/* * Copyright (C) 2017 Pengutronix, Juergen Borleis * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * version 2, as published by the Free Software Foundation. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * */ #include #include #include #include #include #include #include #include #include #include "lan9303.h" #define LAN9303_NUM_PORTS 3 /* 13.2 System Control and Status Registers * Multiply register number by 4 to get address offset. */ #define LAN9303_CHIP_REV 0x14 # define LAN9303_CHIP_ID 0x9303 #define LAN9303_IRQ_CFG 0x15 # define LAN9303_IRQ_CFG_IRQ_ENABLE BIT(8) # define LAN9303_IRQ_CFG_IRQ_POL BIT(4) # define LAN9303_IRQ_CFG_IRQ_TYPE BIT(0) #define LAN9303_INT_STS 0x16 # define LAN9303_INT_STS_PHY_INT2 BIT(27) # define LAN9303_INT_STS_PHY_INT1 BIT(26) #define LAN9303_INT_EN 0x17 # define LAN9303_INT_EN_PHY_INT2_EN BIT(27) # define LAN9303_INT_EN_PHY_INT1_EN BIT(26) #define LAN9303_HW_CFG 0x1D # define LAN9303_HW_CFG_READY BIT(27) # define LAN9303_HW_CFG_AMDX_EN_PORT2 BIT(26) # define LAN9303_HW_CFG_AMDX_EN_PORT1 BIT(25) #define LAN9303_PMI_DATA 0x29 #define LAN9303_PMI_ACCESS 0x2A # define LAN9303_PMI_ACCESS_PHY_ADDR(x) (((x) & 0x1f) << 11) # define LAN9303_PMI_ACCESS_MIIRINDA(x) (((x) & 0x1f) << 6) # define LAN9303_PMI_ACCESS_MII_BUSY BIT(0) # define LAN9303_PMI_ACCESS_MII_WRITE BIT(1) #define LAN9303_MANUAL_FC_1 0x68 #define LAN9303_MANUAL_FC_2 0x69 #define LAN9303_MANUAL_FC_0 0x6a #define LAN9303_SWITCH_CSR_DATA 0x6b #define LAN9303_SWITCH_CSR_CMD 0x6c #define LAN9303_SWITCH_CSR_CMD_BUSY BIT(31) #define LAN9303_SWITCH_CSR_CMD_RW BIT(30) #define LAN9303_SWITCH_CSR_CMD_LANES (BIT(19) | BIT(18) | BIT(17) | BIT(16)) #define LAN9303_VIRT_PHY_BASE 0x70 #define LAN9303_VIRT_SPECIAL_CTRL 0x77 #define LAN9303_VIRT_SPECIAL_TURBO BIT(10) /*Turbo MII Enable*/ /*13.4 Switch Fabric Control and Status Registers * Accessed indirectly via SWITCH_CSR_CMD, SWITCH_CSR_DATA. */ #define LAN9303_SW_DEV_ID 0x0000 #define LAN9303_SW_RESET 0x0001 #define LAN9303_SW_RESET_RESET BIT(0) #define LAN9303_SW_IMR 0x0004 #define LAN9303_SW_IPR 0x0005 #define LAN9303_MAC_VER_ID_0 0x0400 #define LAN9303_MAC_RX_CFG_0 0x0401 # define LAN9303_MAC_RX_CFG_X_REJECT_MAC_TYPES BIT(1) # define LAN9303_MAC_RX_CFG_X_RX_ENABLE BIT(0) #define LAN9303_MAC_RX_UNDSZE_CNT_0 0x0410 #define LAN9303_MAC_RX_64_CNT_0 0x0411 #define LAN9303_MAC_RX_127_CNT_0 0x0412 #define LAN9303_MAC_RX_255_CNT_0 0x413 #define LAN9303_MAC_RX_511_CNT_0 0x0414 #define LAN9303_MAC_RX_1023_CNT_0 0x0415 #define LAN9303_MAC_RX_MAX_CNT_0 0x0416 #define LAN9303_MAC_RX_OVRSZE_CNT_0 0x0417 #define LAN9303_MAC_RX_PKTOK_CNT_0 0x0418 #define LAN9303_MAC_RX_CRCERR_CNT_0 0x0419 #define LAN9303_MAC_RX_MULCST_CNT_0 0x041a #define LAN9303_MAC_RX_BRDCST_CNT_0 0x041b #define LAN9303_MAC_RX_PAUSE_CNT_0 0x041c #define LAN9303_MAC_RX_FRAG_CNT_0 0x041d #define LAN9303_MAC_RX_JABB_CNT_0 0x041e #define LAN9303_MAC_RX_ALIGN_CNT_0 0x041f #define LAN9303_MAC_RX_PKTLEN_CNT_0 0x0420 #define LAN9303_MAC_RX_GOODPKTLEN_CNT_0 0x0421 #define LAN9303_MAC_RX_SYMBL_CNT_0 0x0422 #define LAN9303_MAC_RX_CTLFRM_CNT_0 0x0423 #define LAN9303_MAC_TX_CFG_0 0x0440 # define LAN9303_MAC_TX_CFG_X_TX_IFG_CONFIG_DEFAULT (21 << 2) # define LAN9303_MAC_TX_CFG_X_TX_PAD_ENABLE BIT(1) # define LAN9303_MAC_TX_CFG_X_TX_ENABLE BIT(0) #define LAN9303_MAC_TX_DEFER_CNT_0 0x0451 #define LAN9303_MAC_TX_PAUSE_CNT_0 0x0452 #define LAN9303_MAC_TX_PKTOK_CNT_0 0x0453 #define LAN9303_MAC_TX_64_CNT_0 0x0454 #define LAN9303_MAC_TX_127_CNT_0 0x0455 #define LAN9303_MAC_TX_255_CNT_0 0x0456 #define LAN9303_MAC_TX_511_CNT_0 0x0457 #define LAN9303_MAC_TX_1023_CNT_0 0x0458 #define LAN9303_MAC_TX_MAX_CNT_0 0x0459 #define LAN9303_MAC_TX_UNDSZE_CNT_0 0x045a #define LAN9303_MAC_TX_PKTLEN_CNT_0 0x045c #define LAN9303_MAC_TX_BRDCST_CNT_0 0x045d #define LAN9303_MAC_TX_MULCST_CNT_0 0x045e #define LAN9303_MAC_TX_LATECOL_0 0x045f #define LAN9303_MAC_TX_EXCOL_CNT_0 0x0460 #define LAN9303_MAC_TX_SNGLECOL_CNT_0 0x0461 #define LAN9303_MAC_TX_MULTICOL_CNT_0 0x0462 #define LAN9303_MAC_TX_TOTALCOL_CNT_0 0x0463 #define LAN9303_MAC_VER_ID_1 0x0800 #define LAN9303_MAC_RX_CFG_1 0x0801 #define LAN9303_MAC_TX_CFG_1 0x0840 #define LAN9303_MAC_VER_ID_2 0x0c00 #define LAN9303_MAC_RX_CFG_2 0x0c01 #define LAN9303_MAC_TX_CFG_2 0x0c40 #define LAN9303_SWE_ALR_CMD 0x1800 # define LAN9303_ALR_CMD_MAKE_ENTRY BIT(2) # define LAN9303_ALR_CMD_GET_FIRST BIT(1) # define LAN9303_ALR_CMD_GET_NEXT BIT(0) #define LAN9303_SWE_ALR_WR_DAT_0 0x1801 #define LAN9303_SWE_ALR_WR_DAT_1 0x1802 # define LAN9303_ALR_DAT1_VALID BIT(26) # define LAN9303_ALR_DAT1_END_OF_TABL BIT(25) # define LAN9303_ALR_DAT1_AGE_OVERRID BIT(25) # define LAN9303_ALR_DAT1_STATIC BIT(24) # define LAN9303_ALR_DAT1_PORT_BITOFFS 16 # define