// SPDX-License-Identifier: GPL-2.0 #include "bcachefs.h" #include "alloc_foreground.h" #include "bkey_methods.h" #include "btree_cache.h" #include "btree_gc.h" #include "btree_update.h" #include "btree_update_interior.h" #include "btree_io.h" #include "btree_iter.h" #include "btree_locking.h" #include "buckets.h" #include "extents.h" #include "journal.h" #include "journal_reclaim.h" #include "keylist.h" #include "replicas.h" #include "super-io.h" #include "trace.h" #include static void btree_node_will_make_reachable(struct btree_update *, struct btree *); static void btree_update_drop_new_node(struct bch_fs *, struct btree *); static void bch2_btree_set_root_ondisk(struct bch_fs *, struct btree *, int); /* Debug code: */ static void btree_node_interior_verify(struct btree *b) { struct btree_node_iter iter; struct bkey_packed *k; BUG_ON(!b->c.level); bch2_btree_node_iter_init(&iter, b, &b->key.k.p); #if 1 BUG_ON(!(k = bch2_btree_node_iter_peek(&iter, b)) || bkey_cmp_left_packed(b, k, &b->key.k.p)); BUG_ON((bch2_btree_node_iter_advance(&iter, b), !bch2_btree_node_iter_end(&iter))); #else const char *msg; msg = "not found"; k = bch2_btree_node_iter_peek(&iter, b); if (!k) goto err; msg = "isn't what it should be"; if (bkey_cmp_left_packed(b, k, &b->key.k.p)) goto err; bch2_btree_node_iter_advance(&iter, b); msg = "isn't last key"; if (!bch2_btree_node_iter_end(&iter)) goto err; return; err: bch2_dump_btree_node(b); printk(KERN_ERR "last key %llu:%llu %s\n", b->key.k.p.inode, b->key.k.p.offset, msg); BUG(); #endif } /* Calculate ideal packed bkey format for new btree nodes: */ void __bch2_btree_calc_format(struct bkey_format_state *s, struct btree *b) { struct bkey_packed *k; struct bset_tree *t; struct bkey uk; bch2_bkey_format_add_pos(s, b->data->min_key); for_each_bset(b, t) bset_tree_for_each_key(b, t, k) if (!bkey_whiteout(k)) { uk = bkey_unpack_key(b, k); bch2_bkey_format_add_key(s, &uk); } } static struct bkey_format bch2_btree_calc_format(struct btree *b) { struct bkey_format_state s; bch2_bkey_format_init(&s); __bch2_btree_calc_format(&s, b); return bch2_bkey_format_done(&s); } static size_t btree_node_u64s_with_format(struct btree *b, struct bkey_format *new_f) { struct bkey_format *old_f = &b->format; /* stupid integer promotion rules */ ssize_t delta = (((int) new_f->key_u64s - old_f->key_u64s) * (int) b->nr.packed_keys) + (((int) new_f->key_u64s - BKEY_U64s) * (int) b->nr.unpacked_keys); BUG_ON(delta + b->nr.live_u64s < 0); return b->nr.live_u64s + delta; } /** * btree_node_format_fits - check if we could rewrite node with a new format * * This assumes all keys can pack with the new format -- it just checks if * the re-packed keys would fit inside the node itself. */ bool bch2_btree_node_format_fits(struct bch_fs *c, struct btree *b, struct bkey_format *new_f) { size_t u64s = btree_node_u64s_with_format(b, new_f); return __vstruct_bytes(struct btree_node, u64s) < btree_bytes(c); } /* Btree node freeing/allocation: */ static bool btree_key_matches(struct bch_fs *c, struct bkey_s_c l, struct bkey_s_c r) { struct bkey_ptrs_c ptrs1 = bch2_bkey_ptrs_c(l); struct bkey_ptrs_c ptrs2 = bch2_bkey_ptrs_c(r); const struct bch_extent_ptr *ptr1, *ptr2; bkey_for_each_ptr(ptrs1, ptr1) bkey_for_each_ptr(ptrs2, ptr2) if (ptr1->dev == ptr2->dev && ptr1->gen == ptr2->gen && ptr1->offset == ptr2->offset) return true; return false; } /* * We're doing the index update that makes @b unreachable, update stuff to * reflect that: * * Must be called _before_ btree_update_updated_root() or * btree_update_updated_node: */ static void bch2_btree_node_free_index(struct btree_update *as, struct btree *b, struct bkey_s_c k, struct bch_fs_usage *stats) { struct bch_fs *c = as->c; struct pending_btree_node_free *d; for (d = as->pending; d < as->pending + as->nr_pending; d++) if (!bkey_cmp(k.k->p, d->key.k.p) && btree_key_matches(c, k, bkey_i_to_s_c(&d->key))) goto found; BUG(); found: BUG_ON(d->index_update_done); d->index_update_done = true; /* * We're dropping @k from the btree, but it's still live until the * index update is persistent so we need to keep a reference around for * mark and sweep to find - that's primarily what the * btree_node_pending_free list is for. * * So here (when we set index_update_done = true), we're moving an * existing reference to a different part of the larger "gc keyspace" - * and the new position comes after the old position, since GC marks * the pending free list after it walks the btree. * * If we move the reference while mark and sweep is _between_ the old * and the new position, mark and sweep will see the reference twice * and it'll get double accounted - so check for that here and subtract * to cancel out one of mark and sweep's markings if necessary: */ if (gc_pos_cmp(c->gc_pos, b ? gc_pos_btree_node(b) : gc_pos_btree_root(as->btree_id)) >= 0 && gc_pos_cmp(c->gc_pos, gc_phase(GC_PHASE_PENDING_DELETE)) < 0) bch2_mark_key_locked(c, bkey_i_to_s_c(&d->key), 0, 0, NULL, 0, BCH_BUCKET_MARK_OVERWRITE| BCH_BUCKET_MARK_GC); } static void __btree_node_free(struct bch_fs *c, struct btree *b) { trace_btree_node_free(c, b); BUG_ON(btree_node_dirty(b)); BUG_ON(btree_node_need_write(b)); BUG_ON(b == btree_node_root(c, b)); BUG_ON(b->ob.nr); BUG_ON(!list_empty(&b->write_blocked)); BUG_ON(b->will_make_reachable); clear_btree_node_noevict(b); bch2_btree_node_hash_remove(&c->btree_cache, b); mutex_lock(&c->btree_cache.lock); list_move(&b->list, &c->btree_cache.freeable); mutex_unlock(&c->btree_cache.lock); } void bch2_btree_node_free_never_inserted(struct bch_fs *c, struct btree *b) { struct open_buckets ob = b->ob; btree_update_drop_new_node(c, b); b->ob.nr = 0; clear_btree_node_dirty(b); btree_node_lock_type(c, b, SIX_LOCK_write); __btree_node_free(c, b); six_unlock_write(&b->c.lock); bch2_open_buckets_put(c, &ob); } void bch2_btree_node_free_inmem(struct bch_fs *c, struct btree *b, struct btree_iter *iter) { struct btree_iter *linked; trans_for_each_iter(iter->trans, linked) BUG_ON(linked->l[b->c.level].b == b); /* * Is this a node that isn't reachable on disk yet? * * Nodes that aren't reachable yet have writes blocked until they're * reachable - now that we've cancelled any pending writes and moved * things waiting on that write to wait on this update, we can drop this * node from the list of nodes that the other update is making * reachable, prior to freeing it: */ btree_update_drop_new_node(c, b); six_lock_write(&b->c.lock, NULL, NULL); __btree_node_free(c, b); six_unlock_write(&b->c.lock); six_unlock_intent(&b->c.lock); } static void bch2_btree_node_free_ondisk(struct bch_fs *c, struct pending_btree_node_free *pending) { BUG_ON(!pending->index_update_done); bch2_mark_key(c, bkey_i_to_s_c(&pending->key), 0, 0, NULL, 0, BCH_BUCKET_MARK_OVERWRITE); if (gc_visited(c, gc_phase(GC_PHASE_PENDING_DELETE))) bch2_mark_key(c, bkey_i_to_s_c(&pending->key), 0, 0, NULL, 0, BCH_BUCKET_MARK_OVERWRITE| BCH_BUCKET_MARK_GC); } static struct btree *__bch2_btree_node_alloc(struct bch_fs *c, struct disk_reservation *res, struct