// SPDX-License-Identifier: GPL-2.0 /* * gendisk handling * * Portions Copyright (C) 2020 Christoph Hellwig */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "blk.h" static struct kobject *block_depr; /* * Unique, monotonically increasing sequential number associated with block * devices instances (i.e. incremented each time a device is attached). * Associating uevents with block devices in userspace is difficult and racy: * the uevent netlink socket is lossy, and on slow and overloaded systems has * a very high latency. * Block devices do not have exclusive owners in userspace, any process can set * one up (e.g. loop devices). Moreover, device names can be reused (e.g. loop0 * can be reused again and again). * A userspace process setting up a block device and watching for its events * cannot thus reliably tell whether an event relates to the device it just set * up or another earlier instance with the same name. * This sequential number allows userspace processes to solve this problem, and * uniquely associate an uevent to the lifetime to a device. */ static atomic64_t diskseq; /* for extended dynamic devt allocation, currently only one major is used */ #define NR_EXT_DEVT (1 << MINORBITS) static DEFINE_IDA(ext_devt_ida); void set_capacity(struct gendisk *disk, sector_t sectors) { struct block_device *bdev = disk->part0; spin_lock(&bdev->bd_size_lock); i_size_write(bdev->bd_inode, (loff_t)sectors << SECTOR_SHIFT); spin_unlock(&bdev->bd_size_lock); } EXPORT_SYMBOL(set_capacity); /* * Set disk capacity and notify if the size is not currently zero and will not * be set to zero. Returns true if a uevent was sent, otherwise false. */ bool set_capacity_and_notify(struct gendisk *disk, sector_t size) { sector_t capacity = get_capacity(disk); char *envp[] = { "RESIZE=1", NULL }; set_capacity(disk, size); /* * Only print a message and send a uevent if the gendisk is user visible * and alive. This avoids spamming the log and udev when setting the * initial capacity during probing. */ if (size == capacity || !disk_live(disk) || (disk->flags & GENHD_FL_HIDDEN)) return false; pr_info("%s: detected capacity change from %lld to %lld\n", disk->disk_name, capacity, size); /* * Historically we did not send a uevent for changes to/from an empty * device. */ if (!capacity || !size) return false; kobject_uevent_env(&disk_to_dev(disk)->kobj, KOBJ_CHANGE, envp); return true; } EXPORT_SYMBOL_GPL(set_capacity_and_notify); /* * Format the device name of the indicated block device into the supplied buffer * and return a pointer to that same buffer for convenience. * * Note: do not use this in new code, use the %pg specifier to sprintf and * printk insted. */ const char *bdevname(struct block_device *bdev, char *buf) { struct gendisk *hd = bdev->bd_disk; int partno = bdev->bd_partno; if (!partno) snprintf(buf, BDEVNAME_SIZE, "%s", hd->disk_name); else if (isdigit(hd->disk_name[strlen(hd->disk_name)-1])) snprintf(buf, BDEVNAME_SIZE, "%sp%d", hd->disk_name, partno); else snprintf(buf, BDEVNAME_SIZE, "%s%d", hd->disk_name, partno); return buf; } EXPORT_SYMBOL(bdevname); static void part_stat_read_all(struct block_device *part, struct disk_stats *stat) { int cpu; memset(stat, 0, sizeof(struct disk_stats)); for_each_possible_cpu(cpu) { struct disk_stats *ptr = per_cpu_ptr(part->bd_stats, cpu); int group; for (group = 0; group < NR_STAT_GROUPS; group++) { stat->nsecs[group] += ptr->nsecs[group]; stat->sectors[group] += ptr->sectors[group]; stat->ios[group] += ptr->ios[group]; stat->merges[group] += ptr->merges[group]; } stat->io_ticks += ptr->io_ticks; } } static unsigned int part_in_flight(struct block_device *part) { unsigned int inflight = 0; int cpu; for_each_possible_cpu(cpu) { inflight += part_stat_local_read_cpu(part, in_flight[0], cpu) + part_stat_local_read_cpu(part, in_flight[1], cpu); } if ((int)inflight < 0) inflight = 0; return inflight; } static void part_in_flight_rw(struct block_device *part, unsigned int inflight[2]) { int cpu; inflight[0] = 0; inflight[1] = 0; for_each_possible_cpu(cpu) { inflight[0] += part_stat_local_read_cpu(part, in_flight[0], cpu); inflight[1] += part_stat_local_read_cpu(part, in_flight[1], cpu); } if ((int)inflight[0] < 0) inflight[0] = 0; if ((int)inflight[1] < 0) inflight[1] = 0; } /* * Can be deleted altogether. Later. * */ #define BLKDEV_MAJOR_HASH_SIZE 255 static struct blk_major_name { struct blk_major_name *next; int major; char name[16]; void (*probe)(dev_t devt); } *major_names[BLKDEV_MAJOR_HASH_SIZE]; static DEFINE_MUTEX(major_names_lock); /* index in the above - for now: assume no multimajor ranges */ static inline int major_to_index(unsigned major) { return major % BLKDEV_MAJOR_HASH_SIZE; } #ifdef CONFIG_PROC_FS void blkdev_show(struct seq_file *seqf, off_t offset) { struct blk_major_name *dp; mutex_lock(&major_names_lock); for (dp = major_names[major_to_index(offset)]; dp; dp = dp->next) if (dp->major == offset) seq_printf(seqf, "%3d %s\n", dp->major, dp->name); mutex_unlock(&major_names_lock); } #endif /* CONFIG_PROC_FS */ /** * __register_blkdev - register a new block device * * @major: the requested major device number [1..BLKDEV_MAJOR_MAX-1]. If * @major = 0, try to allocate any unused major number. * @name: the name of the new block device as a zero terminated string * @probe: allback that is called on access to any minor number of @major * * The @name must be unique within the system. * * The return value depends on the @major input parameter: * * - if a major device number was requested in range [1..BLKDEV_MAJOR_MAX-1] * then the function returns zero on success, or a negative error code * - if any unused major number was requested with @major = 0 parameter * then the return value is the allocated major number in range * [1..BLKDEV_MAJOR_MAX-1] or a negative error code otherwise * * See Documentation/admin-guide/devices.txt for the list of allocated * major numbers. * * Use register_blkdev instead for any new code. */ int __register_blkdev(unsigned int major, const char *name, void (*probe)(dev_t devt)) { struct blk_major_name **n, *p; int index, ret = 0; mutex_lock(&major_names_lock); /* temporary */ if (major == 0) { for (index = ARRAY_SIZE(major_names)-1; index > 0; index--) { if (major_names[index] == NULL) break; } if (index == 0) { printk("%s: failed to get major for %s\n", __func__, name); ret = -EBUSY; goto out; } major = index; ret = major; } if (major >= BLKDEV_MAJOR_MAX) { pr_err("%s: major requested (%u) is greater than the maximum (%u) for %s\n", __func__, major, BLKDEV_MAJOR_MAX-1, name); ret = -EINVAL; goto out; } p = kmalloc(sizeof(struct blk_major_name), GFP_KERNEL); if (p == NULL) { ret = -ENOMEM; goto out; } p->major = major; p->probe = probe; strlcpy(p->name, name, sizeof(p->name)); p->next = NULL; index = major_to_index(major); for (n = &major_names[index]; *n; n = &(*n)->next) { if ((*n)->major == major) break; } if (!