio_irq_set, count); if ((hdr->argsz < minsz) || (hdr->index >= max_irq_type) || (hdr->count >= (U32_MAX - hdr->start)) || (hdr->flags & ~(VFIO_IRQ_SET_DATA_TYPE_MASK | VFIO_IRQ_SET_ACTION_TYPE_MASK))) return -EINVAL; if (data_size) *data_size = 0; if (hdr->start >= num_irqs || hdr->start + hdr->count > num_irqs) return -EINVAL; switch (hdr->flags & VFIO_IRQ_SET_DATA_TYPE_MASK) { case VFIO_IRQ_SET_DATA_NONE: size = 0; break; case VFIO_IRQ_SET_DATA_BOOL: size = sizeof(uint8_t); break; case VFIO_IRQ_SET_DATA_EVENTFD: size = sizeof(int32_t); break; default: return -EINVAL; } if (size) { if (hdr->argsz - minsz < hdr->count * size) return -EINVAL; if (!data_size) return -EINVAL; *data_size = hdr->count * size; } return 0; } EXPORT_SYMBOL(vfio_set_irqs_validate_and_prepare); /* * Module/class support */ static char *vfio_devnode(struct device *dev, umode_t *mode) { return kasprintf(GFP_KERNEL, "vfio/%s", dev_name(dev)); } static int __init vfio_init(void) { int ret; ida_init(&vfio.group_ida); ida_init(&vfio.device_ida); mutex_init(&vfio.group_lock); INIT_LIST_HEAD(&vfio.group_list); ret = vfio_container_init(); if (ret) return ret; /* /dev/vfio/$GROUP */ vfio.class = class_create(THIS_MODULE, "vfio"); if (IS_ERR(vfio.class)) { ret = PTR_ERR(vfio.class); goto err_group_class; } vfio.class->devnode = vfio_devnode; /* /sys/class/vfio-dev/vfioX */ vfio.device_class = class_create(THIS_MODULE, "vfio-dev"); if (IS_ERR(vfio.device_class)) { ret = PTR_ERR(vfio.device_class); goto err_dev_class; } ret = alloc_chrdev_region(&vfio.group_devt, 0, MINORMASK + 1, "vfio"); if (ret) goto err_alloc_chrdev; pr_info(DRIVER_DESC " version: " DRIVER_VERSION "\n"); return 0; err_alloc_chrdev: class_destroy(vfio.device_class); vfio.device_class = NULL; err_dev_class: class_destroy(vfio.class); vfio.class = NULL; err_group_class: vfio_container_cleanup(); return ret; } static void __exit vfio_cleanup(void) { WARN_ON(!list_empty(&vfio.group_list)); ida_destroy(&vfio.device_ida); ida_destroy(&vfio.group_ida); unregister_chrdev_region(vfio.group_devt, MINORMASK + 1); class_destroy(vfio.device_class); vfio.device_class = NULL; class_destroy(vfio.class); vfio_container_cleanup(); vfio.class = NULL; xa_destroy(&vfio_device_set_xa); } module_init(vfio_init); module_exit(vfio_cleanup); MODULE_VERSION(DRIVER_VERSION); MODULE_LICENSE("GPL v2"); MODULE_AUTHOR(DRIVER_AUTHOR); MODULE_DESCRIPTION(DRIVER_DESC); MODULE_ALIAS_MISCDEV(VFIO_MINOR); MODULE_ALIAS("devname:vfio/vfio"); MODULE_SOFTDEP("post: vfio_iommu_type1 vfio_iommu_spapr_tce");