closure *cl, unsigned flags) { struct write_point *wp; struct btree *b; BKEY_PADDED(k) tmp; struct open_buckets ob = { .nr = 0 }; struct bch_devs_list devs_have = (struct bch_devs_list) { 0 }; unsigned nr_reserve; enum alloc_reserve alloc_reserve; if (flags & BTREE_INSERT_USE_ALLOC_RESERVE) { nr_reserve = 0; alloc_reserve = RESERVE_ALLOC; } else if (flags & BTREE_INSERT_USE_RESERVE) { nr_reserve = BTREE_NODE_RESERVE / 2; alloc_reserve = RESERVE_BTREE; } else { nr_reserve = BTREE_NODE_RESERVE; alloc_reserve = RESERVE_NONE; } mutex_lock(&c->btree_reserve_cache_lock); if (c->btree_reserve_cache_nr > nr_reserve) { struct btree_alloc *a = &c->btree_reserve_cache[--c->btree_reserve_cache_nr]; ob = a->ob; bkey_copy(&tmp.k, &a->k); mutex_unlock(&c->btree_reserve_cache_lock); goto mem_alloc; } mutex_unlock(&c->btree_reserve_cache_lock); retry: wp = bch2_alloc_sectors_start(c, c->opts.foreground_target, 0, writepoint_ptr(&c->btree_write_point), &devs_have, res->nr_replicas, c->opts.metadata_replicas_required, alloc_reserve, 0, cl); if (IS_ERR(wp)) return ERR_CAST(wp); if (wp->sectors_free < c->opts.btree_node_size) { struct open_bucket *ob; unsigned i; open_bucket_for_each(c, &wp->ptrs, ob, i) if (ob->sectors_free < c->opts.btree_node_size) ob->sectors_free = 0; bch2_alloc_sectors_done(c, wp); goto retry; } bkey_btree_ptr_init(&tmp.k); bch2_alloc_sectors_append_ptrs(c, wp, &tmp.k, c->opts.btree_node_size); bch2_open_bucket_get(c, wp, &ob); bch2_alloc_sectors_done(c, wp); mem_alloc: b = bch2_btree_node_mem_alloc(c); /* we hold cannibalize_lock: */ BUG_ON(IS_ERR(b)); BUG_ON(b->ob.nr); bkey_copy(&b->key, &tmp.k); b->ob = ob; return b; } static struct btree *bch2_btree_node_alloc(struct btree_update *as, unsigned level) { struct bch_fs *c = as->c; struct btree *b; BUG_ON(level >= BTREE_MAX_DEPTH); BUG_ON(!as->reserve->nr); b = as->reserve->b[--as->reserve->nr]; BUG_ON(bch2_btree_node_hash_insert(&c->btree_cache, b, level, as->btree_id)); set_btree_node_accessed(b); set_btree_node_dirty(b); set_btree_node_need_write(b); bch2_bset_init_first(b, &b->data->keys); memset(&b->nr, 0, sizeof(b->nr)); b->data->magic = cpu_to_le64(bset_magic(c)); b->data->flags = 0; SET_BTREE_NODE_ID(b->data, as->btree_id); SET_BTREE_NODE_LEVEL(b->data, level); b->data->ptr = bkey_i_to_btree_ptr(&b->key)->v.start[0]; if (c->sb.features & (1ULL << BCH_FEATURE_new_extent_overwrite)) SET_BTREE_NODE_NEW_EXTENT_OVERWRITE(b->data, true); if (btree_node_is_extents(b) && !BTREE_NODE_NEW_EXTENT_OVERWRITE(b->data)) set_btree_node_old_extent_overwrite(b); bch2_btree_build_aux_trees(b); btree_node_will_make_reachable(as, b); trace_btree_node_alloc(c, b); return b; } struct btree *__bch2_btree_node_alloc_replacement(struct btree_update *as, struct btree *b, struct bkey_format format) { struct btree *n; n = bch2_btree_node_alloc(as, b->c.level); n->data->min_key = b->data->min_key; n->data->max_key = b->data->max_key; n->data->format = format; SET_BTREE_NODE_SEQ(n->data, BTREE_NODE_SEQ(b->data) + 1); btree_node_set_format(n, format); bch2_btree_sort_into(as->c, n, b); btree_node_reset_sib_u64s(n); n->key.k.p = b->key.k.p; return n; } static struct btree *bch2_btree_node_alloc_replacement(struct btree_update *as, struct btree *b) { struct bkey_format new_f = bch2_btree_calc_format(b); /* * The keys might expand with the new format - if they wouldn't fit in * the btree node anymore, use the old format for now: */ if (!bch2_btree_node_format_fits(as->c, b, &new_f)) new_f = b->format; return __bch2_btree_node_alloc_replacement(as, b, new_f); } static struct btree *__btree_root_alloc(struct btree_update *as, unsigned level) { struct btree *b = bch2_btree_node_alloc(as, level); b->data->min_key = POS_MIN; b->data->max_key = POS_MAX; b->data->format = bch2_btree_calc_format(b); b->key.k.p = POS_MAX; btree_node_set_format(b, b->data->format); bch2_btree_build_aux_trees(b); six_unlock_write(&b->c.lock); return b; } static void bch2_btree_reserve_put(struct bch_fs *c, struct btree_reserve *reserve) { bch2_disk_reservation_put(c, &reserve->disk_res); mutex_lock(&c->btree_reserve_cache_lock); while (reserve->nr) { struct btree *b = reserve->b[--reserve->nr]; six_unlock_write(&b->c.lock); if (c->btree_reserve_cache_nr < ARRAY_SIZE(c->btree_reserve_cache)) { struct btree_alloc *a = &c->btree_reserve_cache[c->btree_reserve_cache_nr++]; a->ob = b->ob; b->ob.nr = 0; bkey_copy(&a->k, &b->key); } else { bch2_open_buckets_put(c, &b->ob); } btree_node_lock_type(c, b, SIX_LOCK_write); __btree_node_free(c, b); six_unlock_write(&b->c.lock); six_unlock_intent(&b->c.lock); } mutex_unlock(&c->btree_reserve_cache_lock); mempool_free(reserve, &c->btree_reserve_pool); } static struct btree_reserve *bch2_btree_reserve_get(struct bch_fs *c, unsigned nr_nodes, unsigned flags, struct closure *cl) { struct btree_reserve *reserve; struct btree *b; struct disk_reservation disk_res = { 0, 0 }; unsigned sectors = nr_nodes * c->opts.btree_node_size; int ret, disk_res_flags = 0; if (flags & BTREE_INSERT_NOFAIL) disk_res_flags |= BCH_DISK_RESERVATION_NOFAIL; /* * This check isn't necessary for correctness - it's just to potentially * prevent us from doing a lot of work that'll end up being wasted: */ ret = bch2_journal_error(&c->journal); if (ret) return ERR_PTR(ret); if (bch2_disk_reservation_get(c, &disk_res, sectors, c->opts.metadata_replicas, disk_res_flags)) return ERR_PTR(-ENOSPC); BUG_ON(nr_nodes > BTREE_RESERVE_MAX); /* * Protects reaping from the btree node cache and using the btree node * open bucket reserve: */ ret = bch2_btree_cache_cannibalize_lock(c, cl); if (ret) { bch2_disk_reservation_put(c, &disk_res); return ERR_PTR(ret); } reserve = mempool_alloc(&c->btree_reserve_pool, GFP_NOIO); reserve->disk_res = disk_res; reserve->nr = 0; while (reserve->nr < nr_nodes) { b = __bch2_btree_node_alloc(c, &disk_res, flags & BTREE_INSERT_NOWAIT ? NULL : cl, flags); if (IS_ERR(b)) { ret = PTR_ERR(b); goto err_free; } ret = bch2_mark_bkey_replicas(c, bkey_i_to_s_c(&b->key)); if (ret) goto err_free; reserve->b[reserve->nr++] = b; } bch2_btree_cache_cannibalize_unlock(c); return reserve; err_free: bch2_btree_reserve_put(c, reserve); bch2_btree_cache_cannibalize_unlock(c); trace_btree_reserve_get_fail(c, nr_nodes, cl); return ERR_PTR(ret); } /* Asynchronous interior node update machinery */ static void bch2_btree_update_free(struct btree_update *as) { struct bch_fs *c = as->c; bch2_journal_pin_flush(&c->journal, &as->journal); BUG_ON(as->nr_new_nodes); BUG_ON(as->nr_pending); if (as->reserve) bch2_btree_reserve_put(c, as->reserve); mutex_lock(&c->btree_interior_update_lock); list_del(&as->list); closure_debug_destroy(&as->cl); mempool_free(as, &c->btree_interior_update_pool); closure_wake_up(&c->btree_interior_update_wait); mutex_unlock(&c->btree_interior_update_lock); } static void btree_update_nodes_reachable(struct closure *cl) { struct btree_update *as = container_of(cl, struct btree_update, cl); struct bch_fs *c = as->c; bch2_journal_pin_drop(&c->journal, &as->journal); mutex_lock(&c->btree_interior_update_lock); while (as->nr_new_nodes) { struct btree *b = as->new_nodes[--as->nr_new_nodes]; BUG_ON(b->will_make_reachable != (unsigned long) as); b->will_make_reachable = 0; mutex_unlock(&c->btree_interior_update_lock); /* * b->will_make_reachable prevented it from being written, so * write it now if it needs to be written: */ btree_node_lock_type(c, b, SIX_LOCK_read); bch2_btree_node_write_cond(c, b, btree_node_need_write(b)); six_unlock_read(&b->c.lock); mutex_lock(&c->btree_interior_update_lock); } while (as->nr_pending) bch2_btree_node_free_ondisk(c, &as->pending[--as->nr_pending]); mutex_unlock(&c->btree_interior_update_lock); closure_wake_up(&as->wait); bch2_btree_update_free(as); } static void btree_update_wait_on_journal(struct closure *cl) { struct btree_update *as = container_of(cl, struct btree_update, cl); struct bch_fs *c = as->c; int ret; ret = bch2_journal_open_seq_async(&c->journal, as->journal_seq, cl); if (ret == -EAGAIN) { continue_at(cl, btree_update_wait_on_journal, system_wq); return; } if (ret < 0) goto err; bch2_journal_flush_seq_async(&c->journal, as->journal_seq, cl); err: continue_at(cl, btree_update_nodes_reachable, system_wq); } static void btree_update_nodes_written(struct closure *cl) { struct btree_update *as = container_of(cl, struct btree_update, cl); struct bch_fs *c = as->c; struct btree *b; /* * We did an update to a parent node where the pointers we added pointed * to child nodes that weren't written yet: now, the child nodes have * been written so we can write out the update to the interior node. */ retry: mutex_lock(&c->btree_interior_update_lock); as->nodes_written = true; switch (as->mode) { case BTREE_INTERIOR_NO_UPDATE: BUG(); case BTREE_INTERIOR_UPDATING_NODE: /* The usual case: */ b = READ_ONCE(as->b); if (!six_trylock_read(&b->c.lock)) { mutex_unlock(&c->btree_interior_update_lock); btree_node_lock_type(c, b, SIX_LOCK_read); six_unlock_read(&b->c.lock); goto retry; } BUG_ON(!btree_node_dirty(b)); closure_wait(&btree_current_write(b)->wait, cl); list_del(&as->write_blocked_list); /* * for flush_held_btree_writes() waiting on updates to flush or * nodes to be writeable: */ closure_wake_up(&c->btree_interior_update_wait); mutex_unlock(&c->btree_interior_update_lock); /* * b->write_blocked prevented it from being written, so * write it now if it needs to be written: */ bch2_btree_node_write_cond(c, b, true); six_unlock_read(&b->c.lock); break; case BTREE_INTERIOR_UPDATING_AS: /* * The btree node we originally updated has been freed and is * being rewritten - so we need to write anything here, we just * need to signal to that btree_update that it's ok to make the * new replacement node visible: */ closure_put(&as->parent_as->cl); /* * and then we have to wait on that btree_update to finish: */ closure_wait(&as->parent_as->wait, cl); mutex_unlock(&c->btree_interior_update_lock); break; case BTREE_INTERIOR_UPDATING_ROOT: /* b is the new btree root: */ b = READ_ONCE(as->b); if (!six_trylock_read(&b->c.lock)) { mutex_unlock(&c->btree_interior_update_lock); btree_node_lock_type(c, b, SIX_LOCK_read); six_unlock_read(&b->c.lock); goto retry; } BUG_ON(c->btree_roots[b->c.btree_id].as != as); c->btree_roots[b->c.btree_id].as = NULL; bch2_btree_set_root_ondisk(c, b, WRITE); /* * We don't have to wait anything anything here (before * btree_update_nodes_reachable frees the old nodes * ondisk) - we've ensured that the very next journal write will * have the pointer to the new root, and before the allocator * can reuse the old nodes it'll have to do a journal commit: */ six_unlock_read(&b->c.lock); mutex_unlock(&c->btree_interior_update_lock); /* * Bit of funny circularity going on here we have to break: * * We have to drop our journal pin before writing the journal * entry that points to the new btree root: else, we could * deadlock if the journal currently happens to be full. * * This mean we're dropping the journal pin _before_ the new * nodes are technically reachable - but this is safe, because * after the bch2_btree_set_root_ondisk() call above they will * be reachable as of the very next journal write: */ bch2_journal_pin_drop(&c->journal, &as->journal); as->journal_seq = bch2_journal_last_unwritten_seq(&c->journal); btree_update_wait_on_journal(cl); return; } continue_at(cl, btree_update_nodes_reachable, system_wq); } /* * We're updating @b with pointers to nodes that haven't finished writing yet: * block @b from being written until @as completes */ static void btree_update_updated_node(struct btree_update *as, struct btree *b) { struct bch_fs *c = as->c; mutex_lock(&c->btree_interior_update_lock); BUG_ON(as->mode != BTREE_INTERIOR_NO_UPDATE); BUG_ON(!btree_node_dirty(b)); as->mode = BTREE_INTERIOR_UPDATING_NODE; as->b = b; list_add(&as->write_blocked_list, &b->write_blocked); mutex_unlock(&c->btree_interior_update_lock); /* * In general, when you're staging things in a journal that will later * be written elsewhere, and you also want to guarantee ordering: that * is, if you have updates a, b, c, after a crash you should never see c * and not a or b - there's a problem: * * If the final destination of the update(s) (i.e. btree node) can be * written/flushed _before_ the relevant journal entry - oops, that * breaks ordering, since the various leaf nodes can be written in any * order. * * Normally we use bset->journal_seq to deal with this - if during * recovery we find a btree node write that's newer than the newest * journal entry, we just ignore it - we don't need it, anything we're * supposed to have (that we reported as completed via fsync()) will * still be in the journal, and as far as the state of the journal is * concerned that btree node write never happened. * * That breaks when we're rewriting/splitting/merging nodes, since we're * mixing btree node writes that haven't happened yet with previously * written data that has been reported as completed to the journal. * * Thus, before making the new nodes reachable, we have to wait the * newest journal sequence number we have data for to be written (if it * hasn't been yet). */ bch2_journal_wait_on_seq(&c->journal, as->journal_seq, &as->cl); } static void interior_update_flush(struct journal *j, struct journal_entry_pin *pin, u64 seq) { struct btree_update *as = container_of(pin, struct btree_update, journal); bch2_journal_flush_seq_async(j, as->journal_seq, NULL); } static void btree_update_reparent(struct btree_update *as, struct btree_update *child) { struct bch_fs *c = as->c; child->b = NULL; child->mode = BTREE_INTERIOR_UPDATING_AS; child->parent_as = as; closure_get(&as->cl); /* * When we write a new btree root, we have to drop our journal pin * _before_ the new nodes are technically reachable; see * btree_update_nodes_written(). * * This goes for journal pins that are recursively blocked on us - so, * just transfer the journal pin to the new interior update so * btree_update_nodes_written() can drop it. */ bch2_journal_pin_add_if_older(&c->journal, &child->journal, &as->journal, interior_update_flush); bch2_journal_pin_drop(&c->journal, &child->journal); as->journal_seq = max(as->journal_seq, child->journal_seq); } static void btree_update_updated_root(struct btree_update *as) { struct bch_fs *c = as->c; struct btree_root *r = &c->btree_roots[as->btree_id]; mutex_lock(&c->btree_interior_update_lock); BUG_ON(as->mode != BTREE_INTERIOR_NO_UPDATE); /* * Old root might not be persistent yet - if so, redirect its * btree_update operation to point to us: */ if (r->as) btree_update_reparent(as, r->as); as->mode = BTREE_INTERIOR_UPDATING_ROOT; as->b = r->b; r->as = as; mutex_unlock(&c->btree_interior_update_lock); /* * When we're rewriting nodes and updating interior nodes, there's an * issue with updates that haven't been written in the journal getting * mixed together with older data - see btree_update_updated_node() * for the explanation. * * However, this doesn't affect us when we're writing a new btree root - * because to make that new root reachable we have to write out a new * journal entry, which must necessarily be newer than as->journal_seq. */ } static void btree_node_will_make_reachable(struct btree_update *as, struct btree *b) { struct bch_fs *c = as->c; mutex_lock(&c->btree_interior_update_lock); BUG_ON(as->nr_new_nodes >= ARRAY_SIZE(as->new_nodes)); BUG_ON(b->will_make_reachable); as->new_nodes[as->nr_new_nodes++] = b; b->will_make_reachable = 1UL|(unsigned long) as; closure_get(&as->cl); mutex_unlock(&c->btree_interior_update_lock); } static void btree_update_drop_new_node(struct bch_fs *c, struct btree *b) { struct btree_update *as; unsigned long v; unsigned i; mutex_lock(&c->btree_interior_update_lock); v = xchg(&b->will_make_reachable, 0); as = (struct btree_update *) (v & ~1UL); if (!as) { mutex_unlock(&c->btree_interior_update_lock); return; } for (i = 0; i < as->nr_new_nodes; i++) if (as->new_nodes[i] == b) goto found; BUG(); found: array_remove_item(as->new_nodes, as->nr_new_nodes, i); mutex_unlock(&c->btree_interior_update_lock); if (v & 1) closure_put(&as->cl); } static void btree_interior_update_add_node_reference(struct btree_update *as, struct btree *b) { struct bch_fs *c = as->c; struct pending_btree_node_free *d; mutex_lock(&c->btree_interior_update_lock); /* Add this node to the list of nodes being freed: */ BUG_ON(as->nr_pending >= ARRAY_SIZE(as->pending)); d = &as->pending[as->nr_pending++]; d->index_update_done = false; d->seq = b->data->keys.seq; d->btree_id = b->c.btree_id; d->level = b->c.level; bkey_copy(&d->key, &b->key); mutex_unlock(&c->btree_interior_update_lock); } /* * @b is being split/rewritten: it may have pointers to not-yet-written btree * nodes and thus outstanding btree_updates - redirect @b's * btree_updates to point to this btree_update: */ void bch2_btree_interior_update_will_free_node(struct btree_update *as, struct btree *b) { struct bch_fs *c = as->c; struct closure *cl, *cl_n; struct btree_update *p, *n; struct btree_write *w; struct bset_tree *t; set_btree_node_dying(b); if (btree_node_fake(b)) return; btree_interior_update_add_node_reference(as, b); /* * Does this node have data that hasn't been written in the journal? * * If so, we have to wait for the corresponding journal entry to be * written before making the new nodes reachable - we can't just carry * over the bset->journal_seq tracking, since we'll be mixing those keys * in with keys that aren't in the journal anymore: */ for_each_bset(b, t) as->journal_seq = max(as->journal_seq, le64_to_cpu(bset(b, t)->journal_seq)); mutex_lock(&c->btree_interior_update_lock); /* * Does this node have any btree_update operations preventing * it from being written? * * If so, redirect them to point to this btree_update: we can * write out our new nodes, but we won't make them visible until those * operations complete */ list_for_each_entry_safe(p, n, &b->write_blocked, write_blocked_list) { list_del(&p->write_blocked_list); btree_update_reparent(as, p); /* * for flush_held_btree_writes() waiting on updates to flush or * nodes to be writeable: */ closure_wake_up(&c->btree_interior_update_wait); } clear_btree_node_dirty(b); clear_btree_node_need_write(b); w = btree_current_write(b); /* * Does this node have any btree_update operations waiting on this node * to be written? * * If so, wake them up when this btree_update operation is reachable: */ llist_for_each_entry_safe(cl, cl_n, llist_del_all(&w->wait.list), list) llist_add(&cl->list, &as->wait.list); /* * Does this node have unwritten data that has a pin on the journal? * * If so, transfer that pin to the btree_update operation - * note that if we're freeing multiple nodes, we only need to keep the * oldest pin of any of the nodes we're freeing. We'll release the pin * when the new nodes are persistent and reachable on disk: */ bch2_journal_pin_add_if_older(&c->journal, &w->journal, &as->journal, interior_update_flush); bch2_journal_pin_drop(&c->journal, &w->journal); w = btree_prev_write(b); bch2_journal_pin_add_if_older(&c->journal, &w->journal, &as->journal, interior_update_flush); bch2_journal_pin_drop(&c->journal, &w->journal); mutex_unlock(&c->btree_interior_update_lock); } void bch2_btree_update_done(struct btree_update *as) { BUG_ON(as->mode == BTREE_INTERIOR_NO_UPDATE); bch2_btree_reserve_put(as->c, as->reserve); as->reserve = NULL; continue_at(&as->cl, btree_update_nodes_written, system_freezable_wq); } struct btree_update * bch2_btree_update_start(struct bch_fs *c, enum btree_id id, unsigned nr_nodes, unsigned flags, struct closure *cl) { struct btree_reserve *reserve; struct btree_update *as; reserve = bch2_btree_reserve_get(c, nr_nodes, flags, cl); if (IS_ERR(reserve)) return ERR_CAST(reserve); as = mempool_alloc(&c->btree_interior_update_pool, GFP_NOIO); memset(as, 0, sizeof(*as)); closure_init(&as->cl, NULL); as->c = c; as->mode = BTREE_INTERIOR_NO_UPDATE; as->btree_id = id; as->reserve = reserve; INIT_LIST_HEAD(&as->write_blocked_list); bch2_keylist_init(&as->parent_keys, as->inline_keys); mutex_lock(&c->btree_interior_update_lock); list_add_tail(&as->list, &c->btree_interior_update_list); mutex_unlock(&c->btree_interior_update_lock); return as; } /* Btree root updates: */ static void __bch2_btree_set_root_inmem(struct bch_fs *c, struct btree *b) { /* Root nodes cannot be reaped */ mutex_lock(&c->btree_cache.lock); list_del_init(&b->list); mutex_unlock(&c->btree_cache.lock); mutex_lock(&c->btree_root_lock); BUG_ON(btree_node_root(c, b) && (b->c.level < btree_node_root(c, b)->c.level || !btree_node_dying(btree_node_root(c, b)))); btree_node_root(c, b) = b; mutex_unlock(&c->btree_root_lock); bch2_recalc_btree_reserve(c); } static void bch2_btree_set_root_inmem(struct btree_update *as, struct btree *b) { struct bch_fs *c = as->c; struct btree *old = btree_node_root(c, b); struct bch_fs_usage_online *fs_usage; __bch2_btree_set_root_inmem(c, b); mutex_lock(&c->btree_interior_update_lock); percpu_down_read(&c->mark_lock); fs_usage = bch2_fs_usage_scratch_get(c); bch2_mark_key_locked(c, bkey_i_to_s_c(&b->key), 0, 0, &fs_usage->u, 