#include #include "util.h" #include "../perf.h" #include "evlist.h" #include "evsel.h" #include "parse-options.h" #include "parse-events.h" #include "exec_cmd.h" #include "string.h" #include "symbol.h" #include "cache.h" #include "header.h" #include "debug.h" #include #include "parse-events-bison.h" #define YY_EXTRA_TYPE int #include "parse-events-flex.h" #include "pmu.h" #include "thread_map.h" #include "cpumap.h" #include "asm/bug.h" #define MAX_NAME_LEN 100 #ifdef PARSER_DEBUG extern int parse_events_debug; #endif int parse_events_parse(void *data, void *scanner); static struct perf_pmu_event_symbol *perf_pmu_events_list; /* * The variable indicates the number of supported pmu event symbols. * 0 means not initialized and ready to init * -1 means failed to init, don't try anymore * >0 is the number of supported pmu event symbols */ static int perf_pmu_events_list_num; struct event_symbol event_symbols_hw[PERF_COUNT_HW_MAX] = { [PERF_COUNT_HW_CPU_CYCLES] = { .symbol = "cpu-cycles", .alias = "cycles", }, [PERF_COUNT_HW_INSTRUCTIONS] = { .symbol = "instructions", .alias = "", }, [PERF_COUNT_HW_CACHE_REFERENCES] = { .symbol = "cache-references", .alias = "", }, [PERF_COUNT_HW_CACHE_MISSES] = { .symbol = "cache-misses", .alias = "", }, [PERF_COUNT_HW_BRANCH_INSTRUCTIONS] = { .symbol = "branch-instructions", .alias = "branches", }, [PERF_COUNT_HW_BRANCH_MISSES] = { .symbol = "branch-misses", .alias = "", }, [PERF_COUNT_HW_BUS_CYCLES] = { .symbol = "bus-cycles", .alias = "", }, [PERF_COUNT_HW_STALLED_CYCLES_FRONTEND] = { .symbol = "stalled-cycles-frontend", .alias = "idle-cycles-frontend", }, [PERF_COUNT_HW_STALLED_CYCLES_BACKEND] = { .symbol = "stalled-cycles-backend", .alias = "idle-cycles-backend", }, [PERF_COUNT_HW_REF_CPU_CYCLES] = { .symbol = "ref-cycles", .alias = "", }, }; struct event_symbol event_symbols_sw[PERF_COUNT_SW_MAX] = { [PERF_COUNT_SW_CPU_CLOCK] = { .symbol = "cpu-clock", .alias = "", }, [PERF_COUNT_SW_TASK_CLOCK] = { .symbol = "task-clock", .alias = "", }, [PERF_COUNT_SW_PAGE_FAULTS] = { .symbol = "page-faults", .alias = "faults", }, [PERF_COUNT_SW_CONTEXT_SWITCHES] = { .symbol = "context-switches", .alias = "cs", }, [PERF_COUNT_SW_CPU_MIGRATIONS] = { .symbol = "cpu-migrations", .alias = "migrations", }, [PERF_COUNT_SW_PAGE_FAULTS_MIN] = { .symbol = "minor-faults", .alias = "", }, [PERF_COUNT_SW_PAGE_FAULTS_MAJ] = { .symbol = "major-faults", .alias = "", }, [PERF_COUNT_SW_ALIGNMENT_FAULTS] = { .symbol = "alignment-faults", .alias = "", }, [PERF_COUNT_SW_EMULATION_FAULTS] = { .symbol = "emulation-faults", .alias = "", }, [PERF_COUNT_SW_DUMMY] = { .symbol = "dummy", .alias = "", }, }; #define __PERF_EVENT_FIELD(config, name) \ ((config & PERF_EVENT_##name##_MASK) >> PERF_EVENT_##name##_SHIFT) #define PERF_EVENT_RAW(config) __PERF_EVENT_FIELD(config, RAW) #define PERF_EVENT_CONFIG(config) __PERF_EVENT_FIELD(config, CONFIG) #define PERF_EVENT_TYPE(config) __PERF_EVENT_FIELD(config, TYPE) #define PERF_EVENT_ID(config) __PERF_EVENT_FIELD(config, EVENT) #define for_each_subsystem(sys_dir, sys_dirent, sys_next) \ while (!readdir_r(sys_dir, &sys_dirent, &sys_next) && sys_next) \ if (sys_dirent.d_type == DT_DIR && \ (strcmp(sys_dirent.d_name, ".")) && \ (strcmp(sys_dirent.d_name, ".."))) static int tp_event_has_id(struct dirent *sys_dir, struct dirent *evt_dir) { char evt_path[MAXPATHLEN]; int fd; snprintf(evt_path, MAXPATHLEN, "%s/%s/%s/id", tracing_events_path, sys_dir->d_name, evt_dir->d_name); fd = open(evt_path, O_RDONLY); if (fd < 0) return -EINVAL; close(fd); return 0; } #define for_each_event(sys_dirent, evt_dir, evt_dirent, evt_next) \ while (!readdir_r(evt_dir, &evt_dirent, &evt_next) && evt_next) \ if (evt_dirent.d_type == DT_DIR && \ (strcmp(evt_dirent.d_name, ".")) && \ (strcmp(evt_dirent.d_name, "..")) && \ (!tp_event_has_id(&sys_dirent, &evt_dirent))) #define MAX_EVENT_LENGTH 512 struct tracepoint_path *tracepoint_id_to_path(u64 config) { struct tracepoint_path *path = NULL; DIR *sys_dir, *evt_dir; struct dirent *sys_next, *evt_next, sys_dirent, evt_dirent; char id_buf[24]; int fd; u64 id; char evt_path[MAXPATHLEN]; char dir_path[MAXPATHLEN]; sys_dir = opendir(tracing_events_path); if (!sys_dir) return NULL; for_each_subsystem(sys_dir, sys_dirent, sys_next) { snprintf(dir_path, MAXPATHLEN, "%s/%s", tracing_events_path, sys_dirent.d_name); evt_dir = opendir(dir_path); if (!evt_dir) continue; for_each_event(sys_dirent, evt_dir, evt_dirent, evt_next) { snprintf(evt_path, MAXPATHLEN, "%s/%s/id", dir_path, evt_dirent.d_name); fd = open(evt_path, O_RDONLY); if (fd < 0) continue; if (read(fd, id_buf, sizeof(id_buf)) < 0) { close(fd); continue; } close(fd); id = atoll(id_buf); if (id == config) { closedir(evt_dir); closedir(sys_dir); path = zalloc(sizeof(*path)); path->system = malloc(MAX_EVENT_LENGTH); if (!path->system) { free(path); return NULL; } path->name = malloc(MAX_EVENT_LENGTH); if (!path->name) { zfree(&path->system); free(path); return NULL; } strncpy(path->system, sys_dirent.d_name, MAX_EVENT_LENGTH); strncpy(path->name, evt_dirent.d_name, MAX_EVENT_LENGTH); return path; } } closedir(evt_dir); } closedir(sys_dir); return NULL; } struct tracepoint_path *tracepoint_name_to_path(const char *name) { struct tracepoint_path *path = zalloc(sizeof(*path)); char *str = strchr(name, ':'); if (path == NULL || str == NULL) { free(path); return NULL; } path->system = strndup(name, str - name); path->name = strdup(str+1); if (path->system == NULL || path->name == NULL) { zfree(&path->system); zfree(&path->name); free(path); path = NULL; } return path; } const char *event_type(int type) { switch (type) { case PERF_TYPE_HARDWARE: return "hardware"; case PERF_TYPE_SOFTWARE: return "software"; case PERF_TYPE_TRACEPOINT: return "tracepoint"; case PERF_TYPE_HW_CACHE: return "hardware-cache"; default: break; } return "unknown"; } static struct perf_evsel * __add_event(struct list_head *list, int *idx, struct perf_event_attr *attr, char *name, struct cpu_map *cpus) { struct perf_evsel *evsel; event_attr_init(attr); evsel = perf_evsel__new_idx(attr, (*idx)++); if (!evsel) return NULL; if (cpus) evsel->cpus = cpu_map__get(cpus); if (name) evsel->name = strdup(name); list_add_tail(&evsel->node, list); return evsel; } static int add_event(struct list_head *list, int *idx, struct perf_event_attr *attr, char *name) { return __add_event(list, idx, attr, name, NULL) ? 0 : -ENOMEM; } static int parse_aliases(char *str, const char *names[][PERF_EVSEL__MAX_ALIASES], int size) { int i, j; int n, longest = -1; for (i = 0; i < size; i++) { for (j = 0; j < PERF_EVSEL__MAX_ALIASES && names[i][j]; j++) { n = strlen(names[i][j]); if (n > longest && !strncasecmp(str, names[i][j], n)) longest = n; } if (longest > 0) return i; } return -1; } int parse_events_add_cache(struct list_head *list, int *idx, char *type, char *op_result1, char *op_result2) { struct perf_event_attr attr; char name[MAX_NAME_LEN]; int cache_type = -1, cache_op = -1, cache_result = -1; char *op_result[2] = { op_result1, op_result2 }; int i, n; /* * No fallback - if we cannot get a clear cache type * then bail out: */ cache_type = parse_aliases(type, perf_evsel__hw_cache, PERF_COUNT_HW_CACHE_MAX); if (cache_type == -1) return -EINVAL; n = snprintf(name, MAX_NAME_LEN, "%s", type); for (i = 0; (i < 2) && (op_result[i]); i++) { char *str = op_result[i]; n += snprintf(name + n, MAX_NAME_LEN - n, "-%s", str); if (cache_op == -1) { cache_op = parse_aliases(str, perf_evsel__hw_cache_op, PERF_COUNT_HW_CACHE_OP_MAX); if (cache_op >= 0) { if (!perf_evsel__is_cache_op_valid(cache_type, cache_op)) return -EINVAL; continue; } } if (cache_result == -1) { cache_result = parse_aliases(str, perf_evsel__hw_cache_result, PERF_COUNT_HW_CACHE_RESULT_MAX); if (cache_result >= 0) continue; } } /* * Fall back to reads: */ if (cache_op == -1) cache_op = PERF_COUNT_HW_CACHE_OP_READ; /* * Fall back to accesses: */ if (cache_result == -1) cache_result = PERF_COUNT_HW_CACHE_RESULT_ACCESS; memset(&attr, 0, sizeof(attr)); attr.config = cache_type | (cache_op << 8) | (cache_result << 16); attr.type = PERF_TYPE_HW_CACHE; return add_event(list, idx, &attr, name); } static int add_tracepoint(struct list_head *list, int *idx, char *sys_name, char *evt_name) { struct perf_evsel *evsel; evsel = perf_evsel__newtp_idx(sys_name, evt_name, (*idx)++); if (!evsel) return -ENOMEM; list_add_tail(&evsel->node, list); return 0; } static int add_tracepoint_multi_event(struct list_head *list, int *idx, char *sys_name, char *evt_name) { char evt_path[MAXPATHLEN]; struct dirent *evt_ent; DIR *evt_dir; int ret = 0; snprintf(evt_path, MAXPATHLEN, "%s/%s", tracing_events_path, sys_name); evt_dir = opendir(evt_path); if (!evt_dir) { perror("Can't open event dir"); return -1; } while (!ret && (evt_ent = readdir(evt_dir))) { if (!strcmp(evt_ent->d_name, ".") || !strcmp(evt_ent->d_name, "..") || !strcmp(evt_ent->d_name, "enable") || !strcmp(evt_ent->d_name, "filter")) continue; if (!strglobmatch(evt_ent->d_name, evt_name)) continue; ret = add_tracepoint(list, idx, sys_name, evt_ent->d_name); } closedir(evt_dir); return ret; } static int