LAN9303_ALR_DAT1_PORT_MASK (7 << LAN9303_ALR_DAT1_PORT_BITOFFS) #define LAN9303_SWE_ALR_RD_DAT_0 0x1805 #define LAN9303_SWE_ALR_RD_DAT_1 0x1806 #define LAN9303_SWE_ALR_CMD_STS 0x1808 # define ALR_STS_MAKE_PEND BIT(0) #define LAN9303_SWE_VLAN_CMD 0x180b # define LAN9303_SWE_VLAN_CMD_RNW BIT(5) # define LAN9303_SWE_VLAN_CMD_PVIDNVLAN BIT(4) #define LAN9303_SWE_VLAN_WR_DATA 0x180c #define LAN9303_SWE_VLAN_RD_DATA 0x180e # define LAN9303_SWE_VLAN_MEMBER_PORT2 BIT(17) # define LAN9303_SWE_VLAN_UNTAG_PORT2 BIT(16) # define LAN9303_SWE_VLAN_MEMBER_PORT1 BIT(15) # define LAN9303_SWE_VLAN_UNTAG_PORT1 BIT(14) # define LAN9303_SWE_VLAN_MEMBER_PORT0 BIT(13) # define LAN9303_SWE_VLAN_UNTAG_PORT0 BIT(12) #define LAN9303_SWE_VLAN_CMD_STS 0x1810 #define LAN9303_SWE_GLB_INGRESS_CFG 0x1840 # define LAN9303_SWE_GLB_INGR_IGMP_TRAP BIT(7) # define LAN9303_SWE_GLB_INGR_IGMP_PORT(p) BIT(10 + p) #define LAN9303_SWE_PORT_STATE 0x1843 # define LAN9303_SWE_PORT_STATE_FORWARDING_PORT2 (0) # define LAN9303_SWE_PORT_STATE_LEARNING_PORT2 BIT(5) # define LAN9303_SWE_PORT_STATE_BLOCKING_PORT2 BIT(4) # define LAN9303_SWE_PORT_STATE_FORWARDING_PORT1 (0) # define LAN9303_SWE_PORT_STATE_LEARNING_PORT1 BIT(3) # define LAN9303_SWE_PORT_STATE_BLOCKING_PORT1 BIT(2) # define LAN9303_SWE_PORT_STATE_FORWARDING_PORT0 (0) # define LAN9303_SWE_PORT_STATE_LEARNING_PORT0 BIT(1) # define LAN9303_SWE_PORT_STATE_BLOCKING_PORT0 BIT(0) # define LAN9303_SWE_PORT_STATE_DISABLED_PORT0 (3) #define LAN9303_SWE_PORT_MIRROR 0x1846 # define LAN9303_SWE_PORT_MIRROR_SNIFF_ALL BIT(8) # define LAN9303_SWE_PORT_MIRROR_SNIFFER_PORT2 BIT(7) # define LAN9303_SWE_PORT_MIRROR_SNIFFER_PORT1 BIT(6) # define LAN9303_SWE_PORT_MIRROR_SNIFFER_PORT0 BIT(5) # define LAN9303_SWE_PORT_MIRROR_MIRRORED_PORT2 BIT(4) # define LAN9303_SWE_PORT_MIRROR_MIRRORED_PORT1 BIT(3) # define LAN9303_SWE_PORT_MIRROR_MIRRORED_PORT0 BIT(2) # define LAN9303_SWE_PORT_MIRROR_ENABLE_RX_MIRRORING BIT(1) # define LAN9303_SWE_PORT_MIRROR_ENABLE_TX_MIRRORING BIT(0) # define LAN9303_SWE_PORT_MIRROR_DISABLED 0 #define LAN9303_SWE_INGRESS_PORT_TYPE 0x1847 #define LAN9303_SWE_INGRESS_PORT_TYPE_VLAN 3 #define LAN9303_BM_CFG 0x1c00 #define LAN9303_BM_EGRSS_PORT_TYPE 0x1c0c # define LAN9303_BM_EGRSS_PORT_TYPE_SPECIAL_TAG_PORT2 (BIT(17) | BIT(16)) # define LAN9303_BM_EGRSS_PORT_TYPE_SPECIAL_TAG_PORT1 (BIT(9) | BIT(8)) # define LAN9303_BM_EGRSS_PORT_TYPE_SPECIAL_TAG_PORT0 (BIT(1) | BIT(0)) #define LAN9303_SWITCH_PORT_REG(port, reg0) (0x400 * (port) + (reg0)) /* the built-in PHYs are of type LAN911X */ #define MII_LAN911X_SPECIAL_MODES 0x12 #define MII_LAN911X_SPECIAL_CONTROL_STATUS 0x1f static const struct regmap_range lan9303_valid_regs[] = { regmap_reg_range(0x14, 0x17), /* misc, interrupt */ regmap_reg_range(0x19, 0x19), /* endian test */ regmap_reg_range(0x1d, 0x1d), /* hardware config */ regmap_reg_range(0x23, 0x24), /* general purpose timer */ regmap_reg_range(0x27, 0x27), /* counter */ regmap_reg_range(0x29, 0x2a), /* PMI index regs */ regmap_reg_range(0x68, 0x6a), /* flow control */ regmap_reg_range(0x6b, 0x6c), /* switch fabric indirect regs */ regmap_reg_range(0x6d, 0x6f), /* misc */ regmap_reg_range(0x70, 0x77), /* virtual phy */ regmap_reg_range(0x78, 0x7a), /* GPIO */ regmap_reg_range(0x7c, 0x7e), /* MAC & reset */ regmap_reg_range(0x80, 0xb7), /* switch fabric direct regs (wr only) */ }; static const struct regmap_range lan9303_reserved_ranges[] = { regmap_reg_range(0x00, 0x13), regmap_reg_range(0x18, 0x18), regmap_reg_range(0x1a, 0x1c), regmap_reg_range(0x1e, 0x22), regmap_reg_range(0x25, 0x26), regmap_reg_range(0x28, 0x28), regmap_reg_range(0x2b, 0x67), regmap_reg_range(0x7b, 0x7b), regmap_reg_range(0x7f, 0x7f), regmap_reg_range(0xb8, 0xff), }; const struct regmap_access_table lan9303_register_set = { .yes_ranges = lan9303_valid_regs, .n_yes_ranges = ARRAY_SIZE(lan9303_valid_regs), .no_ranges = lan9303_reserved_ranges, .n_no_ranges = ARRAY_SIZE(lan9303_reserved_ranges), }; EXPORT_SYMBOL(lan9303_register_set); static int lan9303_read(struct regmap *regmap, unsigned int offset, u32 *reg) { int ret, i; /* we can lose arbitration for the I2C case, because the device * tries to detect and read an external EEPROM after reset and acts as * a master on the shared I2C bus itself. This conflicts with our * attempts to access the device as a slave at the same moment. */ for (i = 0; i < 5; i++) { ret = regmap_read(regmap, offset, reg); if (!ret) return 0; if (ret != -EAGAIN) break; msleep(500); } return -EIO; } /* Wait a while until mask & reg == value. Otherwise return timeout. */ static int lan9303_read_wait(struct lan9303 *chip, int offset, u32 mask) { int i; for (i = 0; i < 25; i++) { u32 reg; int ret; ret = lan9303_read(chip->regmap, offset, ®); if (ret) { dev_err(chip->dev, "%s failed to read offset %d: %d\n", __func__, offset, ret); return ret; } if (!