*n) *n = p; else ret = -EBUSY; if (ret < 0) { printk("register_blkdev: cannot get major %u for %s\n", major, name); kfree(p); } out: mutex_unlock(&major_names_lock); return ret; } EXPORT_SYMBOL(__register_blkdev); void unregister_blkdev(unsigned int major, const char *name) { struct blk_major_name **n; struct blk_major_name *p = NULL; int index = major_to_index(major); mutex_lock(&major_names_lock); for (n = &major_names[index]; *n; n = &(*n)->next) if ((*n)->major == major) break; if (!*n || strcmp((*n)->name, name)) { WARN_ON(1); } else { p = *n; *n = p->next; } mutex_unlock(&major_names_lock); kfree(p); } EXPORT_SYMBOL(unregister_blkdev); /** * blk_mangle_minor - scatter minor numbers apart * @minor: minor number to mangle * * Scatter consecutively allocated @minor number apart if MANGLE_DEVT * is enabled. Mangling twice gives the original value. * * RETURNS: * Mangled value. * * CONTEXT: * Don't care. */ static int blk_mangle_minor(int minor) { #ifdef CONFIG_DEBUG_BLOCK_EXT_DEVT int i; for (i = 0; i < MINORBITS / 2; i++) { int low = minor & (1 << i); int high = minor & (1 << (MINORBITS - 1 - i)); int distance = MINORBITS - 1 - 2 * i; minor ^= low | high; /* clear both bits */ low <<= distance; /* swap the positions */ high >>= distance; minor |= low | high; /* and set */ } #endif return minor; } int blk_alloc_ext_minor(void) { int idx; idx = ida_alloc_range(&ext_devt_ida, 0, NR_EXT_DEVT, GFP_KERNEL); if (idx < 0) { if (idx == -ENOSPC) return -EBUSY; return idx; } return blk_mangle_minor(idx); } void blk_free_ext_minor(unsigned int minor) { ida_free(&ext_devt_ida, blk_mangle_minor(minor)); } static char *bdevt_str(dev_t devt, char *buf) { if (MAJOR(devt) <= 0xff && MINOR(devt) <= 0xff) { char tbuf[BDEVT_SIZE]; snprintf(tbuf, BDEVT_SIZE, "%02x%02x", MAJOR(devt), MINOR(devt)); snprintf(buf, BDEVT_SIZE, "%-9s", tbuf); } else snprintf(buf, BDEVT_SIZE, "%03x:%05x", MAJOR(devt), MINOR(devt)); return buf; } void disk_uevent(struct gendisk *disk, enum kobject_action action) { struct block_device *part; unsigned long idx; rcu_read_lock(); xa_for_each(&disk->part_tbl, idx, part) { if (bdev_is_partition(part) && !bdev_nr_sectors(part)) continue; if (!kobject_get_unless_zero(&part->bd_device.kobj)) continue; rcu_read_unlock(); kobject_uevent(bdev_kobj(part), action); put_device(&part->bd_device); rcu_read_lock(); } rcu_read_unlock(); } EXPORT_SYMBOL_GPL(disk_uevent); static void disk_scan_partitions(struct gendisk *disk) { struct block_device *bdev; if (!get_capacity(disk) || !disk_part_scan_enabled(disk)) return; set_bit(GD_NEED_PART_SCAN, &disk->state); bdev = blkdev_get_by_dev(disk_devt(disk), FMODE_READ, NULL); if (!IS_ERR(bdev)) blkdev_put(bdev, FMODE_READ); } static void register_disk(struct device *parent, struct gendisk *disk, const struct attribute_group **groups) { struct device *ddev = disk_to_dev(disk); int err; ddev->parent = parent; dev_set_name(ddev, "%s", disk->disk_name); /* delay uevents, until we scanned partition table */ dev_set_uevent_suppress(ddev, 1); if (groups) { WARN_ON(ddev->groups); ddev->groups = groups; } if (device_add(ddev)) return; if (!sysfs_deprecated) { err = sysfs_create_link(block_depr, &ddev->kobj, kobject_name(&ddev->kobj)); if (err) { device_del(ddev); return; } } /* * avoid probable deadlock caused by allocating memory with * GFP_KERNEL in runtime_resume callback of its all ancestor * devices */ pm_runtime_set_memalloc_noio(ddev, true); disk->part0->bd_holder_dir = kobject_create_and_add("holders", &ddev->kobj); disk->slave_dir = kobject_create_and_add("slaves", &ddev->kobj); /* * XXX: this is a mess, can't wait for real error