/* * HD-audio stream operations */ #include #include #include #include #include #include #include #include #include "trace.h" /** * snd_hdac_stream_init - initialize each stream (aka device) * @bus: HD-audio core bus * @azx_dev: HD-audio core stream object to initialize * @idx: stream index number * @direction: stream direction (SNDRV_PCM_STREAM_PLAYBACK or SNDRV_PCM_STREAM_CAPTURE) * @tag: the tag id to assign * * Assign the starting bdl address to each stream (device) and initialize. */ void snd_hdac_stream_init(struct hdac_bus *bus, struct hdac_stream *azx_dev, int idx, int direction, int tag) { azx_dev->bus = bus; /* offset: SDI0=0x80, SDI1=0xa0, ... SDO3=0x160 */ azx_dev->sd_addr = bus->remap_addr + (0x20 * idx + 0x80); /* int mask: SDI0=0x01, SDI1=0x02, ... SDO3=0x80 */ azx_dev->sd_int_sta_mask = 1 << idx; azx_dev->index = idx; azx_dev->direction = direction; azx_dev->stream_tag = tag; snd_hdac_dsp_lock_init(azx_dev); list_add_tail(&azx_dev->list, &bus->stream_list); } EXPORT_SYMBOL_GPL(snd_hdac_stream_init); /** * snd_hdac_stream_start - start a stream * @azx_dev: HD-audio core stream to start * @fresh_start: false = wallclock timestamp relative to period wallclock * * Start a stream, set start_wallclk and set the running flag. */ void snd_hdac_stream_start(struct hdac_stream *azx_dev, bool fresh_start) { struct hdac_bus *bus = azx_dev->bus; trace_snd_hdac_stream_start(bus, azx_dev); azx_dev->start_wallclk = snd_hdac_chip_readl(bus, WALLCLK); if (!fresh_start) azx_dev->start_wallclk -= azx_dev->period_wallclk; /* enable SIE */ snd_hdac_chip_updatel(bus, INTCTL, 0, 1 << azx_dev->index); /* set DMA start and interrupt mask */ snd_hdac_stream_updateb(azx_dev, SD_CTL, 0, SD_CTL_DMA_START | SD_INT_MASK); azx_dev->running = true; } EXPORT_SYMBOL_GPL(snd_hdac_stream_start); /** * snd_hdac_stream_clear - stop a stream DMA * @azx_dev: HD-audio core stream to stop */ void snd_hdac_stream_clear(struct hdac_stream *azx_dev) { snd_hdac_stream_updateb(azx_dev, SD_CTL, SD_CTL_DMA_START | SD_INT_MASK, 0); snd_hdac_stream_writeb(azx_dev, SD_STS, SD_INT_MASK); /* to be sure */ azx_dev->running = false; } EXPORT_SYMBOL_GPL(snd_hdac_stream_clear); /** * snd_hdac_stream_stop - stop a stream * @azx_dev: HD-audio core stream to stop * * Stop a stream DMA and disable stream interrupt */ void snd_hdac_stream_stop(struct hdac_stream *azx_dev) { trace_snd_hdac_stream_stop(azx_dev->bus, azx_dev); snd_hdac_stream_clear(azx_dev); /* disable SIE */ snd_hdac_chip_updatel(azx_dev->bus, INTCTL, 1 << azx_dev->index, 0); } EXPORT_SYMBOL_GPL(snd_hdac_stream_stop); /** * snd_hdac_stream_reset - reset a stream * @azx_dev: HD-audio core stream to reset */ void snd_hdac_stream_reset(struct hdac_stream *azx_dev) { unsigned char val; int timeout; snd_hdac_stream_clear(azx_dev); snd_hdac_stream_updateb(azx_dev, SD_CTL, 0, SD_CTL_STREAM_RESET); udelay(3); timeout = 300; do { val = snd_hdac_stream_readb(azx_dev, SD_CTL) & SD_CTL_STREAM_RESET; if (val) break; } while (--timeout); val &= ~SD_CTL_STREAM_RESET; snd_hdac_stream_writeb(azx_dev, SD_CTL, val); udelay(3); timeout = 300; /* waiting for hardware to report that the stream is out of reset */ do { val = snd_hdac_stream_readb(azx_dev, SD_CTL) & SD_CTL_STREAM_RESET; if (!val) break; } while (--timeout); /* reset first position - may not be synced with hw at this time */ if (azx_dev->posbuf) *azx_dev->posbuf = 0; } EXPORT_SYMBOL_GPL(snd_hdac_stream_reset); /** * snd_hdac_stream_setup - set up the SD for streaming * @azx_dev: HD-audio core stream to set up */ int snd_hdac_stream_setup(struct hdac_stream *azx_dev) { struct hdac_bus *bus = azx_dev->bus; struct snd_pcm_runtime *runtime = azx_dev->substream->runtime; unsigned int val; /* make sure the run bit is zero for SD */ snd_hdac_stream_clear(azx_dev); /* program the stream_tag */ val = snd_hdac_stream_readl(azx_dev, SD_CTL); val = (val & ~SD_CTL_STREAM_TAG_MASK) | (azx_dev->stream_tag << SD_CTL_STREAM_TAG_SHIFT); if (!bus->snoop) val |= SD_CTL_TRAFFIC_PRIO; snd_hdac_stream_writel(azx_dev, SD_CTL, val); /* program the length of samples in cyclic buffer */ snd_hdac_stream_writel(azx_dev, SD_CBL, azx_dev->bufsize); /* program the stream format */ /* this value needs to be the same as the one programmed */ snd_hdac_stream_writew(azx_dev, SD_FORMAT, azx_dev->format_val); /* program the stream LVI (last valid index) of the BDL */ snd_hdac_stream_writew(azx_dev, SD_LVI, azx_dev->frags - 1); /* program the BDL address */ /* lower BDL address */ snd_hdac_stream_writel(azx_dev, SD_BDLPL, (u32)azx_dev->bdl.addr); /* upper BDL address */ snd_hdac_stream_writel(azx_dev, SD_BDLPU, upper_32_bits(azx_dev->bdl.addr)); /* enable the position buffer */ if (bus->use_posbuf && bus->posbuf.addr) { if (!(snd_hdac_chip_readl(bus, DPLBASE) & AZX_DPLBASE_ENABLE)) snd_hdac_chip_writel(bus, DPLBASE, (u32)bus->posbuf.addr | AZX_DPLBASE_ENABLE); } /* set the interrupt enable bits in the descriptor control register */ snd_hdac_stream_updatel(azx_dev, SD_CTL, 0, SD_INT_MASK); if (azx_dev->direction == SNDRV_PCM_STREAM_PLAYBACK) azx_dev->fifo_size = snd_hdac_stream_readw(azx_dev, SD_FIFOSIZE) + 1; else azx_dev->fifo_size = 0; /* when LPIB delay correction gives a small negative value, * we ignore it; currently set the threshold statically to * 64 frames */ if (runtime->period_size > 64) azx_dev->delay_negative_threshold = -frames_to_bytes(runtime, 64); else azx_dev->delay_negative_threshold = 0; /* wallclk has 24Mhz clock source */ azx_dev->period_wallclk = (((runtime->period_size * 24000) / runtime->rate) * 1000); return 0; } EXPORT_SYMBOL_GPL(snd_hdac_stream_setup); /** * snd_hdac_stream_cleanup - cleanup a stream * @azx_dev: HD-audio core stream to clean up */ void snd_hdac_stream_cleanup(struct hdac_stream *azx_dev) { snd_hdac_stream_writel(azx_dev, SD_BDLPL, 0); snd_hdac_stream_writel(azx_dev, SD_BDLPU, 0); snd_hdac_stream_writel(azx_dev, SD_CTL, 0); azx_dev->bufsize = 0; azx_dev->period_bytes = 0; azx_dev->format_val = 0; } EXPORT_SYMBOL_GPL(snd_hdac_stream_cleanup); /** * snd_hdac_stream_assign - assign a stream for the PCM * @bus: HD-audio core bus * @substream: PCM substream to assign * * Look for an unused stream for the given PCM substream, assign it * and return the stream object. If no stream is free, returns NULL. * The function tries to keep using the same stream object when it's used * beforehand. Also, when bus->reverse_assign flag is set, the last free * or matching entry is returned. This is needed for some strange codecs. */ struct hdac_stream *snd_hdac_stream_assign(struct hdac_bus *bus, struct snd_pcm_substream *substream) { struct hdac_stream *azx_dev; struct hdac_stream *res = NULL; /* make a non-zero unique key for the substream */ int key = (substream->pcm->device << 16) | (substream->number << 2) | (substream->stream + 1); list_for_each_entry(azx_dev, &bus->stream_list, list) { if (azx_dev->direction != substream->stream) continue; if (azx_dev->opened) continue; if (azx_dev->assigned_key == key) { res = azx_dev; break; } if (!res || bus->reverse_assign) res = azx_dev; } if (res) { spin_lock_irq(&bus->reg_lock); res->opened = 1; res->running = 0; res->assigned_key = key; res->substream = substream; spin_unlock_irq(&bus->reg_lock); } return