(reg & mask)) return 0; usleep_range(1000, 2000); } return -ETIMEDOUT; } static int lan9303_virt_phy_reg_read(struct lan9303 *chip, int regnum) { int ret; u32 val; if (regnum > MII_EXPANSION) return -EINVAL; ret = lan9303_read(chip->regmap, LAN9303_VIRT_PHY_BASE + regnum, &val); if (ret) return ret; return val & 0xffff; } static int lan9303_virt_phy_reg_write(struct lan9303 *chip, int regnum, u16 val) { if (regnum > MII_EXPANSION) return -EINVAL; return regmap_write(chip->regmap, LAN9303_VIRT_PHY_BASE + regnum, val); } static int lan9303_indirect_phy_wait_for_completion(struct lan9303 *chip) { return lan9303_read_wait(chip, LAN9303_PMI_ACCESS, LAN9303_PMI_ACCESS_MII_BUSY); } static int lan9303_indirect_phy_read(struct lan9303 *chip, int addr, int regnum) { int ret; u32 val; val = LAN9303_PMI_ACCESS_PHY_ADDR(addr); val |= LAN9303_PMI_ACCESS_MIIRINDA(regnum); mutex_lock(&chip->indirect_mutex); ret = lan9303_indirect_phy_wait_for_completion(chip); if (ret) goto on_error; /* start the MII read cycle */ ret = regmap_write(chip->regmap, LAN9303_PMI_ACCESS, val); if (ret) goto on_error; ret = lan9303_indirect_phy_wait_for_completion(chip); if (ret) goto on_error; /* read the result of this operation */ ret = lan9303_read(chip->regmap, LAN9303_PMI_DATA, &val); if (ret) goto on_error; mutex_unlock(&chip->indirect_mutex); return val & 0xffff; on_error: mutex_unlock(&chip->indirect_mutex); return ret; } static int lan9303_indirect_phy_write(struct lan9303 *chip, int addr, int regnum, u16 val) { int ret; u32 reg; reg = LAN9303_PMI_ACCESS_PHY_ADDR(addr); reg |= LAN9303_PMI_ACCESS_MIIRINDA(regnum); reg |= LAN9303_PMI_ACCESS_MII_WRITE; mutex_lock(&chip->indirect_mutex); ret = lan9303_indirect_phy_wait_for_completion(chip); if (ret) goto on_error; /* write the data first... */ ret = regmap_write(chip->regmap, LAN9303_PMI_DATA, val); if (ret) goto on_error; /* ...then start the MII write cycle */ ret = regmap_write(chip->regmap, LAN9303_PMI_ACCESS, reg); on_error: mutex_unlock(&chip->indirect_mutex); return ret; } const struct lan9303_phy_ops lan9303_indirect_phy_ops = { .phy_read = lan9303_indirect_phy_read, .phy_write = lan9303_indirect_phy_write, }; EXPORT_SYMBOL_GPL(lan9303_indirect_phy_ops); static int lan9303_switch_wait_for_completion(struct lan9303 *chip) { return lan9303_read_wait(chip, LAN9303_SWITCH_CSR_CMD, LAN9303_SWITCH_CSR_CMD_BUSY); } static int lan9303_write_switch_reg(struct lan9303 *chip, u16 regnum, u32 val) { u32 reg; int ret; reg = regnum; reg |= LAN9303_SWITCH_CSR_CMD_LANES; reg |= LAN9303_SWITCH_CSR_CMD_BUSY; mutex_lock(&chip->indirect_mutex); ret = lan9303_switch_wait_for_completion(chip); if (ret) goto on_error; ret = regmap_write(chip->regmap, LAN9303_SWITCH_CSR_DATA, val); if (ret) { dev_err(chip->dev, "Failed to write csr data reg: %d\n", ret); goto on_error; } /* trigger write */ ret = regmap_write(chip->regmap, LAN9303_SWITCH_CSR_CMD, reg); if (ret) dev_err(chip->dev, "Failed to write csr command reg: %d\n", ret); on_error: mutex_unlock(&chip->indirect_mutex); return ret; } static int lan9303_read_switch_reg(struct lan9303 *chip, u16 regnum, u32 *val) { u32 reg; int ret; reg = regnum; reg |= LAN9303_SWITCH_CSR_CMD_LANES; reg |= LAN9303_SWITCH_CSR_CMD_RW; reg |= LAN9303_SWITCH_CSR_CMD_BUSY; mutex_lock(&chip->indirect_mutex); ret = lan9303_switch_wait_for_completion(chip); if (ret) goto on_error; /* trigger read */ ret = regmap_write(chip->regmap, LAN9303_SWITCH_CSR_CMD, reg); if (ret) { dev_err(chip->dev, "Failed to write csr command reg: %d\n", ret); goto on_error; } ret = lan9303_switch_wait_for_completion(chip); if (ret) goto on_error; ret = lan9303_read(chip->regmap, LAN9303_SWITCH_CSR_DATA, val); if (ret) dev_err(chip->dev, "Failed to read csr data reg: %d\n", ret); on_error: mutex_unlock(&chip->indirect_mutex); return ret; } static int lan9303_write_switch_reg_mask(struct lan9303 *chip, u16 regnum, u32 val, u32 mask) { int ret; u32 reg; ret = lan9303_read_switch_reg(chip, regnum, ®); if (ret) return ret; reg = (reg & ~mask) | val; return lan9303_write_switch_reg(chip, regnum, reg); } static int lan9303_write_switch_port(struct lan9303 *chip, int port, u16 regnum, u32 val) { return lan9303_write_switch_reg( chip, LAN9303_SWITCH_PORT_REG(port, regnum), val); } static int lan9303_read_switch_port(struct lan9303 *chip, int port, u16 regnum, u32 *val) { return lan9303_read_switch_reg( chip, LAN9303_SWITCH_PORT_REG(port, regnum), val); } static int lan9303_detect_phy_setup(struct lan9303 *chip) { int reg; /* depending on the 'phy_addr_sel_strap' setting, the three phys are * using IDs 0-1-2 or IDs 1-2-3. We cannot read back the * 