handling in add_disk. * Make sure ->slave_dir is NULL if we failed some of the registration * so that the cleanup in bd_unlink_disk_holder works properly. */ if (bd_register_pending_holders(disk) < 0) { kobject_put(disk->slave_dir); disk->slave_dir = NULL; } if (disk->flags & GENHD_FL_HIDDEN) return; disk_scan_partitions(disk); /* announce the disk and partitions after all partitions are created */ dev_set_uevent_suppress(ddev, 0); disk_uevent(disk, KOBJ_ADD); if (disk->bdi->dev) { err = sysfs_create_link(&ddev->kobj, &disk->bdi->dev->kobj, "bdi"); WARN_ON(err); } } /** * device_add_disk - add disk information to kernel list * @parent: parent device for the disk * @disk: per-device partitioning information * @groups: Additional per-device sysfs groups * * This function registers the partitioning information in @disk * with the kernel. * * FIXME: error handling */ void device_add_disk(struct device *parent, struct gendisk *disk, const struct attribute_group **groups) { int ret; /* * The disk queue should now be all set with enough information about * the device for the elevator code to pick an adequate default * elevator if one is needed, that is, for devices requesting queue * registration. */ elevator_init_mq(disk->queue); /* * If the driver provides an explicit major number it also must provide * the number of minors numbers supported, and those will be used to * setup the gendisk. * Otherwise just allocate the device numbers for both the whole device * and all partitions from the extended dev_t space. */ if (disk->major) { WARN_ON(!disk->minors); if (disk->minors > DISK_MAX_PARTS) { pr_err("block: can't allocate more than %d partitions\n", DISK_MAX_PARTS); disk->minors = DISK_MAX_PARTS; } } else { WARN_ON(disk->minors); ret = blk_alloc_ext_minor(); if (ret < 0) { WARN_ON(1); return; } disk->major = BLOCK_EXT_MAJOR; disk->first_minor = MINOR(ret); disk->flags |= GENHD_FL_EXT_DEVT; } disk_alloc_events(disk); if (disk->flags & GENHD_FL_HIDDEN) { /* * Don't let hidden disks show up in /proc/partitions, * and don't bother scanning for partitions either. */ disk->flags |= GENHD_FL_SUPPRESS_PARTITION_INFO; disk->flags |= GENHD_FL_NO_PART_SCAN; } else { struct device *dev = disk_to_dev(disk); /* Register BDI before referencing it from bdev */ dev->devt = MKDEV(disk->major, disk->first_minor); ret = bdi_register(disk->bdi, "%u:%u", disk->major, disk->first_minor); WARN_ON(ret); bdi_set_owner(disk->bdi, dev); bdev_add(disk->part0, dev->devt); } register_disk(parent, disk, groups); blk_register_queue(disk); disk_add_events(disk); blk_integrity_add(disk); } EXPORT_SYMBOL(device_add_disk); /** * del_gendisk - remove the gendisk * @disk: the struct gendisk to remove * * Removes the gendisk and all its associated resources. This deletes the * partitions associated with the gendisk, and unregisters the associated * request_queue. * * This is the counter to the respective __device_add_disk() call. * * The final removal of the struct gendisk happens when its refcount reaches 0 * with put_disk(), which should be called after del_gendisk(), if * __device_add_disk() was used. * * Drivers exist which depend on the release of the gendisk to be synchronous, * it should not be deferred. * * Context: can sleep */ void del_gendisk(struct gendisk *disk) { might_sleep(); if (WARN_ON_ONCE(!disk->queue)) return; blk_integrity_del(disk); disk_del_events(disk); mutex_lock(&disk->open_mutex); remove_inode_hash(disk->part0->bd_inode); blk_drop_partitions(disk); mutex_unlock(&disk->open_mutex); fsync_bdev(disk->part0); __invalidate_device(disk->part0, true); set_capacity(disk, 0); if (!