/* linear.c : Multiple Devices driver for Linux Copyright (C) 1994-96 Marc ZYNGIER or Linear mode management functions. This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2, or (at your option) any later version. You should have received a copy of the GNU General Public License (for example /usr/src/linux/COPYING); if not, write to the Free Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */ #include #include #include #include #include #include "md.h" #include "linear.h" /* * find which device holds a particular offset */ static inline struct dev_info *which_dev(struct mddev *mddev, sector_t sector) { int lo, mid, hi; struct linear_conf *conf; lo = 0; hi = mddev->raid_disks - 1; conf = mddev->private; /* * Binary Search */ while (hi > lo) { mid = (hi + lo) / 2; if (sector < conf->disks[mid].end_sector) hi = mid; else lo = mid + 1; } return conf->disks + lo; } /** * linear_mergeable_bvec -- tell bio layer if two requests can be merged * @q: request queue * @bvm: properties of new bio * @biovec: the request that could be merged to it. * * Return amount of bytes we can take at this offset */ static int linear_mergeable_bvec(struct mddev *mddev, struct bvec_merge_data *bvm, struct bio_vec *biovec) { struct dev_info *dev0; unsigned long maxsectors, bio_sectors = bvm->bi_size >> 9; sector_t sector = bvm->bi_sector + get_start_sect(bvm->bi_bdev); int maxbytes = biovec->bv_len; struct request_queue *subq; dev0 = which_dev(mddev, sector); maxsectors = dev0->end_sector - sector; subq = bdev_get_queue(dev0->rdev->bdev); if (subq->merge_bvec_fn) { bvm->bi_bdev = dev0->rdev->bdev; bvm->bi_sector -= dev0->end_sector - dev0->rdev->sectors; maxbytes = min(maxbytes, subq->merge_bvec_fn(subq, bvm, biovec)); } if (maxsectors < bio_sectors) maxsectors = 0; else maxsectors -= bio_sectors; if (maxsectors <= (PAGE_SIZE >> 9 ) && bio_sectors == 0) return maxbytes; if (maxsectors > (maxbytes >> 9)) return maxbytes; else return maxsectors << 9; } static int linear_congested(struct mddev *mddev, int bits) { struct linear_conf *conf; int i, ret = 0; conf = mddev->private; for (i = 0; i < mddev->raid_disks && !ret ; i++) { struct request_queue *q = bdev_get_queue(conf->disks[i].rdev->bdev); ret |= bdi_congested(&q->backing_dev_info, bits); } return ret; } static sector_t linear_size(struct mddev *mddev, sector_t sectors, int raid_disks) { struct linear_conf *conf; sector_t array_sectors; conf = mddev->private; WARN_ONCE(sectors || raid_disks, "%s does not support generic reshape\n", __func__); array_sectors = conf->array_sectors; return array_sectors; } static struct linear_conf *linear_conf(struct mddev *mddev, int raid_disks) { struct linear_conf *conf; struct md_rdev *rdev; int i, cnt; bool discard_supported = false; conf = kzalloc (sizeof (*conf) + raid_disks*sizeof(struct dev_info), GFP_KERNEL); if (!conf) return NULL; cnt = 0; conf->array_sectors = 0; rdev_for_each(rdev, mddev) { int j = rdev->raid_disk; struct dev_info *disk = conf->disks + j; sector_t sectors; if (j < 0 || j >= raid_disks || disk->rdev) { printk(KERN_ERR "md/linear:%s: disk numbering problem. Aborting!\n", mdname(mddev)); goto out; } disk->rdev = rdev; if (mddev->chunk_sectors) { sectors = rdev->sectors; sector_div(sectors, mddev->chunk_sectors); rdev->sectors = sectors * mddev->chunk_sectors; } disk_stack_limits(mddev->gendisk, rdev->bdev, rdev->data_offset << 9); conf->array_sectors += rdev->sectors; cnt++; if (blk_queue_discard(bdev_get_queue(rdev->bdev))) discard_supported = true; } if (cnt != raid_disks) { printk(KERN_ERR "md/linear:%s: not enough drives present. Aborting!