add_tracepoint_event(struct list_head *list, int *idx, char *sys_name, char *evt_name) { return strpbrk(evt_name, "*?") ? add_tracepoint_multi_event(list, idx, sys_name, evt_name) : add_tracepoint(list, idx, sys_name, evt_name); } static int add_tracepoint_multi_sys(struct list_head *list, int *idx, char *sys_name, char *evt_name) { struct dirent *events_ent; DIR *events_dir; int ret = 0; events_dir = opendir(tracing_events_path); if (!events_dir) { perror("Can't open event dir"); return -1; } while (!ret && (events_ent = readdir(events_dir))) { if (!strcmp(events_ent->d_name, ".") || !strcmp(events_ent->d_name, "..") || !strcmp(events_ent->d_name, "enable") || !strcmp(events_ent->d_name, "header_event") || !strcmp(events_ent->d_name, "header_page")) continue; if (!strglobmatch(events_ent->d_name, sys_name)) continue; ret = add_tracepoint_event(list, idx, events_ent->d_name, evt_name); } closedir(events_dir); return ret; } int parse_events_add_tracepoint(struct list_head *list, int *idx, char *sys, char *event) { if (strpbrk(sys, "*?")) return add_tracepoint_multi_sys(list, idx, sys, event); else return add_tracepoint_event(list, idx, sys, event); } static int parse_breakpoint_type(const char *type, struct perf_event_attr *attr) { int i; for (i = 0; i < 3; i++) { if (!type || !type[i]) break; #define CHECK_SET_TYPE(bit) \ do { \ if (attr->bp_type & bit) \ return -EINVAL; \ else \ attr->bp_type |= bit; \ } while (0) switch (type[i]) { case 'r': CHECK_SET_TYPE(HW_BREAKPOINT_R); break; case 'w': CHECK_SET_TYPE(HW_BREAKPOINT_W); break; case 'x': CHECK_SET_TYPE(HW_BREAKPOINT_X); break; default: return -EINVAL; } } #undef CHECK_SET_TYPE if (!attr->bp_type) /* Default */ attr->bp_type = HW_BREAKPOINT_R | HW_BREAKPOINT_W; return 0; } int parse_events_add_breakpoint(struct list_head *list, int *idx, void *ptr, char *type, u64 len) { struct perf_event_attr attr; memset(&attr, 0, sizeof(attr)); attr.bp_addr = (unsigned long) ptr; if (parse_breakpoint_type(type, &attr)) return -EINVAL; /* Provide some defaults if len is not specified */ if (!len) { if (attr.bp_type == HW_BREAKPOINT_X) len = sizeof(long); else len = HW_BREAKPOINT_LEN_4; } attr.bp_len = len; attr.type = PERF_TYPE_BREAKPOINT; attr.sample_period = 1; return add_event(list, idx, &attr, NULL); } static int check_type_val(struct parse_events_term *term, struct parse_events_error *err, int type) { if (type == term->type_val) return 0; if (err) { err->idx = term->err_val; if (type == PARSE_EVENTS__TERM_TYPE_NUM) err->str = strdup("expected numeric value"); else err->str = strdup("expected string value"); } return -EINVAL; } static int config_term(struct perf_event_attr *attr, struct parse_events_term *term, struct parse_events_error *err) { #define CHECK_TYPE_VAL(type) \ do { \ if (check_type_val(term, err, PARSE_EVENTS__TERM_TYPE_ ## type)) \ return -EINVAL; \ } while (0) switch (term->type_term) { case PARSE_EVENTS__TERM_TYPE_USER: /* * Always succeed for sysfs terms, as we dont know * at this point what type they need to have. */ return 0; case PARSE_EVENTS__TERM_TYPE_CONFIG: CHECK_TYPE_VAL(NUM); attr->config = term->val.num; break; case PARSE_EVENTS__TERM_TYPE_CONFIG1: CHECK_TYPE_VAL(NUM); attr->config1 = term->val.num; break; case PARSE_EVENTS__TERM_TYPE_CONFIG2: CHECK_TYPE_VAL(NUM); attr->config2 = term->val.num; break; case PARSE_EVENTS__TERM_TYPE_SAMPLE_PERIOD: CHECK_TYPE_VAL(NUM); attr->sample_period = term->val.num; break; case PARSE_EVENTS__TERM_TYPE_BRANCH_SAMPLE_TYPE: /* * TODO uncomment when the field is available * attr->branch_sample_type = term->val.num; */ break; case PARSE_EVENTS__TERM_TYPE_NAME: CHECK_TYPE_VAL(STR); break; default: return -EINVAL; } return 0; #undef CHECK_TYPE_VAL } static int config_attr(struct perf_event_attr *attr, struct list_head *head, struct parse_events_error *err) { struct parse_events_term *term; list_for_each_entry(term, head, list) if (config_term(attr, term, err)) return -EINVAL; return 0; } int parse_events_add_numeric(struct parse_events_evlist *data, struct list_head *list, u32 type, u64 config, struct list_head *head_config) { struct perf_event_attr attr; memset(&attr, 0, sizeof(attr)); attr.type = type; attr.config = config; if (head_config && config_attr(&attr, head_config, data->error)) return -EINVAL; return add_event(list, &data->idx, &attr, NULL); } static int parse_events__is_name_term(struct parse_events_term *term) { return term->type_term == PARSE_EVENTS__TERM_TYPE_NAME; } static char *pmu_event_name(struct list_head *head_terms) { struct parse_events_term *term; list_for_each_entry(term, head_terms, list) if (parse_events__is_name_term(term)) return term->val.str; return NULL; } int parse_events_add_pmu(struct parse_events_evlist *data, struct list_head *list, char *name, struct list_head *head_config) { struct perf_event_attr attr; struct perf_pmu_info info; struct perf_pmu *pmu; struct perf_evsel *evsel; pmu = perf_pmu__find(name); if (!pmu) return -EINVAL; if (pmu->default_config) { memcpy(&attr, pmu->default_config, sizeof(struct perf_event_attr)); } else { memset(&attr, 0, sizeof(attr)); } if (!head_config) { attr.type = pmu->type; evsel = __add_event(list, &data->idx, &attr, NULL, pmu->cpus); return evsel ? 