'phy_addr_sel_strap' setting directly, so we need a test, which * configuration is active: * Special reg 18 of phy 3 reads as 0x0000, if 'phy_addr_sel_strap' is 0 * and the IDs are 0-1-2, else it contains something different from * 0x0000, which means 'phy_addr_sel_strap' is 1 and the IDs are 1-2-3. * 0xffff is returned on MDIO read with no response. */ reg = chip->ops->phy_read(chip, 3, MII_LAN911X_SPECIAL_MODES); if (reg < 0) { dev_err(chip->dev, "Failed to detect phy config: %d\n", reg); return reg; } if ((reg != 0) && (reg != 0xffff)) chip->phy_addr_sel_strap = 1; else chip->phy_addr_sel_strap = 0; dev_dbg(chip->dev, "Phy setup '%s' detected\n", chip->phy_addr_sel_strap ? "1-2-3" : "0-1-2"); return 0; } /* Map ALR-port bits to port bitmap, and back */ static const int alrport_2_portmap[] = {1, 2, 4, 0, 3, 5, 6, 7 }; static const int portmap_2_alrport[] = {3, 0, 1, 4, 2, 5, 6, 7 }; /* Return pointer to first free ALR cache entry, return NULL if none */ static struct lan9303_alr_cache_entry * lan9303_alr_cache_find_free(struct lan9303 *chip) { int i; struct lan9303_alr_cache_entry *entr = chip->alr_cache; for (i = 0; i < LAN9303_NUM_ALR_RECORDS; i++, entr++) if (entr->port_map == 0) return entr; return NULL; } /* Return pointer to ALR cache entry matching MAC address */ static struct lan9303_alr_cache_entry * lan9303_alr_cache_find_mac(struct lan9303 *chip, const u8 *mac_addr) { int i; struct lan9303_alr_cache_entry *entr = chip->alr_cache; BUILD_BUG_ON_MSG(sizeof(struct lan9303_alr_cache_entry) & 1, "ether_addr_equal require u16 alignment"); for (i = 0; i < LAN9303_NUM_ALR_RECORDS; i++, entr++) if (ether_addr_equal(entr->mac_addr, mac_addr)) return entr; return NULL; } /* Wait a while until mask & reg == value. Otherwise return timeout. */ static int lan9303_csr_reg_wait(struct lan9303 *chip, int regno, int mask, char value) { int i; for (i = 0; i < 0x1000; i++) { u32 reg; lan9303_read_switch_reg(chip, regno, ®); if ((reg & mask) == value) return 0; usleep_range(1000, 2000); } return -ETIMEDOUT; } static int lan9303_alr_make_entry_raw(struct lan9303 *chip, u32 dat0, u32 dat1) { lan9303_write_switch_reg(chip, LAN9303_SWE_ALR_WR_DAT_0, dat0); lan9303_write_switch_reg(chip, LAN9303_SWE_ALR_WR_DAT_1, dat1); lan9303_write_switch_reg(chip, LAN9303_SWE_ALR_CMD, LAN9303_ALR_CMD_MAKE_ENTRY); lan9303_csr_reg_wait(chip, LAN9303_SWE_ALR_CMD_STS, ALR_STS_MAKE_PEND, 0); lan9303_write_switch_reg(chip, LAN9303_SWE_ALR_CMD, 0); return 0; } typedef void alr_loop_cb_t(struct lan9303 *chip, u32 dat0, u32 dat1, int portmap, void *ctx); static void lan9303_alr_loop(struct lan9303 *chip, alr_loop_cb_t *cb, void *ctx) { int i; mutex_lock(&chip->alr_mutex); lan9303_write_switch_reg(chip, LAN9303_SWE_ALR_CMD, LAN9303_ALR_CMD_GET_FIRST); lan9303_write_switch_reg(chip, LAN9303_SWE_ALR_CMD, 0); for (i = 1; i < LAN9303_NUM_ALR_RECORDS; i++) { u32 dat0, dat1; int alrport, portmap; lan9303_read_switch_reg(chip, LAN9303_SWE_ALR_RD_DAT_0, &dat0); lan9303_read_switch_reg(chip, LAN9303_SWE_ALR_RD_DAT_1, &dat1); if (dat1 & LAN9303_ALR_DAT1_END_OF_TABL) break; alrport = (dat1 & LAN9303_ALR_DAT1_PORT_MASK) >> LAN9303_ALR_DAT1_PORT_BITOFFS; portmap = alrport_2_portmap[alrport]; cb(chip, dat0, dat1, portmap, ctx); lan9303_write_switch_reg(chip, LAN9303_SWE_ALR_CMD, LAN9303_ALR_CMD_GET_NEXT); lan9303_write_switch_reg(chip, LAN9303_SWE_ALR_CMD, 0); } mutex_unlock(&chip->alr_mutex); } static void alr_reg_to_mac(u32 dat0, u32 dat1, u8 mac[6]) { mac[0] = (dat0 >> 0) & 0xff; mac[1] = (dat0 >> 8) & 0xff; mac[2] = (dat0 >> 16) & 0xff; mac[3] = (dat0 >> 24) & 0xff; mac[4] = (dat1 >> 0) & 0xff; mac[5] = (dat1 >> 8) & 0xff; } struct del_port_learned_ctx { int port; }; /* Clear learned (non-static) entry on given port */ static void alr_loop_cb_del_port_learned(struct lan9303 *chip, u32 dat0, u32 dat1, int portmap, void *ctx) { struct del_port_learned_ctx *del_ctx = ctx; int port = del_ctx->port; if (((BIT(port) & portmap) == 0) || (dat1 & LAN9303_ALR_DAT1_STATIC)) return; /* learned entries has only one port, we can just delete */ dat1 &= ~LAN9303_ALR_DAT1_VALID; /* delete entry */ lan9303_alr_make_entry_raw(chip, dat0, dat1); } struct port_fdb_dump_ctx { int port; void *data; dsa_fdb_dump_cb_t *cb; }; static void alr_loop_cb_fdb_port_dump(struct lan9303 *chip, u32 dat0, u32 dat1, int portmap, void *ctx) { struct port_fdb_dump_ctx *dump_ctx = ctx; u8 mac[ETH_ALEN]; bool is_static; if ((BIT(dump_ctx->port) & portmap) == 0) return; alr_reg_to_mac(dat0, dat1, mac); is_static = !!