res; } EXPORT_SYMBOL_GPL(snd_hdac_stream_assign); /** * snd_hdac_stream_release - release the assigned stream * @azx_dev: HD-audio core stream to release * * Release the stream that has been assigned by snd_hdac_stream_assign(). */ void snd_hdac_stream_release(struct hdac_stream *azx_dev) { struct hdac_bus *bus = azx_dev->bus; spin_lock_irq(&bus->reg_lock); azx_dev->opened = 0; azx_dev->running = 0; azx_dev->substream = NULL; spin_unlock_irq(&bus->reg_lock); } EXPORT_SYMBOL_GPL(snd_hdac_stream_release); /* * set up a BDL entry */ static int setup_bdle(struct hdac_bus *bus, struct snd_dma_buffer *dmab, struct hdac_stream *azx_dev, __le32 **bdlp, int ofs, int size, int with_ioc) { __le32 *bdl = *bdlp; while (size > 0) { dma_addr_t addr; int chunk; if (azx_dev->frags >= AZX_MAX_BDL_ENTRIES) return -EINVAL; addr = snd_sgbuf_get_addr(dmab, ofs); /* program the address field of the BDL entry */ bdl[0] = cpu_to_le32((u32)addr); bdl[1] = cpu_to_le32(upper_32_bits(addr)); /* program the size field of the BDL entry */ chunk = snd_sgbuf_get_chunk_size(dmab, ofs, size); /* one BDLE cannot cross 4K boundary on CTHDA chips */ if (bus->align_bdle_4k) { u32 remain = 0x1000 - (ofs & 0xfff); if (chunk > remain) chunk = remain; } bdl[2] = cpu_to_le32(chunk); /* program the IOC to enable interrupt * only when the whole fragment is processed */ size -= chunk; bdl[3] = (size || !with_ioc) ? 0 : cpu_to_le32(0x01); bdl += 4; azx_dev->frags++; ofs += chunk; } *bdlp = bdl; return ofs; } /** * snd_hdac_stream_setup_periods - set up BDL entries * @azx_dev: HD-audio core stream to set up * * Set up the buffer descriptor table of the given stream based on the * period and buffer sizes of the assigned PCM substream. */ int snd_hdac_stream_setup_periods(struct hdac_stream *azx_dev) { struct hdac_bus *bus = azx_dev->bus; struct snd_pcm_substream *substream = azx_dev->substream; struct snd_pcm_runtime *runtime = substream->runtime; __le32 *bdl; int i, ofs, periods, period_bytes; int pos_adj, pos_align; /* reset BDL address */ snd_hdac_stream_writel(azx_dev, SD_BDLPL, 0); snd_hdac_stream_writel(azx_dev, SD_BDLPU, 0); period_bytes = azx_dev->period_bytes; periods = azx_dev->bufsize / period_bytes; /* program the initial BDL entries */ bdl = (__le32 *)azx_dev->bdl.area; ofs = 0; azx_dev->frags = 0; pos_adj = bus->bdl_pos_adj; if (!azx_dev->no_period_wakeup && pos_adj > 0) { pos_align = pos_adj; pos_adj = (pos_adj * runtime->rate + 47999) / 48000; if (!pos_adj) pos_adj = pos_align; else pos_adj = ((pos_adj + pos_align - 1) / pos_align) * pos_align; pos_adj = frames_to_bytes(runtime, pos_adj); if (pos_adj >= period_bytes) { dev_warn(bus->dev, "Too big adjustment %d\n", pos_adj); pos_adj = 0; } else { ofs = setup_bdle(bus, snd_pcm_get_dma_buf(substream), azx_dev, &bdl, ofs, pos_adj, true); if (ofs < 0) goto error; } } else pos_adj = 0; for (i = 0; i < periods; i++) { if (i == periods - 1 && pos_adj) ofs = setup_bdle(bus, snd_pcm_get_dma_buf(substream), azx_dev, &bdl, ofs, period_bytes - pos_adj, 0); else ofs = setup_bdle(bus, snd_pcm_get_dma_buf(substream), azx_dev, &bdl, ofs, period_bytes, !azx_dev->no_period_wakeup); if (ofs < 0) goto error; } return 0; error: dev_err(bus->dev, "Too many BDL entries: buffer=%d, period=%d\n", azx_dev->bufsize, period_bytes); return -EINVAL; } EXPORT_SYMBOL_GPL(snd_hdac_stream_setup_periods); /* snd_hdac_stream_set_params - set stream parameters * @azx_dev: HD-audio core stream for which parameters are to be set * @format_val: format value parameter * * Setup the HD-audio core stream parameters from substream of the stream * and passed format