0 : -ENOMEM; } if (perf_pmu__check_alias(pmu, head_config, &info)) return -EINVAL; /* * Configure hardcoded terms first, no need to check * return value when called with fail == 0 ;) */ if (config_attr(&attr, head_config, data->error)) return -EINVAL; if (perf_pmu__config(pmu, &attr, head_config, data->error)) return -EINVAL; evsel = __add_event(list, &data->idx, &attr, pmu_event_name(head_config), pmu->cpus); if (evsel) { evsel->unit = info.unit; evsel->scale = info.scale; evsel->per_pkg = info.per_pkg; evsel->snapshot = info.snapshot; } return evsel ? 0 : -ENOMEM; } int parse_events__modifier_group(struct list_head *list, char *event_mod) { return parse_events__modifier_event(list, event_mod, true); } void parse_events__set_leader(char *name, struct list_head *list) { struct perf_evsel *leader; __perf_evlist__set_leader(list); leader = list_entry(list->next, struct perf_evsel, node); leader->group_name = name ? strdup(name) : NULL; } /* list_event is assumed to point to malloc'ed memory */ void parse_events_update_lists(struct list_head *list_event, struct list_head *list_all) { /* * Called for single event definition. Update the * 'all event' list, and reinit the 'single event' * list, for next event definition. */ list_splice_tail(list_event, list_all); free(list_event); } struct event_modifier { int eu; int ek; int eh; int eH; int eG; int eI; int precise; int exclude_GH; int sample_read; int pinned; }; static int get_event_modifier(struct event_modifier *mod, char *str, struct perf_evsel *evsel) { int eu = evsel ? evsel->attr.exclude_user : 0; int ek = evsel ? evsel->attr.exclude_kernel : 0; int eh = evsel ? evsel->attr.exclude_hv : 0; int eH = evsel ? evsel->attr.exclude_host : 0; int eG = evsel ? evsel->attr.exclude_guest : 0; int eI = evsel ? evsel->attr.exclude_idle : 0; int precise = evsel ? evsel->attr.precise_ip : 0; int sample_read = 0; int pinned = evsel ? evsel->attr.pinned : 0; int exclude = eu | ek | eh; int exclude_GH = evsel ? evsel->exclude_GH : 0; memset(mod, 0, sizeof(*mod)); while (*str) { if (*str == 'u') { if (!exclude) exclude = eu = ek = eh = 1; eu = 0; } else if (*str == 'k') { if (!exclude) exclude = eu = ek = eh = 1; ek = 0; } else if (*str == 'h') { if (!exclude) exclude = eu = ek = eh = 1; eh = 0; } else if (*str == 'G') { if (!exclude_GH) exclude_GH = eG = eH = 1; eG = 0; } else if (*str == 'H') { if (!exclude_GH) exclude_GH = eG = eH = 1; eH = 0; } else if (*str == 'I') { eI = 1; } else if (*str == 'p') { precise++; /* use of precise requires exclude_guest */ if (!exclude_GH) eG = 1; } else if (*str == 'S') { sample_read = 1; } else if (*str == 'D') { pinned = 1; } else break; ++str; } /* * precise ip: * * 0 - SAMPLE_IP can have arbitrary skid * 1 - SAMPLE_IP must have constant skid * 2 - SAMPLE_IP requested to have 0 skid * 3 - SAMPLE_IP must have 0 skid * * See also PERF_RECORD_MISC_EXACT_IP */ if (precise > 3) return -EINVAL; mod->eu = eu; mod->ek = ek; mod->eh = eh; mod->eH = eH; mod->eG = eG; mod->eI = eI; mod->precise = precise; mod->exclude_GH = exclude_GH; mod->sample_read = sample_read; mod->pinned = pinned; return 0; } /* * Basic modifier sanity check to validate it contains only one * instance of any modifier (apart from 'p') present. */ static int check_modifier(char *str) { char *p = str; /* The sizeof includes 0 byte as well. */ if (strlen(str) > (sizeof("ukhGHpppSDI") - 1)) return -1; while (*p) { if (*p != 'p' && strchr(p + 1, *p)) return -1; p++; } return 0; } int parse_events__modifier_event(struct list_head *list, char *str, bool add) { struct perf_evsel *evsel; struct event_modifier mod; if (str == NULL) return 0; if (check_modifier(str)) return -EINVAL; if (!add && get_event_modifier(&mod, str, NULL)) return -EINVAL; __evlist__for_each(list, evsel) { if (add && get_event_modifier(&mod, str, evsel)) return -EINVAL; evsel->attr.exclude_user = mod.eu; evsel->attr.exclude_kernel = mod.ek; evsel->attr.exclude_hv = mod.eh; evsel->attr.precise_ip = mod.precise; evsel->attr.exclude_host = mod.eH; evsel->attr.exclude_guest = mod.eG; evsel->attr.exclude_idle = mod.eI; evsel->exclude_GH = mod.exclude_GH; evsel->sample_read = mod.sample_read; if (perf_evsel__is_group_leader(evsel)) evsel->attr.pinned = mod.pinned; } return 0; } int parse_events_name(struct list_head *list, char *name) { struct perf_evsel *evsel; __evlist__for_each(list, evsel) { if (!evsel->name) evsel->name = strdup(name); } return 0; } static int comp_pmu(const void *p1, const void *p2) { struct perf_pmu_event_symbol *pmu1 = (struct perf_pmu_event_symbol *) p1; struct perf_pmu_event_symbol *pmu2 = (struct perf_pmu_event_symbol *) p2; return strcmp(pmu1->symbol, pmu2->symbol); } static void perf_pmu__parse_cleanup(void) { if (perf_pmu_events_list_num > 0) { struct perf_pmu_event_symbol *p; int i; for (i = 0; i < perf_pmu_events_list_num; i++) { p = perf_pmu_events_list + i; free(p->symbol); } free(perf_pmu_events_list); perf_pmu_events_list = NULL; perf_pmu_events_list_num = 0; } } #define SET_SYMBOL(str, stype) \ do { \ p->symbol = str; \ if (!p->symbol) \ goto err; \ p->type = stype; \ } while (0) /* * Read the pmu events list from sysfs * Save it into perf_pmu_events_list */ static void perf_pmu__parse_init(void) { struct perf_pmu *pmu = NULL; struct perf_pmu_alias *alias; int len = 0; pmu = perf_pmu__find("cpu"); if ((pmu == NULL) || list_empty(&pmu->aliases)) { perf_pmu_events_list_num = -1; return; } list_for_each_entry(alias, &pmu->aliases, list) { if (strchr(alias->name, '-')) len++; len++; } perf_pmu_events_list = malloc(sizeof(struct perf_pmu_event_symbol) * len); if (!perf_pmu_events_list) return; perf_pmu_events_list_num = len; len = 0; list_for_each_entry(alias, &pmu->aliases, list) { struct perf_pmu_event_symbol *p = perf_pmu_events_list + len; char *tmp = strchr(alias->name, '-'); if (tmp != NULL) { SET_SYMBOL(strndup(alias->name, tmp - alias->name), PMU_EVENT_SYMBOL_PREFIX); p++; SET_SYMBOL(strdup(++tmp), PMU_EVENT_SYMBOL_SUFFIX); len += 2; } else { SET_SYMBOL(strdup(alias->name), PMU_EVENT_SYMBOL); len++; } } qsort(perf_pmu_events_list, len, sizeof(struct perf_pmu_event_symbol), comp_pmu); return; err: perf_pmu__parse_cleanup(); } enum perf_pmu_event_symbol_type perf_pmu__parse_check(const char *name) { struct perf_pmu_event_symbol p, *r; /* scan kernel pmu events from sysfs if needed */ if (perf_pmu_events_list_num == 0) perf_pmu__parse_init(); /* * name "cpu" could be prefix of cpu-cycles or cpu// events. * cpu-cycles has been handled by hardcode. * So it must be cpu// events, not kernel pmu event. */ if ((perf_pmu_events_list_num <= 0) || !strcmp(name, "cpu")) return PMU_EVENT_SYMBOL_ERR; p.symbol = strdup(name); r = bsearch(&p, perf_pmu_events_list, (size_t) perf_pmu_events_list_num, sizeof(struct perf_pmu_event_symbol), comp_pmu); free(p.symbol); return r ? r->type : PMU_EVENT_SYMBOL_ERR; } static int parse_events__scanner(const char *str, void *data, int start_token) { YY_BUFFER_STATE buffer; void *scanner; int ret; ret = parse_events_lex_init_extra(start_token, &scanner); if (ret) return ret; buffer = parse_events__scan_string(str, scanner); #ifdef PARSER_DEBUG parse_events_debug = 1; #endif ret = parse_events_parse(data, scanner); parse_events__flush_buffer(buffer, scanner); parse_events__delete_buffer(buffer, scanner); parse_events_lex_destroy(scanner); return ret; } /* * parse event config string, return a list of event terms. */ int parse_events_terms(struct list_head *terms, const char *str) { struct parse_events_terms data = { .terms = NULL, }; int ret; ret = parse_events__scanner(str, &data, PE_START_TERMS); if (!ret) { list_splice(data.terms, terms); zfree(&data.terms); return 0; } if (data.terms) parse_events__free_terms(data.terms); return ret; } int parse_events(struct perf_evlist *evlist, const char *str, struct parse_events_error *err) { struct parse_events_evlist data = { .list = LIST_HEAD_INIT(data.list), .idx = evlist->nr_entries, .error = err, }; int ret; ret = parse_events__scanner(str, &data, PE_START_EVENTS); perf_pmu__parse_cleanup(); if (!ret) { int entries = data.idx - evlist->nr_entries; struct perf_evsel *last; perf_evlist__splice_list_tail(evlist, &data.list, entries); evlist->nr_groups += data.nr_groups; last = perf_evlist__last(evlist); last->cmdline_group_boundary = true; return 0; } /* * There are 2 users - builtin-record and builtin-test objects. * Both call perf_evlist__delete in case of error, so we dont * need to bother. */ return