0, BCH_BUCKET_MARK_INSERT); if (gc_visited(c, gc_pos_btree_root(b->c.btree_id))) bch2_mark_key_locked(c, bkey_i_to_s_c(&b->key), 0, 0, NULL, 0, BCH_BUCKET_MARK_INSERT| BCH_BUCKET_MARK_GC); if (old && !btree_node_fake(old)) bch2_btree_node_free_index(as, NULL, bkey_i_to_s_c(&old->key), &fs_usage->u); bch2_fs_usage_apply(c, fs_usage, &as->reserve->disk_res, 0); bch2_fs_usage_scratch_put(c, fs_usage); percpu_up_read(&c->mark_lock); mutex_unlock(&c->btree_interior_update_lock); } static void bch2_btree_set_root_ondisk(struct bch_fs *c, struct btree *b, int rw) { struct btree_root *r = &c->btree_roots[b->c.btree_id]; mutex_lock(&c->btree_root_lock); BUG_ON(b != r->b); bkey_copy(&r->key, &b->key); r->level = b->c.level; r->alive = true; if (rw == WRITE) c->btree_roots_dirty = true; mutex_unlock(&c->btree_root_lock); } /** * bch_btree_set_root - update the root in memory and on disk * * To ensure forward progress, the current task must not be holding any * btree node write locks. However, you must hold an intent lock on the * old root. * * Note: This allocates a journal entry but doesn't add any keys to * it. All the btree roots are part of every journal write, so there * is nothing new to be done. This just guarantees that there is a * journal write. */ static void bch2_btree_set_root(struct btree_update *as, struct btree *b, struct btree_iter *iter) { struct bch_fs *c = as->c; struct btree *old; trace_btree_set_root(c, b); BUG_ON(!b->written && !test_bit(BCH_FS_HOLD_BTREE_WRITES, &c->flags)); old = btree_node_root(c, b); /* * Ensure no one is using the old root while we switch to the * new root: */ bch2_btree_node_lock_write(old, iter); bch2_btree_set_root_inmem(as, b); btree_update_updated_root(as); /* * Unlock old root after new root is visible: * * The new root isn't persistent, but that's ok: we still have * an intent lock on the new root, and any updates that would * depend on the new root would have to update the new root. */ bch2_btree_node_unlock_write(old, iter); } /* Interior node updates: */ static void bch2_insert_fixup_btree_ptr(struct btree_update *as, struct btree *b, struct btree_iter *iter, struct bkey_i *insert, struct btree_node_iter *node_iter) { struct bch_fs *c = as->c; struct bch_fs_usage_online *fs_usage; struct bkey_packed *k; struct bkey tmp; BUG_ON(insert->k.u64s > bch_btree_keys_u64s_remaining(c, b)); mutex_lock(&c->btree_interior_update_lock); percpu_down_read(&c->mark_lock); fs_usage = bch2_fs_usage_scratch_get(c); bch2_mark_key_locked(c, bkey_i_to_s_c(insert), 0, 0, &fs_usage->u, 0, BCH_BUCKET_MARK_INSERT); if (gc_visited(c, gc_pos_btree_node(b))) bch2_mark_key_locked(c, bkey_i_to_s_c(insert), 0, 0, NULL, 0, BCH_BUCKET_MARK_INSERT| BCH_BUCKET_MARK_GC); while ((k = bch2_btree_node_iter_peek_all(node_iter, b)) && bkey_iter_pos_cmp(b, &insert->k.p, k) > 0) bch2_btree_node_iter_advance(node_iter, b); /* * If we're overwriting, look up pending delete and mark so that gc * marks it on the pending delete list: */ if (k && !bkey_cmp_packed(b, k, &insert->k)) bch2_btree_node_free_index(as, b, bkey_disassemble(b, k, &tmp), &fs_usage->u); bch2_fs_usage_apply(c, fs_usage, &as->reserve->disk_res, 0); bch2_fs_usage_scratch_put(c, fs_usage); percpu_up_read(&c->mark_lock); mutex_unlock(&c->btree_interior_update_lock); bch2_btree_bset_insert_key(iter, b, node_iter, insert); set_btree_node_dirty(b); set_btree_node_need_write(b); } /* * Move keys from n1 (original replacement node, now lower node) to n2 (higher * node) */ static struct btree *__btree_split_node(struct btree_update *as, struct btree *n1, struct btree_iter *iter) { size_t nr_packed = 0, nr_unpacked = 0; struct btree *n2; struct bset *set1, *set2; struct bkey_packed *k, *prev = NULL; n2 = bch2_btree_node_alloc(as, n1->c.level); n2->data->max_key = n1->data->max_key; n2->data->format = n1->format; SET_BTREE_NODE_SEQ(n2->data, BTREE_NODE_SEQ(n1->data)); n2->key.k.p = n1->key.k.p; btree_node_set_format(n2, n2->data->format); set1 = btree_bset_first(n1); set2 = btree_bset_first(n2); /* * Has to be a linear search because we don't have an auxiliary * search tree yet */ k = set1->start; while (1) { struct bkey_packed *n = bkey_next_skip_noops(k, vstruct_last(set1)); if (n == vstruct_last(set1)) break; if (k->_data - set1->_data >= (le16_to_cpu(set1->u64s) * 3) / 5) break; if (bkey_packed(k)) nr_packed++; else nr_unpacked++; prev = k; k = n; } BUG_ON(!prev); n1->key.k.p = bkey_unpack_pos(n1, prev); n1->data->max_key = n1->key.k.p; n2->data->min_key = btree_type_successor(n1->c.btree_id, n1->key.k.p); set2->u64s = cpu_to_le16((u64 *) vstruct_end(set1) - (u64 *) k); set1->u64s = cpu_to_le16(le16_to_cpu(set1->u64s) - le16_to_cpu(set2->u64s)); set_btree_bset_end(n1, n1->set); set_btree_bset_end(n2, n2->set); n2->nr.live_u64s = le16_to_cpu(set2->u64s); n2->nr.bset_u64s[0] = le16_to_cpu(set2->u64s); n2->nr.packed_keys = n1->nr.packed_keys - nr_packed; n2->nr.unpacked_keys = n1->nr.unpacked_keys - nr_unpacked; n1->nr.live_u64s = le16_to_cpu(set1->u64s); n1->nr.bset_u64s[0] = le16_to_cpu(set1->u64s); n1->nr.packed_keys = nr_packed; n1->nr.unpacked_keys = nr_unpacked; BUG_ON(!set1->u64s); BUG_ON(!set2->u64s); memcpy_u64s(set2->start, vstruct_end(set1), le16_to_cpu(set2->u64s)); btree_node_reset_sib_u64s(n1); btree_node_reset_sib_u64s(n2); bch2_verify_btree_nr_keys(n1); bch2_verify_btree_nr_keys(n2); if (n1->c.level) { btree_node_interior_verify(n1); btree_node_interior_verify(n2); } return n2; } /* * For updates to interior nodes, we've got to do the insert before we split * because the stuff we're inserting has to be inserted atomically. Post split, * the keys might have to go in different nodes and the split would no longer be * atomic. * * Worse, if the insert is from btree node coalescing, if we do the insert after * we do the split (and pick the pivot) - the pivot we pick might be between * nodes that were coalesced, and thus in the middle of a child node post * coalescing: */ static void btree_split_insert_keys(struct btree_update *as, struct btree *b, struct btree_iter *iter, struct keylist *keys) { struct btree_node_iter node_iter; struct bkey_i *k = bch2_keylist_front(keys); struct bkey_packed *src, *dst, *n; struct bset *i; BUG_ON(btree_node_type(b) != BKEY_TYPE_BTREE); bch2_btree_node_iter_init(&node_iter, b, &k->k.p); while (!bch2_keylist_empty(keys)) { k = bch2_keylist_front(keys); BUG_ON(bch_keylist_u64s(keys) > bch_btree_keys_u64s_remaining(as->c, b)); BUG_ON(bkey_cmp(k->k.p, b->data->min_key) < 0); BUG_ON(bkey_cmp(k->k.p, b->data->max_key) > 0); bch2_insert_fixup_btree_ptr(as, b, iter, k, &node_iter); bch2_keylist_pop_front(keys); } /* * We can't tolerate whiteouts here - with whiteouts there can be * duplicate keys, and it would be rather bad if we picked a duplicate * for the pivot: */ i = btree_bset_first(b); src = dst = i->start; while (src != vstruct_last(i)) { n = bkey_next_skip_noops(src, vstruct_last(i)); if (!bkey_deleted(src)) { memmove_u64s_down(dst, src, src->u64s); dst = bkey_next(dst); } src = n; } i->u64s = cpu_to_le16((u64 *) dst - i->_data); set_btree_bset_end(b, b->set); BUG_ON(b->nsets != 1 || b->nr.live_u64s != le16_to_cpu(btree_bset_first(b)->u64s)); btree_node_interior_verify(b); } static void btree_split(struct btree_update *as, struct btree *b, struct btree_iter *iter, struct keylist *keys, unsigned flags) { struct bch_fs *c = as->c; struct btree *parent = btree_node_parent(iter, b); struct btree *n1, *n2 = NULL, *n3 = NULL; u64 start_time = local_clock(); BUG_ON(!parent && (b != btree_node_root(c, b))); BUG_ON(!btree_node_intent_locked(iter, btree_node_root(c, b)->c.level)); bch2_btree_interior_update_will_free_node(as, b); n1 = bch2_btree_node_alloc_replacement(as, b); if (keys) btree_split_insert_keys(as, n1, iter, keys); if (vstruct_blocks(n1->data, c->block_bits) > BTREE_SPLIT_THRESHOLD(c)) { trace_btree_split(c, b); n2 = __btree_split_node(as, n1, iter); bch2_btree_build_aux_trees(n2); bch2_btree_build_aux_trees(n1); six_unlock_write(&n2->c.lock); six_unlock_write(&n1->c.lock); bch2_btree_node_write(c, n2, SIX_LOCK_intent); /* * Note that on recursive parent_keys == keys, so we * can't start adding new keys to parent_keys before emptying it * out (which we did with btree_split_insert_keys() above) */ bch2_keylist_add(&as->parent_keys, &n1->key); bch2_keylist_add(&as->parent_keys, &n2->key); if (!parent) { /* Depth increases, make a new root */ n3 = __btree_root_alloc(as, b->c.level + 1); n3->sib_u64s[0] = U16_MAX; n3->sib_u64s[1] = U16_MAX; btree_split_insert_keys(as, n3, iter, &as->parent_keys); bch2_btree_node_write(c, n3, SIX_LOCK_intent); } } else { trace_btree_compact(c, b); bch2_btree_build_aux_trees(n1); six_unlock_write(&n1->c.lock); bch2_keylist_add(&as->parent_keys, &n1->key); } bch2_btree_node_write(c, n1, SIX_LOCK_intent); /* New nodes all written, now make them visible: */ if (parent) { /* Split a non root node */ bch2_btree_insert_node(as, parent, iter, &as->parent_keys, flags); } else if (n3) { bch2_btree_set_root(as, n3, iter); } else { /* Root filled up but didn't need to be split */ bch2_btree_set_root(as, n1, iter); } bch2_open_buckets_put(c, &n1->ob); if (n2) bch2_open_buckets_put(c, &n2->ob); if (n3) bch2_open_buckets_put(c, &n3->ob); /* Successful split, update the iterator to point to the new nodes: */ six_lock_increment(&b->c.lock, SIX_LOCK_intent); bch2_btree_iter_node_drop(iter, b); if (n3) bch2_btree_iter_node_replace(iter, n3); if (n2) bch2_btree_iter_node_replace(iter, n2); bch2_btree_iter_node_replace(iter, n1); /* * The old node must be freed (in memory) _before_ unlocking the new * nodes - else another thread could re-acquire a read lock on the old * node after another thread has locked and updated the new node, thus * seeing stale data: */ bch2_btree_node_free_inmem(c, b, iter); if (n3) six_unlock_intent(&n3->c.lock); if (n2) six_unlock_intent(&n2->c.lock); six_unlock_intent(&n1->c.lock); bch2_btree_trans_verify_locks(iter->trans); bch2_time_stats_update(&c->times[BCH_TIME_btree_node_split], start_time); } static void bch2_btree_insert_keys_interior(struct btree_update *as, struct btree *b, struct btree_iter *iter, struct keylist *keys) { struct btree_iter *linked; struct btree_node_iter node_iter; struct bkey_i *insert = bch2_keylist_front(keys); struct bkey_packed *k; /* Don't screw up @iter's position: */ node_iter = iter->l[b->c.level].iter; /* * btree_split(), btree_gc_coalesce() will insert keys before * the iterator's current position - they know the keys go in * the node the iterator points to: */ while ((k = bch2_btree_node_iter_prev_all(&node_iter, b)) && (bkey_cmp_packed(b, k, &insert->k) >= 0)) ; while (!bch2_keylist_empty(keys)) { insert = bch2_keylist_front(keys); bch2_insert_fixup_btree_ptr(as, b, iter, insert, &node_iter); bch2_keylist_pop_front(keys); } btree_update_updated_node(as, b); trans_for_each_iter_with_node(iter->trans, b, linked) bch2_btree_node_iter_peek(&linked->l[b->c.level].iter, b); bch2_btree_iter_verify(iter, b); } /** * bch_btree_insert_node - insert bkeys into a given btree node * * @iter: btree iterator * @keys: list of keys to insert * @hook: insert callback * @persistent: if not null, @persistent will wait on journal write * * Inserts as many keys as it can into a given btree node, splitting it if full. * If a split occurred, this function will return early. This can only happen * for leaf nodes -- inserts into interior nodes have to be atomic. */ void bch2_btree_insert_node(struct btree_update *as, struct btree *b, struct btree_iter *iter, struct keylist *keys, unsigned flags) { struct bch_fs *c = as->c; int old_u64s = le16_to_cpu(btree_bset_last(b)->u64s); int old_live_u64s = b->nr.live_u64s; int live_u64s_added, u64s_added; BUG_ON(!btree_node_intent_locked(iter, btree_node_root(c, b)->c.level)); BUG_ON(!b->c.level); BUG_ON(!as || as->b); bch2_verify_keylist_sorted(keys); if (as->must_rewrite) goto split; bch2_btree_node_lock_for_insert(c, b, iter); if (!bch2_btree_node_insert_fits(c, b, bch_keylist_u64s(keys))) { bch2_btree_node_unlock_write(b, iter); goto split; } bch2_btree_insert_keys_interior(as, b, iter, keys); live_u64s_added = (int) b->nr.live_u64s - old_live_u64s; u64s_added = (int) le16_to_cpu(btree_bset_last(b)->u64s) - old_u64s; if (b->sib_u64s[0] != U16_MAX && live_u64s_added < 0) b->sib_u64s[0] = max(0, (int) b->sib_u64s[0] + live_u64s_added); if (b->sib_u64s[1] != U16_MAX && live_u64s_added < 0) b->sib_u64s[1] = max(0, (int) b->sib_u64s[1] + live_u64s_added); if (u64s_added > live_u64s_added && bch2_maybe_compact_whiteouts(c, b)) bch2_btree_iter_reinit_node(iter, b); bch2_btree_node_unlock_write(b, iter); btree_node_interior_verify(b); /* * when called from the btree_split path the new nodes aren't added to * the btree iterator yet, so the merge path's unlock/wait/relock dance * won't work: */ bch2_foreground_maybe_merge(c, iter, b->c.level, flags|BTREE_INSERT_NOUNLOCK); return; split: btree_split(as, b, iter, keys, flags); } int bch2_btree_split_leaf(struct bch_fs *c, struct btree_iter *iter, unsigned flags) { struct btree_trans *trans = iter->trans; struct btree *b = iter->l[0].b; struct btree_update *as; struct closure cl; int ret = 0; struct btree_iter *linked; /* * We already have a disk reservation and open buckets pinned; this * allocation must not block: */ trans_for_each_iter(trans, linked) if (linked->btree_id == BTREE_ID_EXTENTS) flags |= BTREE_INSERT_USE_RESERVE; closure_init_stack(&cl); /* Hack, because gc and splitting nodes doesn't mix yet: */ if (!(flags & BTREE_INSERT_GC_LOCK_HELD) && !down_read_trylock(&c->gc_lock)) { if (flags & BTREE_INSERT_NOUNLOCK) return -EINTR; bch2_trans_unlock(trans); down_read(&c->gc_lock); if (!bch2_trans_relock(trans)) ret = -EINTR; } /* * XXX: figure out how far we might need to split, * instead of locking/reserving all the way to the root: */ if (!bch2_btree_iter_upgrade(iter, U8_MAX)) { trace_trans_restart_iter_upgrade(trans->ip); ret = -EINTR; goto out; } as = bch2_btree_update_start(c, iter->btree_id, btree_update_reserve_required(c, b), flags, !