\n", mdname(mddev)); goto out; } if (!discard_supported) queue_flag_clear_unlocked(QUEUE_FLAG_DISCARD, mddev->queue); else queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, mddev->queue); /* * Here we calculate the device offsets. */ conf->disks[0].end_sector = conf->disks[0].rdev->sectors; for (i = 1; i < raid_disks; i++) conf->disks[i].end_sector = conf->disks[i-1].end_sector + conf->disks[i].rdev->sectors; return conf; out: kfree(conf); return NULL; } static int linear_run (struct mddev *mddev) { struct linear_conf *conf; int ret; if (md_check_no_bitmap(mddev)) return -EINVAL; conf = linear_conf(mddev, mddev->raid_disks); if (!conf) return 1; mddev->private = conf; md_set_array_sectors(mddev, linear_size(mddev, 0, 0)); ret = md_integrity_register(mddev); if (ret) { kfree(conf); mddev->private = NULL; } return ret; } static int linear_add(struct mddev *mddev, struct md_rdev *rdev) { /* Adding a drive to a linear array allows the array to grow. * It is permitted if the new drive has a matching superblock * already on it, with raid_disk equal to raid_disks. * It is achieved by creating a new linear_private_data structure * and swapping it in in-place of the current one. * The current one is never freed until the array is stopped. * This avoids races. */ struct linear_conf *newconf, *oldconf; if (rdev->saved_raid_disk != mddev->raid_disks) return -EINVAL; rdev->raid_disk = rdev->saved_raid_disk; rdev->saved_raid_disk = -1; newconf = linear_conf(mddev,mddev->raid_disks+1); if (!newconf) return -ENOMEM; mddev_suspend(mddev); oldconf = mddev->private; mddev->raid_disks++; mddev->private = newconf; md_set_array_sectors(mddev, linear_size(mddev, 0, 0)); set_capacity(mddev->gendisk, mddev->array_sectors); mddev_resume(mddev); revalidate_disk(mddev->gendisk); kfree(oldconf); return 0; } static int linear_stop (struct mddev *mddev) { struct linear_conf *conf = mddev->private; kfree(conf); mddev->private = NULL; return 0; } static void linear_make_request(struct mddev *mddev, struct bio *bio) { char b[BDEVNAME_SIZE]; struct dev_info *tmp_dev; struct bio *split; sector_t start_sector, end_sector, data_offset; if (unlikely(bio->bi_rw & REQ_FLUSH)) { md_flush_request(mddev, bio); return; } do { tmp_dev = which_dev(mddev, bio->bi_iter.bi_sector); start_sector = tmp_dev->end_sector - tmp_dev->rdev->sectors; end_sector = tmp_dev->end_sector; data_offset = tmp_dev->rdev->data_offset; bio->bi_bdev = tmp_dev->rdev->bdev; if (unlikely(bio->bi_iter.bi_sector >= end_sector || bio->bi_iter.bi_sector < start_sector)) goto out_of_bounds; if (unlikely(bio_end_sector(bio) > end_sector)) { /* This bio crosses a device boundary, so we have to * split it. */ split = bio_split(bio, end_sector - bio->bi_iter.bi_sector, GFP_NOIO, fs_bio_set); bio_chain(split, bio); } else { split = bio; } split->bi_iter.bi_sector = split->bi_iter.bi_sector - start_sector + data_offset; if (unlikely((split->bi_rw & REQ_DISCARD) && !blk_queue_discard(bdev_get_queue(split->bi_bdev)))) { /* Just ignore it */ bio_endio(split, 0); } else generic_make_request(split); } while (split != bio); return; out_of_bounds: printk(KERN_ERR "md/linear:%s: make_request: Sector %llu out of bounds on " "dev %s: %llu sectors, offset %llu\n", mdname(mddev), (unsigned long long)bio->bi_iter.bi_sector, bdevname(tmp_dev->rdev->bdev, b), (unsigned long long)tmp_dev->rdev->sectors, (unsigned long long)start_sector); bio_io_error(bio); } static void linear_status (struct seq_file *seq, struct mddev *mddev) { seq_printf(seq, " %dk rounding", mddev->chunk_sectors / 2); } static void linear_quiesce(struct mddev *mddev, int state) { } static struct md_personality linear_personality = { .name = "linear", .level = LEVEL_LINEAR, .owner = THIS_MODULE, .make_request = linear_make_request, .run = linear_run, .stop = linear_stop, .status = linear_status, .hot_add_disk = linear_add, .size = linear_size, .quiesce = linear_quiesce, .congested = linear_congested, .mergeable_bvec = linear_mergeable_bvec, }; static int __init linear_init (void) { return register_md_personality (&linear_personality); } static void linear_exit (void) { unregister_md_personality (&linear_personality); } module_init(linear_init); module_exit(linear_exit); MODULE_LICENSE("GPL"); MODULE_DESCRIPTION("Linear device concatenation personality for MD"); MODULE_ALIAS("md-personality-1"); /* LINEAR - deprecated*/ MODULE_ALIAS("md-linear"); MODULE_ALIAS("md-level--1");