// SPDX-License-Identifier: GPL-2.0 #include "bcachefs.h" #include "alloc_foreground.h" #include "btree_iter.h" #include "buckets.h" #include "clock.h" #include "disk_groups.h" #include "extents.h" #include "io.h" #include "move.h" #include "rebalance.h" #include "super-io.h" #include "trace.h" #include #include #include static inline bool rebalance_ptr_pred(struct bch_fs *c, struct extent_ptr_decoded p, struct bch_io_opts *io_opts) { if (io_opts->background_target && !bch2_dev_in_target(c, p.ptr.dev, io_opts->background_target) && !p.ptr.cached) return true; if (io_opts->background_compression && p.crc.compression_type != bch2_compression_opt_to_type[io_opts->background_compression]) return true; return false; } void bch2_rebalance_add_key(struct bch_fs *c, struct bkey_s_c k, struct bch_io_opts *io_opts) { const union bch_extent_entry *entry; struct extent_ptr_decoded p; struct bkey_s_c_extent e; if (!bkey_extent_is_data(k.k)) return; if (!io_opts->background_target && !io_opts->background_compression) return; e = bkey_s_c_to_extent(k); extent_for_each_ptr_decode(e, p, entry) if (rebalance_ptr_pred(c, p, io_opts)) { struct bch_dev *ca = bch_dev_bkey_exists(c, p.ptr.dev); if (atomic64_add_return(p.crc.compressed_size, &ca->rebalance_work) == p.crc.compressed_size) rebalance_wakeup(c); } } void bch2_rebalance_add_work(struct bch_fs *c, u64 sectors) { if (atomic64_add_return(sectors, &c->rebalance.work_unknown_dev) == sectors) rebalance_wakeup(c); } static enum data_cmd rebalance_pred(struct bch_fs *c, void *arg, enum bkey_type type, struct bkey_s_c_extent e, struct bch_io_opts *io_opts, struct data_opts *data_opts) { const union bch_extent_entry *entry; struct extent_ptr_decoded p; /* Make sure we have room to add a new pointer: */ if (bkey_val_u64s(e.k) + BKEY_EXTENT_PTR_U64s_MAX > BKEY_EXTENT_VAL_U64s_MAX) return DATA_SKIP; extent_for_each_ptr_decode(e, p, entry) if (rebalance_ptr_pred(c, p, io_opts)) goto found; return DATA_SKIP; found: data_opts->target = io_opts->background_target; data_opts->btree_insert_flags = 0; return DATA_ADD_REPLICAS; } struct rebalance_work { int dev_most_full_idx; unsigned dev_most_full_percent; u64 dev_most_full_work; u64 dev_most_full_capacity; u64 total_work; }; static void rebalance_work_accumulate(struct rebalance_work *w, u64 dev_work, u64 unknown_dev, u64 capacity, int idx) { unsigned percent_full; u64 work = dev_work + unknown_dev; if (work < dev_work || work < unknown_dev) work = U64_MAX; work = min(work, capacity); percent_full = div64_u64(work * 100, capacity); if (percent_full >= w->dev_most_full_percent) { w->dev_most_full_idx = idx; w->dev_most_full_percent = percent_full; w->dev_most_full_work = work; w->dev_most_full_capacity = capacity; } if (w->total_work + dev_work >= w->total_work && w->total_work + dev_work >= dev_work) w->total_work += dev_work; } static struct rebalance_work rebalance_work(struct bch_fs *c) { struct bch_dev *ca; struct rebalance_work ret = { .dev_most_full_idx = -1 }; u64 unknown_dev = atomic64_read(&c->rebalance.work_unknown_dev); unsigned i; for_each_online_member(ca, c, i) rebalance_work_accumulate(&ret, atomic64_read(&ca->rebalance_work), unknown_dev, bucket_to_sector(ca, ca->mi.nbuckets - ca->mi.first_bucket), i); rebalance_work_accumulate(&ret, unknown_dev, 0, c->capacity, -1); return ret; } static void rebalance_work_reset(struct bch_fs *c) { struct bch_dev *ca; unsigned i; for_each_online_member(ca, c, i) atomic64_set(&ca->rebalance_work, 0); atomic64_set(&c->rebalance.work_unknown_dev, 0); } static unsigned long curr_cputime(void) { u64 utime, stime; task_cputime_adjusted(current, &utime, &stime); return nsecs_to_jiffies(utime + stime); } static int bch2_rebalance_thread(void *arg) { struct