value */ int snd_hdac_stream_set_params(struct hdac_stream *azx_dev, unsigned int format_val) { unsigned int bufsize, period_bytes; struct snd_pcm_substream *substream = azx_dev->substream; struct snd_pcm_runtime *runtime; int err; if (!substream) return -EINVAL; runtime = substream->runtime; bufsize = snd_pcm_lib_buffer_bytes(substream); period_bytes = snd_pcm_lib_period_bytes(substream); if (bufsize != azx_dev->bufsize || period_bytes != azx_dev->period_bytes || format_val != azx_dev->format_val || runtime->no_period_wakeup != azx_dev->no_period_wakeup) { azx_dev->bufsize = bufsize; azx_dev->period_bytes = period_bytes; azx_dev->format_val = format_val; azx_dev->no_period_wakeup = runtime->no_period_wakeup; err = snd_hdac_stream_setup_periods(azx_dev); if (err < 0) return err; } return 0; } EXPORT_SYMBOL_GPL(snd_hdac_stream_set_params); static cycle_t azx_cc_read(const struct cyclecounter *cc) { struct hdac_stream *azx_dev = container_of(cc, struct hdac_stream, cc); return snd_hdac_chip_readl(azx_dev->bus, WALLCLK); } static void azx_timecounter_init(struct hdac_stream *azx_dev, bool force, cycle_t last) { struct timecounter *tc = &azx_dev->tc; struct cyclecounter *cc = &azx_dev->cc; u64 nsec; cc->read = azx_cc_read; cc->mask = CLOCKSOURCE_MASK(32); /* * Converting from 24 MHz to ns means applying a 125/3 factor. * To avoid any saturation issues in intermediate operations, * the 125 factor is applied first. The division is applied * last after reading the timecounter value. * Applying the 1/3 factor as part of the multiplication * requires at least 20 bits for a decent precision, however * overflows occur after about 4 hours or less, not a option. */ cc->mult = 125; /* saturation after 195 years */ cc->shift = 0; nsec = 0; /* audio time is elapsed time since trigger */ timecounter_init(tc, cc, nsec); if (force) { /* * force timecounter to use predefined value, * used for synchronized starts */ tc->cycle_last = last; } } /** * snd_hdac_stream_timecounter_init - initialize time counter * @azx_dev: HD-audio core stream (master stream) * @streams: bit flags of streams to set up * * Initializes the time counter of streams marked by the bit flags (each * bit corresponds to the stream index). * The trigger timestamp of PCM substream assigned to the given stream is * updated accordingly, too. */ void snd_hdac_stream_timecounter_init(struct hdac_stream *azx_dev, unsigned int streams) { struct hdac_bus *bus = azx_dev->bus; struct snd_pcm_runtime *runtime = azx_dev->substream->runtime; struct hdac_stream *s; bool inited = false; cycle_t cycle_last = 0; int i = 0; list_for_each_entry(s, &bus->stream_list, list) { if (streams & (1 << i)) { azx_timecounter_init(s, inited, cycle_last); if (!inited) { inited = true; cycle_last = s->tc.cycle_last; } } i++; } snd_pcm_gettime(runtime, &runtime->trigger_tstamp); runtime->trigger_tstamp_latched = true; } EXPORT_SYMBOL_GPL(snd_hdac_stream_timecounter_init); /** * snd_hdac_stream_sync_trigger - turn on/off stream sync register * @azx_dev: HD-audio core stream (master stream) * @streams: bit flags of streams to sync */ void snd_hdac_stream_sync_trigger(struct hdac_stream *azx_dev, bool set, unsigned int streams, unsigned int reg) { struct hdac_bus *bus = azx_dev->bus; unsigned int val; if (!reg) reg = AZX_REG_SSYNC; val = _snd_hdac_chip_read(l, bus, reg); if (set) val |= streams; else val &= ~streams; _snd_hdac_chip_write(l, bus, reg, val); } EXPORT_SYMBOL_GPL(snd_hdac_stream_sync_trigger); /** * snd_hdac_stream_sync - sync with start/strop trigger operation * @azx_dev: HD-audio core stream (master stream) * @start: true = start, false = stop * @streams: bit flags of streams to sync * * For @start = true, wait until all FIFOs get ready. * For @start = false, wait until all RUN bits are cleared. */ void snd_hdac_stream_sync(struct hdac_stream *azx_dev, bool start, unsigned int streams) { struct hdac_bus *bus = azx_dev->bus; int i, nwait, timeout; struct hdac_stream *s; for (timeout = 5000; timeout; timeout--) { nwait = 0; i = 0; list_for_each_entry(s, &bus->stream_list, list) { if (streams & (1 << i)) { if (start) { /* check FIFO gets ready */ if (!(snd_hdac_stream_readb(s, SD_STS) & SD_STS_FIFO_READY)) nwait++; } else { /* check RUN bit is cleared */ if (snd_hdac_stream_readb(s, SD_CTL) & SD_CTL_DMA_START) nwait++; } } i++; } if (!nwait) break; cpu_relax(); } } EXPORT_SYMBOL_GPL(snd_hdac_stream_sync); #ifdef CONFIG_SND_HDA_DSP_LOADER /** * snd_hdac_dsp_prepare - prepare for DSP loading * @azx_dev: HD-audio core stream used for DSP loading * @format: HD-audio stream format * @byte_size: data chunk byte size * @bufp: allocated buffer * * Allocate the buffer for the given size and set up the given stream for * DSP loading. Returns the stream tag (>= 0), or a negative error code. */ int snd_hdac_dsp_prepare(struct hdac_stream *azx_dev, unsigned int format, unsigned int byte_size, struct snd_dma_buffer *bufp) { struct hdac_bus *bus = azx_dev->bus; u32 *bdl; int err; snd_hdac_dsp_lock(azx_dev); spin_lock_irq(&bus->reg_lock); if (azx_dev->running || azx_dev->locked) { spin_unlock_irq(&bus->reg_lock); err = -EBUSY; goto unlock; } azx_dev->locked = true; spin_unlock_irq(&bus->reg_lock); err = bus->io_ops->dma_alloc_pages(bus, SNDRV_DMA_TYPE_DEV_SG, byte_size, bufp); if (err < 0) goto err_alloc; azx_dev->bufsize = byte_size; azx_dev->period_bytes = byte_size; azx_dev->format_val = format; snd_hdac_stream_reset(azx_dev); /* reset BDL address */ snd_hdac_stream_writel(azx_dev, SD_BDLPL, 0); snd_hdac_stream_writel(azx_dev, SD_BDLPU, 0); azx_dev->frags = 0; bdl = (u32 *)azx_dev->bdl.area; err = setup_bdle(bus, bufp, azx_dev, &bdl, 0, byte_size, 0); if (err < 0) goto error; snd_hdac_stream_setup(azx_dev); snd_hdac_dsp_unlock(azx_dev); return azx_dev->stream_tag; error: bus->io_ops->dma_free_pages(bus, bufp); err_alloc: spin_lock_irq(&bus->reg_lock); azx_dev->locked = false; spin_unlock_irq(&bus->reg_lock); unlock: snd_hdac_dsp_unlock(azx_dev); return err; } EXPORT_SYMBOL_GPL(snd_hdac_dsp_prepare); /** * snd_hdac_dsp_trigger - start / stop DSP loading * @azx_dev: HD-audio core stream used for DSP loading * @start: trigger start or stop */ void snd_hdac_dsp_trigger(struct hdac_stream *azx_dev, bool start) { if (start) snd_hdac_stream_start(azx_dev, true); else snd_hdac_stream_stop(azx_dev); } EXPORT_SYMBOL_GPL(snd_hdac_dsp_trigger); /** * snd_hdac_dsp_cleanup - clean up the stream from DSP loading to normal * @azx_dev: HD-audio core stream used for DSP loading * @dmab: buffer used by DSP loading */ void snd_hdac_dsp_cleanup(struct hdac_stream *azx_dev, struct snd_dma_buffer *dmab) { struct hdac_bus *bus = azx_dev->bus; if (!dmab->area || !azx_dev->locked) return; snd_hdac_dsp_lock(azx_dev); /* reset BDL address */ snd_hdac_stream_writel(azx_dev, SD_BDLPL, 0); snd_hdac_stream_writel(azx_dev, SD_BDLPU, 0); snd_hdac_stream_writel(azx_dev, SD_CTL, 0); azx_dev->bufsize = 0; azx_dev->period_bytes = 0; azx_dev->format_val = 0; bus->io_ops->dma_free_pages(bus, dmab); dmab->area = NULL; spin_lock_irq(&bus->reg_lock); azx_dev->locked = false; spin_unlock_irq(&bus->reg_lock); snd_hdac_dsp_unlock(azx_dev); } EXPORT_SYMBOL_GPL(snd_hdac_dsp_cleanup); #endif /* CONFIG_SND_HDA_DSP_LOADER */