(disk->flags & GENHD_FL_HIDDEN)) { sysfs_remove_link(&disk_to_dev(disk)->kobj, "bdi"); /* * Unregister bdi before releasing device numbers (as they can * get reused and we'd get clashes in sysfs). */ bdi_unregister(disk->bdi); } blk_unregister_queue(disk); kobject_put(disk->part0->bd_holder_dir); kobject_put(disk->slave_dir); part_stat_set_all(disk->part0, 0); disk->part0->bd_stamp = 0; if (!sysfs_deprecated) sysfs_remove_link(block_depr, dev_name(disk_to_dev(disk))); pm_runtime_set_memalloc_noio(disk_to_dev(disk), false); device_del(disk_to_dev(disk)); } EXPORT_SYMBOL(del_gendisk); /* sysfs access to bad-blocks list. */ static ssize_t disk_badblocks_show(struct device *dev, struct device_attribute *attr, char *page) { struct gendisk *disk = dev_to_disk(dev); if (!disk->bb) return sprintf(page, "\n"); return badblocks_show(disk->bb, page, 0); } static ssize_t disk_badblocks_store(struct device *dev, struct device_attribute *attr, const char *page, size_t len) { struct gendisk *disk = dev_to_disk(dev); if (!disk->bb) return -ENXIO; return badblocks_store(disk->bb, page, len, 0); } void blk_request_module(dev_t devt) { unsigned int major = MAJOR(devt); struct blk_major_name **n; mutex_lock(&major_names_lock); for (n = &major_names[major_to_index(major)]; *n; n = &(*n)->next) { if ((*n)->major == major && (*n)->probe) { (*n)->probe(devt); mutex_unlock(&major_names_lock); return; } } mutex_unlock(&major_names_lock); if (request_module("block-major-%d-%d", MAJOR(devt), MINOR(devt)) > 0) /* Make old-style 2.4 aliases work */ request_module("block-major-%d", MAJOR(devt)); } /* * print a full list of all partitions - intended for places where the root * filesystem can't be mounted and thus to give the victim some idea of what * went wrong */ void __init printk_all_partitions(void) { struct class_dev_iter iter; struct device *dev; class_dev_iter_init(&iter, &block_class, NULL, &disk_type); while ((dev = class_dev_iter_next(&iter))) { struct gendisk *disk = dev_to_disk(dev); struct block_device *part; char devt_buf[BDEVT_SIZE]; unsigned long idx; /* * Don't show empty devices or things that have been * suppressed */ if (get_capacity(disk) == 0 || (disk->flags & GENHD_FL_SUPPRESS_PARTITION_INFO)) continue; /* * Note, unlike /proc/partitions, I am showing the numbers in * hex - the same format as the root= option takes. */ rcu_read_lock(); xa_for_each(&disk->part_tbl, idx, part) { if (!bdev_nr_sectors(part)) continue; printk("%s%s %10llu %pg %s", bdev_is_partition(part) ? " " : "", bdevt_str(part->bd_dev, devt_buf), bdev_nr_sectors(part) >> 1, part, part->bd_meta_info ? part->bd_meta_info->uuid : ""); if (bdev_is_partition(part)) printk("\n"); else if (dev->parent && dev->parent->driver) printk(" driver: %s\n", dev->parent->driver->name); else printk(" (driver?)\n"); } rcu_read_unlock(); } class_dev_iter_exit(&iter); } #ifdef CONFIG_PROC_FS /* iterator */ static void *disk_seqf_start(struct seq_file *seqf, loff_t *pos) { loff_t skip = *pos; struct class_dev_iter *iter; struct device *dev; iter = kmalloc(sizeof(*iter), GFP_KERNEL); if (!iter) return ERR_PTR(-ENOMEM); seqf->private = iter; class_dev_iter_init(iter, &block_class, NULL, &disk_type); do { dev = class_dev_iter_next(iter); if (!dev) return NULL; } while (skip--); return dev_to_disk(dev); } static void *disk_seqf_next(struct seq_file *seqf, void *v, loff_t *pos) { struct device *dev; (*pos)++; dev = class_dev_iter_next(seqf->private); if (dev) return dev_to_disk(dev); return NULL; } static void disk_seqf_stop(struct seq_file *seqf, void *v) { struct class_dev_iter *iter = seqf->private; /* stop is called even after start failed :-( */ if (iter) { class_dev_iter_exit(iter); kfree(iter); seqf->private = NULL; } } static void *show_partition_start(struct seq_file *seqf, loff_t *pos) { void *p; p = disk_seqf_start(seqf, pos); if (!IS_ERR_OR_NULL(p) && !