ret; } #define MAX_WIDTH 1000 static int get_term_width(void) { struct winsize ws; get_term_dimensions(&ws); return ws.ws_col > MAX_WIDTH ? MAX_WIDTH : ws.ws_col; } static void parse_events_print_error(struct parse_events_error *err, const char *event) { const char *str = "invalid or unsupported event: "; char _buf[MAX_WIDTH]; char *buf = (char *) event; int idx = 0; if (err->str) { /* -2 for extra '' in the final fprintf */ int width = get_term_width() - 2; int len_event = strlen(event); int len_str, max_len, cut = 0; /* * Maximum error index indent, we will cut * the event string if it's bigger. */ int max_err_idx = 10; /* * Let's be specific with the message when * we have the precise error. */ str = "event syntax error: "; len_str = strlen(str); max_len = width - len_str; buf = _buf; /* We're cutting from the beggining. */ if (err->idx > max_err_idx) cut = err->idx - max_err_idx; strncpy(buf, event + cut, max_len); /* Mark cut parts with '..' on both sides. */ if (cut) buf[0] = buf[1] = '.'; if ((len_event - cut) > max_len) { buf[max_len - 1] = buf[max_len - 2] = '.'; buf[max_len] = 0; } idx = len_str + err->idx - cut; } fprintf(stderr, "%s'%s'\n", str, buf); if (idx) { fprintf(stderr, "%*s\\___ %s\n", idx + 1, "", err->str); if (err->help) fprintf(stderr, "\n%s\n", err->help); free(err->str); free(err->help); } fprintf(stderr, "Run 'perf list' for a list of valid events\n"); } #undef MAX_WIDTH int parse_events_option(const struct option *opt, const char *str, int unset __maybe_unused) { struct perf_evlist *evlist = *(struct perf_evlist **)opt->value; struct parse_events_error err = { .idx = 0, }; int ret = parse_events(evlist, str, &err); if (ret) parse_events_print_error(&err, str); return ret; } static int foreach_evsel_in_last_glob(struct perf_evlist *evlist, int (*func)(struct perf_evsel *evsel, const void *arg), const void *arg) { struct perf_evsel *last = NULL; int err; if (evlist->nr_entries > 0) last = perf_evlist__last(evlist); do { err = (*func)(last, arg); if (err) return -1; if (!last) return 0; if (last->node.prev == &evlist->entries) return 0; last = list_entry(last->node.prev, struct perf_evsel, node); } while (!last->cmdline_group_boundary); return 0; } static int set_filter(struct perf_evsel *evsel, const void *arg) { const char *str = arg; if (evsel == NULL || evsel->attr.type != PERF_TYPE_TRACEPOINT) { fprintf(stderr, "--filter option should follow a -e tracepoint option\n"); return -1; } if (perf_evsel__append_filter(evsel, "&&", str) < 0) { fprintf(stderr, "not enough memory to hold filter string\n"); return -1; } return 0; } int parse_filter(const struct option *opt, const char *str, int unset __maybe_unused) { struct perf_evlist *evlist = *(struct perf_evlist **)opt->value; return foreach_evsel_in_last_glob(evlist, set_filter, (const void *)str); } static int add_exclude_perf_filter(struct perf_evsel *evsel, const void *arg __maybe_unused) { char new_filter[64]; if (evsel == NULL || evsel->attr.type != PERF_TYPE_TRACEPOINT) { fprintf(stderr, "--exclude-perf option should follow a -e tracepoint option\n"); return -1; } snprintf(new_filter, sizeof(new_filter), "common_pid != %d", getpid()); if (perf_evsel__append_filter(evsel, "&&", new_filter) < 0) { fprintf(stderr, "not enough memory to hold filter string\n"); return -1; } return 0; } int exclude_perf(const struct option *opt, const char *arg __maybe_unused, int unset __maybe_unused) { struct perf_evlist *evlist = *(struct perf_evlist **)opt->value; return foreach_evsel_in_last_glob(evlist, add_exclude_perf_filter, NULL); } static const char * const event_type_descriptors[] = { "Hardware event", "Software event", "Tracepoint event", "Hardware cache event", "Raw hardware event descriptor", "Hardware breakpoint", }; static int cmp_string(const void *a, const void *b) { const char * const *as = a; const char * const *bs = b; return strcmp(*as, *bs); } /* * Print the events from /tracing/events */ void print_tracepoint_events(const char *subsys_glob, const char *event_glob, bool name_only) { DIR *sys_dir, *evt_dir; struct dirent *sys_next, *evt_next, sys_dirent, evt_dirent; char evt_path[MAXPATHLEN]; char dir_path[MAXPATHLEN]; char **evt_list = NULL; unsigned int evt_i = 0, evt_num = 0; bool evt_num_known = false; restart: sys_dir = opendir(tracing_events_path); if (!sys_dir) return; if (evt_num_known) { evt_list = zalloc(sizeof(char *) * evt_num); if (!evt_list) goto out_close_sys_dir; } for_each_subsystem(sys_dir, sys_dirent, sys_next) { if (subsys_glob != NULL && !strglobmatch(sys_dirent.d_name, subsys_glob)) continue; snprintf(dir_path, MAXPATHLEN, "%s/%s", tracing_events_path, sys_dirent.d_name); evt_dir = opendir(dir_path); if (!evt_dir) continue; for_each_event(sys_dirent, evt_dir, evt_dirent, evt_next) { if (event_glob != NULL && !strglobmatch(evt_dirent.d_name, event_glob)) continue; if (!evt_num_known) { evt_num++; continue; } snprintf(evt_path, MAXPATHLEN, "%s:%s", sys_dirent.d_name, evt_dirent.d_name); evt_list[evt_i] = strdup(evt_path); if (evt_list[evt_i] == NULL) goto out_close_evt_dir; evt_i++; } closedir(evt_dir); } closedir(sys_dir); if (!evt_num_known) { evt_num_known = true; goto restart; } qsort(evt_list, evt_num, sizeof(char *), cmp_string); evt_i = 0; while (evt_i < evt_num) { if (name_only) { printf("%s ", evt_list[evt_i++]); continue; } printf(" %-50s [%s]\n", evt_list[evt_i++], event_type_descriptors[PERF_TYPE_TRACEPOINT]); } if (evt_num) printf("\n"); out_free: evt_num = evt_i; for (evt_i = 0; evt_i < evt_num; evt_i++) zfree(&evt_list[evt_i]); zfree(&evt_list); return; out_close_evt_dir: closedir(evt_dir); out_close_sys_dir: closedir(sys_dir); printf("FATAL: not enough memory to print %s\n", event_type_descriptors[PERF_TYPE_TRACEPOINT]); if (evt_list) goto out_free; } /* * Check whether event is in /tracing/events */ int is_valid_tracepoint(const char *event_string) { DIR *sys_dir, *evt_dir; struct dirent *sys_next, *evt_next, sys_dirent, evt_dirent; char evt_path[MAXPATHLEN]; char dir_path[MAXPATHLEN]; sys_dir = opendir(tracing_events_path); if (!sys_dir) return 0; for_each_subsystem(sys_dir, sys_dirent, sys_next) { snprintf(dir_path, MAXPATHLEN, "%s/%s", tracing_events_path, sys_dirent.d_name); evt_dir = opendir(dir_path); if (!evt_dir) continue; for_each_event(sys_dirent, evt_dir, evt_dirent, evt_next) { snprintf(evt_path, MAXPATHLEN, "%s:%s", sys_dirent.d_name, evt_dirent.d_name); if (!strcmp(evt_path, event_string)) { closedir(evt_dir); closedir(sys_dir); return 1; } } closedir(evt_dir); } closedir(sys_dir); return 0; } static bool is_event_supported(u8 type, unsigned config) { bool ret = true; int open_return; struct perf_evsel *evsel; struct perf_event_attr attr = { .type = type, .config = config, .disabled = 1, }; struct { struct thread_map map; int threads[1]; } tmap = { .map.nr = 1, .threads = { 0 }, }; evsel = perf_evsel__new(&attr); if (evsel) { open_return = perf_evsel__open(evsel, NULL, &tmap.map); ret = open_return >= 0; if (open_return == -EACCES) { /* * This happens if the paranoid value * /proc/sys/kernel/perf_event_paranoid is set to 2 * Re-run with exclude_kernel set; we don't do that * by default as some ARM machines do not support it. * */ evsel->attr.exclude_kernel = 1; ret = perf_evsel__open(evsel, NULL, &tmap.map) >= 0; } perf_evsel__delete(evsel); } return ret; } int print_hwcache_events(const char *event_glob, bool name_only) { unsigned int type, op, i, evt_i = 0, evt_num = 0; char name[64]; char **evt_list = NULL; bool evt_num_known = false; restart: if (evt_num_known) { evt_list = zalloc(sizeof(char *) * evt_num); if (!evt_list) goto out_enomem; } for (type = 0; type < PERF_COUNT_HW_CACHE_MAX; type++) { for (op = 0; op < PERF_COUNT_HW_CACHE_OP_MAX; op++) { /* skip invalid cache type */ if (!perf_evsel__is_cache_op_valid(type, op)) continue; for (i = 0; i < PERF_COUNT_HW_CACHE_RESULT_MAX; i++) { __perf_evsel__hw_cache_type_op_res_name(type, op, i, name, sizeof(name)); if (event_glob != NULL && !strglobmatch(name, event_glob)) continue; if (!is_event_supported(PERF_TYPE_HW_CACHE, type | (op << 8) | (i << 16))) continue; if (!evt_num_known) { evt_num++; continue; } evt_list[evt_i] = strdup(name); if (evt_list[evt_i] == NULL) goto out_enomem; evt_i++; } } } if (!evt_num_known) { evt_num_known = true; goto restart; } qsort(evt_list, evt_num, sizeof(char *), cmp_string); evt_i = 0; while (evt_i < evt_num) { if (name_only) { printf("%s ", evt_list[evt_i++]); continue; } printf(" %-50s [%s]\n", evt_list[evt_i++], event_type_descriptors[PERF_TYPE_HW_CACHE]); } if (evt_num) printf("\n"); out_free: evt_num = evt_i; for (evt_i = 0; evt_i < evt_num; evt_i++) zfree(&evt_list[evt_i]); zfree(&evt_list); return evt_num; out_enomem: printf("FATAL: not enough memory to print %s\n", event_type_descriptors[PERF_TYPE_HW_CACHE]); if (evt_list) goto out_free; return evt_num; } void print_symbol_events(const char *event_glob, unsigned type, struct event_symbol *syms, unsigned max, bool name_only) { unsigned int i, evt_i = 0, evt_num = 0; char name[MAX_NAME_LEN]; char **evt_list = NULL; bool evt_num_known = false; restart: if (evt_num_known) { evt_list = zalloc(sizeof(char *) * evt_num); if (!evt_list) goto out_enomem; syms -= max; } for (i = 0; i < max; i++, syms++) { if (event_glob != NULL && !