(dat1 & LAN9303_ALR_DAT1_STATIC); dump_ctx->cb(mac, 0, is_static, dump_ctx->data); } /* Set a static ALR entry. Delete entry if port_map is zero */ static void lan9303_alr_set_entry(struct lan9303 *chip, const u8 *mac, u8 port_map, bool stp_override) { u32 dat0, dat1, alr_port; dev_dbg(chip->dev, "%s(%pM, %d)\n", __func__, mac, port_map); dat1 = LAN9303_ALR_DAT1_STATIC; if (port_map) dat1 |= LAN9303_ALR_DAT1_VALID; /* otherwise no ports: delete entry */ if (stp_override) dat1 |= LAN9303_ALR_DAT1_AGE_OVERRID; alr_port = portmap_2_alrport[port_map & 7]; dat1 &= ~LAN9303_ALR_DAT1_PORT_MASK; dat1 |= alr_port << LAN9303_ALR_DAT1_PORT_BITOFFS; dat0 = 0; dat0 |= (mac[0] << 0); dat0 |= (mac[1] << 8); dat0 |= (mac[2] << 16); dat0 |= (mac[3] << 24); dat1 |= (mac[4] << 0); dat1 |= (mac[5] << 8); lan9303_alr_make_entry_raw(chip, dat0, dat1); } /* Add port to static ALR entry, create new static entry if needed */ static int lan9303_alr_add_port(struct lan9303 *chip, const u8 *mac, int port, bool stp_override) { struct lan9303_alr_cache_entry *entr; mutex_lock(&chip->alr_mutex); entr = lan9303_alr_cache_find_mac(chip, mac); if (!entr) { /*New entry */ entr = lan9303_alr_cache_find_free(chip); if (!entr) { mutex_unlock(&chip->alr_mutex); return -ENOSPC; } ether_addr_copy(entr->mac_addr, mac); } entr->port_map |= BIT(port); entr->stp_override = stp_override; lan9303_alr_set_entry(chip, mac, entr->port_map, stp_override); mutex_unlock(&chip->alr_mutex); return 0; } /* Delete static port from ALR entry, delete entry if last port */ static int lan9303_alr_del_port(struct lan9303 *chip, const u8 *mac, int port) { struct lan9303_alr_cache_entry *entr; mutex_lock(&chip->alr_mutex); entr = lan9303_alr_cache_find_mac(chip, mac); if (!entr) goto out; /* no static entry found */ entr->port_map &= ~BIT(port); if (entr->port_map == 0) /* zero means its free again */ eth_zero_addr(entr->mac_addr); lan9303_alr_set_entry(chip, mac, entr->port_map, entr->stp_override); out: mutex_unlock(&chip->alr_mutex); return 0; } static int lan9303_disable_processing_port(struct lan9303 *chip, unsigned int port) { int ret; /* disable RX, but keep register reset default values else */ ret = lan9303_write_switch_port(chip, port, LAN9303_MAC_RX_CFG_0, LAN9303_MAC_RX_CFG_X_REJECT_MAC_TYPES); if (ret) return ret; /* disable TX, but keep register reset default values else */ return lan9303_write_switch_port(chip, port, LAN9303_MAC_TX_CFG_0, LAN9303_MAC_TX_CFG_X_TX_IFG_CONFIG_DEFAULT | LAN9303_MAC_TX_CFG_X_TX_PAD_ENABLE); } static int lan9303_enable_processing_port(struct lan9303 *chip, unsigned int port) { int ret; /* enable RX and keep register reset default values else */ ret = lan9303_write_switch_port(chip, port, LAN9303_MAC_RX_CFG_0, LAN9303_MAC_RX_CFG_X_REJECT_MAC_TYPES | LAN9303_MAC_RX_CFG_X_RX_ENABLE); if (ret) return ret; /* enable TX and keep register reset default values else */ return lan9303_write_switch_port(chip, port, LAN9303_MAC_TX_CFG_0, LAN9303_MAC_TX_CFG_X_TX_IFG_CONFIG_DEFAULT | LAN9303_MAC_TX_CFG_X_TX_PAD_ENABLE | LAN9303_MAC_TX_CFG_X_TX_ENABLE); } /* forward special tagged packets from port 0 to port 1 *or* port 2 */ static int lan9303_setup_tagging(struct lan9303 *chip) { int ret; u32 val; /* enable defining the destination port via special VLAN tagging * for port 0 */ ret = lan9303_write_switch_reg(chip, LAN9303_SWE_INGRESS_PORT_TYPE, LAN9303_SWE_INGRESS_PORT_TYPE_VLAN); if (ret) return ret; /* tag incoming packets at port 1 and 2 on their way to port 0 to be * able to discover their source port */ val = LAN9303_BM_EGRSS_PORT_TYPE_SPECIAL_TAG_PORT0; return lan9303_write_switch_reg(chip, LAN9303_BM_EGRSS_PORT_TYPE, val); } /* We want a special working switch: * - do not forward packets between port 1 and 2 * - forward everything from port 1 to port 0 * - forward everything from port 2 to port 0 */ static int lan9303_separate_ports(struct lan9303 *chip) { int ret; lan9303_alr_del_port(chip, eth_stp_addr, 0); ret = lan9303_write_switch_reg(chip, LAN9303_SWE_PORT_MIRROR, LAN9303_SWE_PORT_MIRROR_SNIFFER_PORT0 | LAN9303_SWE_PORT_MIRROR_MIRRORED_PORT1 | LAN9303_SWE_PORT_MIRROR_MIRRORED_PORT2 | LAN9303_SWE_PORT_MIRROR_ENABLE_RX_MIRRORING | LAN9303_SWE_PORT_MIRROR_SNIFF_ALL); if (ret) return ret; /* prevent port 1 and 2 from forwarding packets by their own */ return lan9303_write_switch_reg(chip, LAN9303_SWE_PORT_STATE, LAN9303_SWE_PORT_STATE_FORWARDING_PORT0 | LAN9303_SWE_PORT_STATE_BLOCKING_PORT1 | LAN9303_SWE_PORT_STATE_BLOCKING_PORT2); } static void lan9303_bridge_ports(struct lan9303 *chip) { /* ports bridged: remove mirroring */ lan9303_write_switch_reg(chip, LAN9303_SWE_PORT_MIRROR, LAN9303_SWE_PORT_MIRROR_DISABLED); lan9303_write_switch_reg(chip, LAN9303_SWE_PORT_STATE, chip->swe_port_state); lan9303_alr_add_port(chip, eth_stp_addr, 0, true); } static int lan9303_handle_reset(struct lan9303 *chip) { if (!chip->reset_gpio) return 0; if (chip->reset_duration != 0) msleep(chip->reset_duration); /* release (deassert) reset and activate the device */ gpiod_set_value_cansleep(chip->reset_gpio, 0); return 0; } /* stop processing packets for all ports */ static int lan9303_disable_processing(struct lan9303 *chip) { int p; for (p = 1; p < LAN9303_NUM_PORTS; p++) { int ret = lan9303_disable_processing_port(chip, p); if (ret) return ret; } return 0; } static int lan9303_check_device(struct lan9303 *chip) { int ret; u32 reg; ret = lan9303_read(chip->regmap, LAN9303_CHIP_REV, ®); if (ret) { dev_err(chip->dev, "failed to read chip revision register: %d\n", ret); if (!chip->reset_gpio) { dev_dbg(chip->dev, "hint: maybe failed due to missing reset GPIO\n"); } return ret; } if ((reg >> 16) != LAN9303_CHIP_ID) { dev_err(chip->dev, "expecting LAN9303 chip, but found: %X\n", reg >> 16); return ret; } /* The default state of the LAN9303 device is to forward packets between * all ports (if not configured differently by an external EEPROM). * The initial state of a DSA device must be forwarding packets only * between the external and the internal ports and no forwarding * between the external ports. In preparation we stop packet handling * at all for now until the LAN9303 device is re-programmed accordingly. */ ret = lan9303_disable_processing(chip); if (ret) dev_warn(chip->dev, "failed to disable switching %d\n", ret); dev_info(chip->dev, "Found LAN9303 rev. %u\n", reg & 0xffff); ret = lan9303_detect_phy_setup(chip); if (ret) { dev_err(chip->dev, "failed to discover phy bootstrap setup: %d\n", ret); return ret; } return 0; } /* ---------------------------- DSA -----------------------------------*/ static enum dsa_tag_protocol lan9303_get_tag_protocol(struct dsa_switch *ds, int port) { return DSA_TAG_PROTO_LAN9303; } static int lan9303_setup(struct dsa_switch *ds) { struct lan9303 *chip = ds->priv; int ret; /* Make sure that port 0 is the cpu port */ if (!dsa_is_cpu_port(ds, 0)) { dev_err(chip->dev, "port 0 is not the CPU port\n"); return -EINVAL; } ret = lan9303_setup_tagging(chip); if (ret) dev_err(chip->dev, "failed to setup port tagging %d\n", ret); ret = lan9303_separate_ports(chip); if (ret) dev_err(chip->dev, "failed to separate ports %d\n", ret); ret = lan9303_enable_processing_port(chip, 0); if (ret) dev_err(chip->dev, "failed to re-enable switching %d\n", ret); /* Trap IGMP to port 0 */ ret = lan9303_write_switch_reg_mask(chip, LAN9303_SWE_GLB_INGRESS_CFG, LAN9303_SWE_GLB_INGR_IGMP_TRAP | LAN9303_SWE_GLB_INGR_IGMP_PORT(0), LAN9303_SWE_GLB_INGR_IGMP_PORT(1) | LAN9303_SWE_GLB_INGR_IGMP_PORT(2)); if (ret) dev_err(chip->dev, "failed to setup IGMP trap %d\n", ret); return 0; } struct lan9303_mib_desc { unsigned int offset; /* offset of first MAC */ const char *name; }; static const struct lan9303_mib_desc lan9303_mib[] = { { .offset = LAN9303_MAC_RX_BRDCST_CNT_0, .name = "RxBroad", }, { .offset = LAN9303_MAC_RX_PAUSE_CNT_0, .name = "RxPause", }, { .offset = LAN9303_MAC_RX_MULCST_CNT_0, .name = "RxMulti", }, { .offset = LAN9303_MAC_RX_PKTOK_CNT_0, .name = "RxOk", }, { .offset = LAN9303_MAC_RX_CRCERR_CNT_0, .name = "RxCrcErr", }, { .offset = LAN9303_MAC_RX_ALIGN_CNT_0, .name = "RxAlignErr", }, { .offset = LAN9303_MAC_RX_JABB_CNT_0, .name = "RxJabber", }, { .offset = LAN9303_MAC_RX_FRAG_CNT_0, .name = "RxFragment", }, { .offset = LAN9303_MAC_RX_64_CNT_0, .name = "Rx64Byte", }, { .offset = LAN9303_MAC_RX_127_CNT_0, .name = "Rx128Byte", }, { .offset = LAN9303_MAC_RX_255_CNT_0, .name = "Rx256Byte", }, { .offset = LAN9303_MAC_RX_511_CNT_0, .name = "Rx512Byte", }, { .offset = LAN9303_MAC_RX_1023_CNT_0, .name = "Rx1024Byte", }, { .offset = LAN9303_MAC_RX_MAX_CNT_0, .name = "RxMaxByte", }, { .offset = LAN9303_MAC_RX_PKTLEN_CNT_0, .name = "RxByteCnt", }, { .offset = LAN9303_MAC_RX_SYMBL_CNT_0, .name = "RxSymbolCnt", }, { .offset = LAN9303_MAC_RX_CTLFRM_CNT_0, .name = "RxCfs", }, { .offset = LAN9303_MAC_RX_OVRSZE_CNT_0, .name = "RxOverFlow", }, { .offset = LAN9303_MAC_TX_UNDSZE_CNT_0, .name = "TxShort", }, { .offset = LAN9303_MAC_TX_BRDCST_CNT_0, .name = "TxBroad", }, { .offset = LAN9303_MAC_TX_PAUSE_CNT_0, .name = "TxPause", }, { .offset = LAN9303_MAC_TX_MULCST_CNT_0, .name = "TxMulti", }, { .offset = LAN9303_MAC_RX_UNDSZE_CNT_0, .name = "TxUnderRun", }, { .offset = LAN9303_MAC_TX_64_CNT_0, .name = "Tx64Byte", }, { .offset = LAN9303_MAC_TX_127_CNT_0, .name = "Tx128Byte", }, { .offset = LAN9303_MAC_TX_255_CNT_0, .name = "Tx256Byte", }, { .offset = LAN9303_MAC_TX_511_CNT_0, .name = "Tx512Byte", }, { .offset = LAN9303_MAC_TX_1023_CNT_0, .name = "Tx1024Byte", }, { .offset = LAN9303_MAC_TX_MAX_CNT_0, .name = "TxMaxByte", }, { .offset = LAN9303_MAC_TX_PKTLEN_CNT_0, .name = "TxByteCnt", }, { .offset = LAN9303_MAC_TX_PKTOK_CNT_0, .name = "TxOk", }, { .offset = LAN9303_MAC_TX_TOTALCOL_CNT_0, .name = "TxCollision", }, { .offset = LAN9303_MAC_TX_MULTICOL_CNT_0, .name = "TxMultiCol", }, { .offset = LAN9303_MAC_TX_SNGLECOL_CNT_0, .name = "TxSingleCol", }, { .offset = LAN9303_MAC_TX_EXCOL_CNT_0, .name = "TxExcCol", }, { .offset = LAN9303_MAC_TX_DEFER_CNT_0, .name = "TxDefer", }, { .offset = LAN9303_MAC_TX_LATECOL_0, .name = "TxLateCol", }, }; static void lan9303_get_strings(struct dsa_switch *ds, int port, uint8_t *data) { unsigned int u; for (u = 0; u < ARRAY_SIZE(lan9303_mib); u++) { strncpy(data + u * ETH_GSTRING_LEN, lan9303_mib[u].name, ETH_GSTRING_LEN); } } static void lan9303_get_ethtool_stats(struct dsa_switch *ds, int port, uint64_t *data) { struct lan9303 *chip = ds->priv; unsigned int u; for (u = 0; u < ARRAY_SIZE(lan9303_mib); u++) { u32 reg; int ret; ret = lan9303_read_switch_port( chip, port, lan9303_mib[u].offset, ®); if (ret) dev_warn(chip->dev, "Reading status port %d reg %u failed\n", port, lan9303_mib[u].offset); data[u] = reg; } } static int lan9303_get_sset_count(struct dsa_switch *ds) { return ARRAY_SIZE(lan9303_mib); } static int lan9303_phy_read(struct dsa_switch *ds, int phy, int regnum) { struct lan9303 *chip = ds->priv; int phy_base = chip->phy_addr_sel_strap; if (phy == phy_base) return lan9303_virt_phy_reg_read(chip, regnum); if (phy > phy_base + 2) return -ENODEV; return chip->ops->phy_read(chip, phy, regnum); } static int lan9303_phy_write(struct dsa_switch *ds, int phy, int regnum, u16 val) { struct lan9303 *chip = ds->priv; int phy_base = chip->phy_addr_sel_strap; if (phy == phy_base) return lan9303_virt_phy_reg_write(chip, regnum, val); if (phy > phy_base + 2) return -ENODEV; return chip->ops->phy_write(chip, phy, regnum, val); } static void lan9303_adjust_link(struct dsa_switch *ds, int port, struct phy_device *phydev) { struct lan9303 *chip = ds->priv; int ctl, res; if (!phy_is_pseudo_fixed_link(phydev)) return; ctl = lan9303_phy_read(ds, port, MII_BMCR); ctl &= ~BMCR_ANENABLE; if (phydev->speed == SPEED_100) ctl |= BMCR_SPEED100; else if (phydev->speed == SPEED_10) ctl &= ~BMCR_SPEED100; else dev_err(ds->dev, "unsupported speed: %d\n", phydev->speed); if (phydev->duplex == DUPLEX_FULL) ctl |= BMCR_FULLDPLX; else ctl &= ~BMCR_FULLDPLX; res = lan9303_phy_write(ds, port, MII_BMCR, ctl); if (port == chip->phy_addr_sel_strap) { /* Virtual Phy: Remove Turbo 200Mbit mode */ lan9303_read(chip->regmap, LAN9303_VIRT_SPECIAL_CTRL, &ctl); ctl &= ~LAN9303_VIRT_SPECIAL_TURBO; res = regmap_write(chip->regmap, LAN9303_VIRT_SPECIAL_CTRL, ctl); } } static int lan9303_port_enable(struct dsa_switch *ds, int port, struct phy_device *phy) { struct lan9303 *chip = ds->priv; return lan9303_enable_processing_port(chip, port); } static void lan9303_port_disable(struct dsa_switch *ds, int port, struct phy_device *phy) { struct lan9303 *chip = ds->priv; lan9303_disable_processing_port(chip, port); lan9303_phy_write(ds, chip->phy_addr_sel_strap + port, MII_BMCR, BMCR_PDOWN); } static int lan9303_port_bridge_join(struct dsa_switch *ds, int port, struct net_device *br) { struct lan9303 *chip = ds->priv; dev_dbg(chip->dev, "%s(port %d)\n", __func__, port); if (dsa_to_port(ds, 1)->bridge_dev == dsa_to_port(ds, 2)->bridge_dev) { lan9303_bridge_ports(chip); chip->is_bridged = true; /* unleash stp_state_set() */ } return 0; } static void lan9303_port_bridge_leave(struct dsa_switch *ds, int port, struct net_device *br) { struct lan9303 *chip = ds->priv; dev_dbg(chip->dev, "%s(port %d)\n", __func__, port); if (chip->is_bridged) { lan9303_separate_ports(chip); chip->is_bridged = false; } } static void lan9303_port_stp_state_set(struct dsa_switch *ds, int port, u8 state) { int portmask, portstate; struct lan9303 *chip = ds->priv; dev_dbg(chip->dev, "%s(port %d, state %d)\n", __func__, port, state); switch (state) { case BR_STATE_DISABLED: portstate = LAN9303_SWE_PORT_STATE_DISABLED_PORT0; break; case BR_STATE_BLOCKING: case BR_STATE_LISTENING: portstate = LAN9303_SWE_PORT_STATE_BLOCKING_PORT0; break; case BR_STATE_LEARNING: portstate = LAN9303_SWE_PORT_STATE_LEARNING_PORT0; break; case BR_STATE_FORWARDING: portstate = LAN9303_SWE_PORT_STATE_FORWARDING_PORT0; break; default: portstate = LAN9303_SWE_PORT_STATE_DISABLED_PORT0; dev_err(chip->dev, "unknown stp state: port %d, state %d\n", port, state); } portmask = 0x3 << (port * 2); portstate <<= (port * 2); chip->swe_port_state = (chip->swe_port_state & ~portmask) | portstate; if (chip->is_bridged) lan9303_write_switch_reg(chip, LAN9303_SWE_PORT_STATE, chip->swe_port_state); /* else: touching SWE_PORT_STATE would break port separation */ } static void lan9303_port_fast_age(struct dsa_switch *ds, int port) { struct lan9303 *chip = ds->priv; struct