bch_fs *c = arg; struct bch_fs_rebalance *r = &c->rebalance; struct io_clock *clock = &c->io_clock[WRITE]; struct rebalance_work w, p; unsigned long start, prev_start; unsigned long prev_run_time, prev_run_cputime; unsigned long cputime, prev_cputime; unsigned long io_start; long throttle; set_freezable(); io_start = atomic_long_read(&clock->now); p = rebalance_work(c); prev_start = jiffies; prev_cputime = curr_cputime(); while (!kthread_wait_freezable(r->enabled)) { start = jiffies; cputime = curr_cputime(); prev_run_time = start - prev_start; prev_run_cputime = cputime - prev_cputime; w = rebalance_work(c); BUG_ON(!w.dev_most_full_capacity); if (!w.total_work) { r->state = REBALANCE_WAITING; kthread_wait_freezable(rebalance_work(c).total_work); continue; } /* * If there isn't much work to do, throttle cpu usage: */ throttle = prev_run_cputime * 100 / max(1U, w.dev_most_full_percent) - prev_run_time; if (w.dev_most_full_percent < 20 && throttle > 0) { r->state = REBALANCE_THROTTLED; r->throttled_until_iotime = io_start + div_u64(w.dev_most_full_capacity * (20 - w.dev_most_full_percent), 50); r->throttled_until_cputime = start + throttle; bch2_kthread_io_clock_wait(clock, r->throttled_until_iotime, throttle); continue; } /* minimum 1 mb/sec: */ r->pd.rate.rate = max_t(u64, 1 << 11, r->pd.rate.rate * max(p.dev_most_full_percent, 1U) / max(w.dev_most_full_percent, 1U)); io_start = atomic_long_read(&clock->now); p = w; prev_start = start; prev_cputime = cputime; r->state = REBALANCE_RUNNING; memset(&r->move_stats, 0, sizeof(r->move_stats)); rebalance_work_reset(c); bch2_move_data(c, /* ratelimiting disabled for now */ NULL, /* &r->pd.rate, */ writepoint_ptr(&c->rebalance_write_point), POS_MIN, POS_MAX, rebalance_pred, NULL, &r->move_stats); } return 0; } ssize_t bch2_rebalance_work_show(struct bch_fs *c, char *buf) { char *out = buf, *end = out + PAGE_SIZE; struct bch_fs_rebalance *r = &c->rebalance; struct rebalance_work w = rebalance_work(c); char h1[21], h2[21]; bch2_hprint(h1, w.dev_most_full_work << 9); bch2_hprint(h2, w.dev_most_full_capacity << 9); out += scnprintf(out, end - out, "fullest_dev (%i):\t%s/%s\n", w.dev_most_full_idx, h1, h2); bch2_hprint(h1, w.total_work << 9); bch2_hprint(h2, c->capacity << 9); out += scnprintf(out, end - out, "total work:\t\t%s/%s\n", h1, h2); out += scnprintf(out, end - out, "rate:\t\t\t%u\n", r->pd.rate.rate); switch (r->state) { case REBALANCE_WAITING: out += scnprintf(out, end - out, "waiting\n"); break; case REBALANCE_THROTTLED: bch2_hprint(h1, (r->throttled_until_iotime - atomic_long_read(&c->io_clock[WRITE].now)) << 9); out += scnprintf(out, end - out, "throttled for %lu sec or %s io\n", (r->throttled_until_cputime - jiffies) / HZ, h1); break; case REBALANCE_RUNNING: out += scnprintf(out, end - out, "running\n"); out += scnprintf(out, end - out, "pos %llu:%llu\n", r->move_stats.iter.pos.inode, r->move_stats.iter.pos.offset); break; } return out - buf; } void bch2_rebalance_stop(struct bch_fs *c) { struct task_struct *p; c->rebalance.pd.rate.rate = UINT_MAX; bch2_ratelimit_reset(&c->rebalance.pd.rate); p = rcu_dereference_protected(c->rebalance.thread, 1); c->rebalance.thread = NULL; if (p) { /* for sychronizing with rebalance_wakeup() */ synchronize_rcu(); kthread_stop(p); put_task_struct(p); } } int bch2_rebalance_start(struct bch_fs *c) { struct task_struct *p; if (c->opts.nochanges) return 0; p = kthread_create(bch2_rebalance_thread, c, "bch_rebalance"); if (IS_ERR(p)) return PTR_ERR(p); get_task_struct(p); rcu_assign_pointer(c->rebalance.thread, p); wake_up_process(p); return 0; } void bch2_fs_rebalance_init(struct bch_fs *c) { bch2_pd_controller_init(&c->rebalance.pd); atomic64_set(&c->rebalance.work_unknown_dev, S64_MAX); }