(strglobmatch(syms->symbol, event_glob) || (syms->alias && strglobmatch(syms->alias, event_glob)))) continue; if (!is_event_supported(type, i)) continue; if (!evt_num_known) { evt_num++; continue; } if (!name_only && strlen(syms->alias)) snprintf(name, MAX_NAME_LEN, "%s OR %s", syms->symbol, syms->alias); else strncpy(name, syms->symbol, MAX_NAME_LEN); evt_list[evt_i] = strdup(name); if (evt_list[evt_i] == NULL) goto out_enomem; evt_i++; } if (!evt_num_known) { evt_num_known = true; goto restart; } qsort(evt_list, evt_num, sizeof(char *), cmp_string); evt_i = 0; while (evt_i < evt_num) { if (name_only) { printf("%s ", evt_list[evt_i++]); continue; } printf(" %-50s [%s]\n", evt_list[evt_i++], event_type_descriptors[type]); } if (evt_num) printf("\n"); out_free: evt_num = evt_i; for (evt_i = 0; evt_i < evt_num; evt_i++) zfree(&evt_list[evt_i]); zfree(&evt_list); return; out_enomem: printf("FATAL: not enough memory to print %s\n", event_type_descriptors[type]); if (evt_list) goto out_free; } /* * Print the help text for the event symbols: */ void print_events(const char *event_glob, bool name_only) { print_symbol_events(event_glob, PERF_TYPE_HARDWARE, event_symbols_hw, PERF_COUNT_HW_MAX, name_only); print_symbol_events(event_glob, PERF_TYPE_SOFTWARE, event_symbols_sw, PERF_COUNT_SW_MAX, name_only); print_hwcache_events(event_glob, name_only); print_pmu_events(event_glob, name_only); if (event_glob != NULL) return; if (!name_only) { printf(" %-50s [%s]\n", "rNNN", event_type_descriptors[PERF_TYPE_RAW]); printf(" %-50s [%s]\n", "cpu/t1=v1[,t2=v2,t3 ...]/modifier", event_type_descriptors[PERF_TYPE_RAW]); printf(" (see 'man perf-list' on how to encode it)\n"); printf("\n"); printf(" %-50s [%s]\n", "mem:[/len][:access]", event_type_descriptors[PERF_TYPE_BREAKPOINT]); printf("\n"); } print_tracepoint_events(NULL, NULL, name_only); } int parse_events__is_hardcoded_term(struct parse_events_term *term) { return term->type_term != PARSE_EVENTS__TERM_TYPE_USER; } static int new_term(struct parse_events_term **_term, int type_val, int type_term, char *config, char *str, u64 num, int err_term, int err_val) { struct parse_events_term *term; term = zalloc(sizeof(*term)); if (!term) return -ENOMEM; INIT_LIST_HEAD(&term->list); term->type_val = type_val; term->type_term = type_term; term->config = config; term->err_term = err_term; term->err_val = err_val; switch (type_val) { case PARSE_EVENTS__TERM_TYPE_NUM: term->val.num = num; break; case PARSE_EVENTS__TERM_TYPE_STR: term->val.str = str; break; default: free(term); return -EINVAL; } *_term = term; return 0; } int parse_events_term__num(struct parse_events_term **term, int type_term, char *config, u64 num, void *loc_term_, void *loc_val_) { YYLTYPE *loc_term = loc_term_; YYLTYPE *loc_val = loc_val_; return new_term(term, PARSE_EVENTS__TERM_TYPE_NUM, type_term, config, NULL, num, loc_term ? loc_term->first_column : 0, loc_val ? loc_val->first_column : 0); } int parse_events_term__str(struct parse_events_term **term, int type_term, char *config, char *str, void *loc_term_, void *loc_val_) { YYLTYPE *loc_term = loc_term_; YYLTYPE *loc_val = loc_val_; return new_term(term, PARSE_EVENTS__TERM_TYPE_STR, type_term, config, str, 0, loc_term ? loc_term->first_column : 0, loc_val ? loc_val->first_column : 0); } int parse_events_term__sym_hw(struct parse_events_term **term, char *config, unsigned idx) { struct event_symbol *sym; BUG_ON(idx >= PERF_COUNT_HW_MAX); sym = &event_symbols_hw[idx]; if (config) return new_term(term, PARSE_EVENTS__TERM_TYPE_STR, PARSE_EVENTS__TERM_TYPE_USER, config, (char *) sym->symbol, 0, 0, 0); else return new_term(term, PARSE_EVENTS__TERM_TYPE_STR, PARSE_EVENTS__TERM_TYPE_USER, (char *) "event", (char *) sym->symbol, 0, 0, 0); } int parse_events_term__clone(struct parse_events_term **new, struct parse_events_term *term) { return new_term(new, term->type_val, term->type_term, term->config, term->val.str, term->val.num, term->err_term, term->err_val); } void parse_events__free_terms(struct list_head *terms) { struct parse_events_term *term, *h; list_for_each_entry_safe(term, h, terms, list) free(term); } void parse_events_evlist_error(struct parse_events_evlist *data, int idx, const char *str) { struct parse_events_error *err = data->error; if (!err) return; err->idx = idx; err->str = strdup(str); WARN_ONCE(!err->str, "WARNING: failed to allocate error string"); }