del_port_learned_ctx del_ctx = { .port = port, }; dev_dbg(chip->dev, "%s(%d)\n", __func__, port); lan9303_alr_loop(chip, alr_loop_cb_del_port_learned, &del_ctx); } static int lan9303_port_fdb_add(struct dsa_switch *ds, int port, const unsigned char *addr, u16 vid) { struct lan9303 *chip = ds->priv; dev_dbg(chip->dev, "%s(%d, %pM, %d)\n", __func__, port, addr, vid); if (vid) return -EOPNOTSUPP; return lan9303_alr_add_port(chip, addr, port, false); } static int lan9303_port_fdb_del(struct dsa_switch *ds, int port, const unsigned char *addr, u16 vid) { struct lan9303 *chip = ds->priv; dev_dbg(chip->dev, "%s(%d, %pM, %d)\n", __func__, port, addr, vid); if (vid) return -EOPNOTSUPP; lan9303_alr_del_port(chip, addr, port); return 0; } static int lan9303_port_fdb_dump(struct dsa_switch *ds, int port, dsa_fdb_dump_cb_t *cb, void *data) { struct lan9303 *chip = ds->priv; struct port_fdb_dump_ctx dump_ctx = { .port = port, .data = data, .cb = cb, }; dev_dbg(chip->dev, "%s(%d)\n", __func__, port); lan9303_alr_loop(chip, alr_loop_cb_fdb_port_dump, &dump_ctx); return 0; } static int lan9303_port_mdb_prepare(struct dsa_switch *ds, int port, const struct switchdev_obj_port_mdb *mdb) { struct lan9303 *chip = ds->priv; dev_dbg(chip->dev, "%s(%d, %pM, %d)\n", __func__, port, mdb->addr, mdb->vid); if (mdb->vid) return -EOPNOTSUPP; if (lan9303_alr_cache_find_mac(chip, mdb->addr)) return 0; if (!lan9303_alr_cache_find_free(chip)) return -ENOSPC; return 0; } static void lan9303_port_mdb_add(struct dsa_switch *ds, int port, const struct switchdev_obj_port_mdb *mdb) { struct lan9303 *chip = ds->priv; dev_dbg(chip->dev, "%s(%d, %pM, %d)\n", __func__, port, mdb->addr, mdb->vid); lan9303_alr_add_port(chip, mdb->addr, port, false); } static int lan9303_port_mdb_del(struct dsa_switch *ds, int port, const struct switchdev_obj_port_mdb *mdb) { struct lan9303 *chip = ds->priv; dev_dbg(chip->dev, "%s(%d, %pM, %d)\n", __func__, port, mdb->addr, mdb->vid); if (mdb->vid) return -EOPNOTSUPP; lan9303_alr_del_port(chip, mdb->addr, port); return 0; } static const struct dsa_switch_ops lan9303_switch_ops = { .get_tag_protocol = lan9303_get_tag_protocol, .setup = lan9303_setup, .get_strings = lan9303_get_strings, .phy_read = lan9303_phy_read, .phy_write = lan9303_phy_write, .adjust_link = lan9303_adjust_link, .get_ethtool_stats = lan9303_get_ethtool_stats, .get_sset_count = lan9303_get_sset_count, .port_enable = lan9303_port_enable, .port_disable = lan9303_port_disable, .port_bridge_join = lan9303_port_bridge_join, .port_bridge_leave = lan9303_port_bridge_leave, .port_stp_state_set = lan9303_port_stp_state_set, .port_fast_age = lan9303_port_fast_age, .port_fdb_add = lan9303_port_fdb_add, .port_fdb_del = lan9303_port_fdb_del, .port_fdb_dump = lan9303_port_fdb_dump, .port_mdb_prepare = lan9303_port_mdb_prepare, .port_mdb_add = lan9303_port_mdb_add, .port_mdb_del = lan9303_port_mdb_del, }; static int lan9303_register_switch(struct lan9303 *chip) { chip->ds = dsa_switch_alloc(chip->dev, LAN9303_NUM_PORTS); if (!chip->ds) return -ENOMEM; chip->ds->priv = chip; chip->ds->ops = &lan9303_switch_ops; chip->ds->phys_mii_mask = chip->phy_addr_sel_strap ? 0xe : 0x7; return dsa_register_switch(chip->ds); } static void lan9303_probe_reset_gpio(struct lan9303 *chip, struct device_node *np) { chip->reset_gpio = devm_gpiod_get_optional(chip->dev, "reset", GPIOD_OUT_LOW); if (IS_ERR(chip->reset_gpio)) { dev_dbg(chip->dev, "No reset GPIO defined\n"); return; } chip->reset_duration = 200; if (np) { of_property_read_u32(np, "reset-duration", &chip->reset_duration); } else { dev_dbg(chip->dev, "reset duration defaults to 200 ms\n"); } /* A sane reset duration should not be longer than 1s */ if (chip->reset_duration > 1000) chip->reset_duration = 1000; } int lan9303_probe(struct lan9303 *chip, struct device_node *np) { int ret; mutex_init(&chip->indirect_mutex); mutex_init(&chip->alr_mutex); lan9303_probe_reset_gpio(chip, np); ret = lan9303_handle_reset(chip); if (ret) return ret; ret = lan9303_check_device(chip); if (ret) return ret; ret = lan9303_register_switch(chip); if (ret) { dev_dbg(chip->dev, "Failed to register switch: %d\n", ret); return ret; } return 0; } EXPORT_SYMBOL(lan9303_probe); int lan9303_remove(struct lan9303 *chip) { int rc; rc = lan9303_disable_processing(chip); if (rc != 0) dev_warn(chip->dev, "shutting down failed\n"); dsa_unregister_switch(chip->ds); /* assert reset to the whole device to prevent it from doing anything */ gpiod_set_value_cansleep(chip->reset_gpio, 1); gpiod_unexport(chip->reset_gpio); return 0; } EXPORT_SYMBOL(lan9303_remove); MODULE_AUTHOR("Juergen Borleis "); MODULE_DESCRIPTION("Core driver for SMSC/Microchip LAN9303 three port ethernet switch"); MODULE_LICENSE("GPL v2");