(flags & BTREE_INSERT_NOUNLOCK) ? &cl : NULL); if (IS_ERR(as)) { ret = PTR_ERR(as); if (ret == -EAGAIN) { BUG_ON(flags & BTREE_INSERT_NOUNLOCK); bch2_trans_unlock(trans); ret = -EINTR; } goto out; } btree_split(as, b, iter, NULL, flags); bch2_btree_update_done(as); /* * We haven't successfully inserted yet, so don't downgrade all the way * back to read locks; */ __bch2_btree_iter_downgrade(iter, 1); out: if (!(flags & BTREE_INSERT_GC_LOCK_HELD)) up_read(&c->gc_lock); closure_sync(&cl); return ret; } void __bch2_foreground_maybe_merge(struct bch_fs *c, struct btree_iter *iter, unsigned level, unsigned flags, enum btree_node_sibling sib) { struct btree_trans *trans = iter->trans; struct btree_update *as; struct bkey_format_state new_s; struct bkey_format new_f; struct bkey_i delete; struct btree *b, *m, *n, *prev, *next, *parent; struct closure cl; size_t sib_u64s; int ret = 0; BUG_ON(!btree_node_locked(iter, level)); closure_init_stack(&cl); retry: BUG_ON(!btree_node_locked(iter, level)); b = iter->l[level].b; parent = btree_node_parent(iter, b); if (!parent) goto out; if (b->sib_u64s[sib] > BTREE_FOREGROUND_MERGE_THRESHOLD(c)) goto out; /* XXX: can't be holding read locks */ m = bch2_btree_node_get_sibling(c, iter, b, sib); if (IS_ERR(m)) { ret = PTR_ERR(m); goto err; } /* NULL means no sibling: */ if (!m) { b->sib_u64s[sib] = U16_MAX; goto out; } if (sib == btree_prev_sib) { prev = m; next = b; } else { prev = b; next = m; } bch2_bkey_format_init(&new_s); __bch2_btree_calc_format(&new_s, b); __bch2_btree_calc_format(&new_s, m); new_f = bch2_bkey_format_done(&new_s); sib_u64s = btree_node_u64s_with_format(b, &new_f) + btree_node_u64s_with_format(m, &new_f); if (sib_u64s > BTREE_FOREGROUND_MERGE_HYSTERESIS(c)) { sib_u64s -= BTREE_FOREGROUND_MERGE_HYSTERESIS(c); sib_u64s /= 2; sib_u64s += BTREE_FOREGROUND_MERGE_HYSTERESIS(c); } sib_u64s = min(sib_u64s, btree_max_u64s(c)); b->sib_u64s[sib] = sib_u64s; if (b->sib_u64s[sib] > BTREE_FOREGROUND_MERGE_THRESHOLD(c)) { six_unlock_intent(&m->c.lock); goto out; } /* We're changing btree topology, doesn't mix with gc: */ if (!(flags & BTREE_INSERT_GC_LOCK_HELD) && !down_read_trylock(&c->gc_lock)) goto err_cycle_gc_lock; if (!bch2_btree_iter_upgrade(iter, U8_MAX)) { ret = -EINTR; goto err_unlock; } as = bch2_btree_update_start(c, iter->btree_id, btree_update_reserve_required(c, parent) + 1, BTREE_INSERT_NOFAIL| BTREE_INSERT_USE_RESERVE, !(flags & BTREE_INSERT_NOUNLOCK) ? &cl : NULL); if (IS_ERR(as)) { ret = PTR_ERR(as); goto err_unlock; } trace_btree_merge(c, b); bch2_btree_interior_update_will_free_node(as, b); bch2_btree_interior_update_will_free_node(as, m); n = bch2_btree_node_alloc(as, b->c.level); n->data->min_key = prev->data->min_key; n->data->max_key = next->data->max_key; n->data->format = new_f; n->key.k.p = next->key.k.p; btree_node_set_format(n, new_f); bch2_btree_sort_into(c, n, prev); bch2_btree_sort_into(c, n, next); bch2_btree_build_aux_trees(n); six_unlock_write(&n->c.lock); bkey_init(&delete.k); delete.k.p = prev->key.k.p; bch2_keylist_add(&as->parent_keys, &delete); bch2_keylist_add(&as->parent_keys, &n->key); bch2_btree_node_write(c, n, SIX_LOCK_intent); bch2_btree_insert_node(as, parent, iter, &as->parent_keys, flags); bch2_open_buckets_put(c, &n->ob); six_lock_increment(&b->c.lock, SIX_LOCK_intent); bch2_btree_iter_node_drop(iter, b); bch2_btree_iter_node_drop(iter, m); bch2_btree_iter_node_replace(iter, n); bch2_btree_iter_verify(iter, n); bch2_btree_node_free_inmem(c, b, iter); bch2_btree_node_free_inmem(c, m, iter); six_unlock_intent(&n->c.lock); bch2_btree_update_done(as); if (!(flags & BTREE_INSERT_GC_LOCK_HELD)) up_read(&c->gc_lock); out: bch2_btree_trans_verify_locks(trans); /* * Don't downgrade locks here: we're called after successful insert, * and the caller will downgrade locks after a successful insert * anyways (in case e.g. a split was required first) * * And we're also called when inserting into interior nodes in the * split path, and downgrading to read locks in there is potentially * confusing: */ closure_sync(&cl); return; err_cycle_gc_lock: six_unlock_intent(&m->c.lock); if (flags & BTREE_INSERT_NOUNLOCK) goto out; bch2_trans_unlock(trans); down_read(&c->gc_lock); up_read(&c->gc_lock); ret = -EINTR; goto err; err_unlock: six_unlock_intent(&m->c.lock); if (!(flags & BTREE_INSERT_GC_LOCK_HELD)) up_read(&c->gc_lock); err: BUG_ON(ret == -EAGAIN && (flags & BTREE_INSERT_NOUNLOCK)); if ((ret == -EAGAIN || ret == -EINTR) && !(flags & BTREE_INSERT_NOUNLOCK)) { bch2_trans_unlock(trans); closure_sync(&cl); ret = bch2_btree_iter_traverse(iter); if (ret) goto out; goto retry; } goto out; } static int __btree_node_rewrite(struct bch_fs *c, struct btree_iter *iter, struct btree *b, unsigned flags, struct closure *cl) { struct btree *n, *parent = btree_node_parent(iter, b); struct btree_update *as; as = bch2_btree_update_start(c, iter->btree_id, (parent ? btree_update_reserve_required(c, parent) : 0) + 1, flags, cl); if (IS_ERR(as)) { trace_btree_gc_rewrite_node_fail(c, b); return PTR_ERR(as); } bch2_btree_interior_update_will_free_node(as, b); n = bch2_btree_node_alloc_replacement(as, b); bch2_btree_build_aux_trees(n); six_unlock_write(&n->c.lock); trace_btree_gc_rewrite_node(c, b); bch2_btree_node_write(c, n, SIX_LOCK_intent); if (parent) { bch2_keylist_add(&as->parent_keys, &n->key); bch2_btree_insert_node(as, parent, iter, &as->parent_keys, flags); } else { bch2_btree_set_root(as, n, iter); } bch2_open_buckets_put(c, &n->ob); six_lock_increment(&b->c.lock, SIX_LOCK_intent); bch2_btree_iter_node_drop(iter, b); bch2_btree_iter_node_replace(iter, n); bch2_btree_node_free_inmem(c, b, iter); six_unlock_intent(&n->c.lock); bch2_btree_update_done(as); return 0; } /** * bch_btree_node_rewrite - Rewrite/move a btree node * * Returns 0 on success, -EINTR or -EAGAIN on failure (i.e. * btree_check_reserve() has to wait) */ int bch2_btree_node_rewrite(struct bch_fs *c, struct btree_iter *iter, __le64 seq, unsigned flags) { struct btree_trans *trans = iter->trans; struct closure cl; struct btree *b; int ret; flags |= BTREE_INSERT_NOFAIL; closure_init_stack(&cl); bch2_btree_iter_upgrade(iter, U8_MAX); if (!(flags & BTREE_INSERT_GC_LOCK_HELD)) { if (!down_read_trylock(&c->gc_lock)) { bch2_trans_unlock(trans); down_read(&c->gc_lock); } } while (1) { ret = bch2_btree_iter_traverse(iter); if (ret) break; b = bch2_btree_iter_peek_node(iter); if (!b || b->data->keys.seq != seq) break; ret = __btree_node_rewrite(c, iter, b, flags, &cl); if (ret != -EAGAIN && ret != -EINTR) break; bch2_trans_unlock(trans); closure_sync(&cl); } bch2_btree_iter_downgrade(iter); if (!(flags & BTREE_INSERT_GC_LOCK_HELD)) up_read(&c->gc_lock); closure_sync(&cl); return ret; } static void __bch2_btree_node_update_key(struct bch_fs *c, struct btree_update *as, struct btree_iter *iter, struct btree *b, struct btree *new_hash, struct bkey_i_btree_ptr *new_key) { struct btree *parent; int ret; /* * Two corner cases that need to be thought about here: * * @b may not be reachable yet - there might be another interior update * operation waiting on @b to be written, and we're gonna deliver the * write completion to that interior update operation _before_ * persisting the new_key update * * That ends up working without us having to do anything special here: * the reason is, we do kick off (and do the in memory updates) for the * update for @new_key before we return, creating a new interior_update * operation here. * * The new interior update operation here will in effect override the * previous one. The previous one was going to terminate - make @b * reachable - in one of two ways: * - updating the btree root pointer * In that case, * no, this doesn't work. argh. */ if (b->will_make_reachable) as->must_rewrite = true; btree_interior_update_add_node_reference(as, b); /* * XXX: the rest of the update path treats this like we're actually * inserting a new node and deleting the existing node, so the * reservation needs to include enough space for @b * * that is actually sketch as fuck though and I am surprised the code * seems to work like that, definitely need to go back and rework it * into something saner. * * (I think @b is just getting double counted until the btree update * finishes and "deletes" @b on disk) */ ret = bch2_disk_reservation_add(c, &as->reserve->disk_res, c->opts.btree_node_size * bch2_bkey_nr_ptrs(bkey_i_to_s_c(&new_key->k_i)), BCH_DISK_RESERVATION_NOFAIL); BUG_ON(ret); parent = btree_node_parent(iter, b); if (parent) { if (new_hash) { bkey_copy(&new_hash->key, &new_key->k_i); ret = bch2_btree_node_hash_insert(&c->btree_cache, new_hash, b->c.level, b->c.btree_id); BUG_ON(ret); } bch2_keylist_add(&as->parent_keys, &new_key->k_i); bch2_btree_insert_node(as, parent, iter, &as->parent_keys, 0); if (new_hash) { mutex_lock(&c->btree_cache.lock); bch2_btree_node_hash_remove(&c->btree_cache, new_hash); bch2_btree_node_hash_remove(&c->btree_cache, b); bkey_copy(&b->key, &new_key->k_i); ret = __bch2_btree_node_hash_insert(&c->btree_cache, b); BUG_ON(ret); mutex_unlock(&c->btree_cache.lock); } else { bkey_copy(&b->key, &new_key->k_i); } } else { struct bch_fs_usage_online *fs_usage; BUG_ON(btree_node_root(c, b) != b); bch2_btree_node_lock_write(b, iter); mutex_lock(&c->btree_interior_update_lock); percpu_down_read(&c->mark_lock); fs_usage = bch2_fs_usage_scratch_get(c); bch2_mark_key_locked(c, bkey_i_to_s_c(&new_key->k_i), 0, 0, &fs_usage->u, 0, BCH_BUCKET_MARK_INSERT); if (gc_visited(c, gc_pos_btree_root(b->c.btree_id))) bch2_mark_key_locked(c, bkey_i_to_s_c(&new_key->k_i), 0, 0, NULL, 0, BCH_BUCKET_MARK_INSERT|| BCH_BUCKET_MARK_GC); bch2_btree_node_free_index(as, NULL, bkey_i_to_s_c(&b->key), &fs_usage->u); bch2_fs_usage_apply(c, fs_usage, &as->reserve->disk_res, 0); bch2_fs_usage_scratch_put(c, fs_usage); percpu_up_read(&c->mark_lock); mutex_unlock(&c->btree_interior_update_lock); if (PTR_HASH(&new_key->k_i) != PTR_HASH(&b->key)) { mutex_lock(&c->btree_cache.lock); bch2_btree_node_hash_remove(&c->btree_cache, b); bkey_copy(&b->key, &new_key->k_i); ret = __bch2_btree_node_hash_insert(&c->btree_cache, b); BUG_ON(ret); mutex_unlock(&c->btree_cache.lock); } else { bkey_copy(&b->key, &new_key->k_i); } btree_update_updated_root(as); bch2_btree_node_unlock_write(b, iter); } bch2_btree_update_done(as); } int bch2_btree_node_update_key(struct bch_fs *c, struct btree_iter *iter, struct btree *b, struct bkey_i_btree_ptr *new_key) { struct btree *parent = btree_node_parent(iter, b); struct btree_update *as = NULL; struct btree *new_hash = NULL; struct closure cl; int ret; closure_init_stack(&cl); if (!bch2_btree_iter_upgrade(iter, U8_MAX)) return -EINTR; if (!down_read_trylock(&c->gc_lock)) { bch2_trans_unlock(iter->trans); down_read(&c->gc_lock); if (!bch2_trans_relock(iter->trans)) { ret = -EINTR; goto err; } } /* check PTR_HASH() after @b is locked by btree_iter_traverse(): */ if (PTR_HASH(&new_key->k_i) != PTR_HASH(&b->key)) { /* bch2_btree_reserve_get will unlock */ ret = bch2_btree_cache_cannibalize_lock(c, &cl); if (ret) { bch2_trans_unlock(iter->trans); up_read(&c->gc_lock); closure_sync(&cl); down_read(&c->gc_lock); if (!bch2_trans_relock(iter->trans)) { ret = -EINTR; goto err; } } new_hash = bch2_btree_node_mem_alloc(c); } as = bch2_btree_update_start(c, iter->btree_id, parent ? btree_update_reserve_required(c, parent) : 0, BTREE_INSERT_NOFAIL| BTREE_INSERT_USE_RESERVE| BTREE_INSERT_USE_ALLOC_RESERVE, &cl); if (IS_ERR(as)) { ret = PTR_ERR(as); if (ret == -EAGAIN) ret = -EINTR; if (ret != -EINTR) goto err; bch2_trans_unlock(iter->trans); up_read(&c->gc_lock); closure_sync(&cl); down_read(&c->gc_lock); if (!bch2_trans_relock(iter->trans)) goto err; } ret = bch2_mark_bkey_replicas(c, bkey_i_to_s_c(&new_key->k_i)); if (ret) goto err_free_update; __bch2_btree_node_update_key(c, as, iter, b, new_hash, new_key); bch2_btree_iter_downgrade(iter); err: if (new_hash) { mutex_lock(&c->btree_cache.lock); list_move(&new_hash->list, &c->btree_cache.freeable); mutex_unlock(&c->btree_cache.lock); six_unlock_write(&new_hash->c.lock); six_unlock_intent(&new_hash->c.lock); } up_read(&c->gc_lock); closure_sync(&cl); return ret; err_free_update: bch2_btree_update_free(as); goto err; } /* Init code: */ /* * Only for filesystem bringup, when first reading the btree roots or allocating * btree roots when initializing a new filesystem: */ void bch2_btree_set_root_for_read(struct bch_fs *c, struct btree *b) { BUG_ON(btree_node_root(c, b)); __bch2_btree_set_root_inmem(c, b); } void bch2_btree_root_alloc(struct bch_fs *c, enum btree_id id) { struct closure cl; struct btree *b; int ret; closure_init_stack(&cl); do { ret = bch2_btree_cache_cannibalize_lock(c, &cl); closure_sync(&cl); } while (ret); b = bch2_btree_node_mem_alloc(c); bch2_btree_cache_cannibalize_unlock(c); set_btree_node_fake(b); b->c.level = 0; b->c.btree_id = id; bkey_btree_ptr_init(&b->key); b->key.k.p = POS_MAX; PTR_HASH(&b->key) = U64_MAX - id; bch2_bset_init_first(b, &b->data->keys); bch2_btree_build_aux_trees(b); b->data->flags = 0; b->data->min_key = POS_MIN; b->data->max_key = POS_MAX; b->data->format = bch2_btree_calc_format(b); btree_node_set_format(b, b->data->format); ret = bch2_btree_node_hash_insert(&c->btree_cache, b, b->c.level, b->c.btree_id); BUG_ON(ret); __bch2_btree_set_root_inmem(c, b); six_unlock_write(&b->c.lock); six_unlock_intent(&b->c.lock); } ssize_t bch2_btree_updates_print(struct bch_fs *c, char *buf) { struct printbuf out = _PBUF(buf, PAGE_SIZE); struct btree_update *as; mutex_lock(&c->btree_interior_update_lock); list_for_each_entry(as, &c->btree_interior_update_list, list) pr_buf(&out, "%p m %u w %u r %u j %llu\n", as, as->mode, as->nodes_written, atomic_read(&as->cl.remaining) & CLOSURE_REMAINING_MASK, as->journal.seq); mutex_unlock(&c->btree_interior_update_lock); return out.pos - buf; } size_t bch2_btree_interior_updates_nr_pending(struct bch_fs *c) { size_t ret = 0; struct list_head *i; mutex_lock(&c->btree_interior_update_lock); list_for_each(i, &c->btree_interior_update_list) ret++; mutex_unlock(&c->btree_interior_update_lock); return ret; }