*pos) seq_puts(seqf, "major minor #blocks name\n\n"); return p; } static int show_partition(struct seq_file *seqf, void *v) { struct gendisk *sgp = v; struct block_device *part; unsigned long idx; /* Don't show non-partitionable removeable devices or empty devices */ if (!get_capacity(sgp) || (!disk_max_parts(sgp) && (sgp->flags & GENHD_FL_REMOVABLE))) return 0; if (sgp->flags & GENHD_FL_SUPPRESS_PARTITION_INFO) return 0; rcu_read_lock(); xa_for_each(&sgp->part_tbl, idx, part) { if (!bdev_nr_sectors(part)) continue; seq_printf(seqf, "%4d %7d %10llu %pg\n", MAJOR(part->bd_dev), MINOR(part->bd_dev), bdev_nr_sectors(part) >> 1, part); } rcu_read_unlock(); return 0; } static const struct seq_operations partitions_op = { .start = show_partition_start, .next = disk_seqf_next, .stop = disk_seqf_stop, .show = show_partition }; #endif static int __init genhd_device_init(void) { int error; block_class.dev_kobj = sysfs_dev_block_kobj; error = class_register(&block_class); if (unlikely(error)) return error; blk_dev_init(); register_blkdev(BLOCK_EXT_MAJOR, "blkext"); /* create top-level block dir */ if (!sysfs_deprecated) block_depr = kobject_create_and_add("block", NULL); return 0; } subsys_initcall(genhd_device_init); static ssize_t disk_range_show(struct device *dev, struct device_attribute *attr, char *buf) { struct gendisk *disk = dev_to_disk(dev); return sprintf(buf, "%d\n", disk->minors); } static ssize_t disk_ext_range_show(struct device *dev, struct device_attribute *attr, char *buf) { struct gendisk *disk = dev_to_disk(dev); return sprintf(buf, "%d\n", disk_max_parts(disk)); } static ssize_t disk_removable_show(struct device *dev, struct device_attribute *attr, char *buf) { struct gendisk *disk = dev_to_disk(dev); return sprintf(buf, "%d\n", (disk->flags & GENHD_FL_REMOVABLE ? 1 : 0)); } static ssize_t disk_hidden_show(struct device *dev, struct device_attribute *attr, char *buf) { struct gendisk *disk = dev_to_disk(dev); return sprintf(buf, "%d\n", (disk->flags & GENHD_FL_HIDDEN ? 1 : 0)); } static ssize_t disk_ro_show(struct device *dev, struct device_attribute *attr, char *buf) { struct gendisk *disk = dev_to_disk(dev); return sprintf(buf, "%d\n", get_disk_ro(disk) ? 1 : 0); } ssize_t part_size_show(struct device *dev, struct device_attribute *attr, char *buf) { return sprintf(buf, "%llu\n", bdev_nr_sectors(dev_to_bdev(dev))); } ssize_t part_stat_show(struct device *dev, struct device_attribute *attr, char *buf) { struct block_device *bdev = dev_to_bdev(dev); struct request_queue *q = bdev->bd_disk->queue; struct disk_stats stat; unsigned int inflight; part_stat_read_all(bdev, &stat); if (queue_is_mq(q)) inflight = blk_mq_in_flight(q, bdev); else inflight = part_in_flight(bdev); return sprintf(buf, "%8lu %8lu %8llu %8u " "%8lu %8lu %8llu %8u " "%8u %8u %8u " "%8lu %8lu %8llu %8u " "%8lu %8u" "\n", stat.ios[STAT_READ], stat.merges[STAT_READ], (unsigned long long)stat.sectors[STAT_READ], (unsigned int)div_u64(stat.nsecs[STAT_READ], NSEC_PER_MSEC), stat.ios[STAT_WRITE], stat.merges[STAT_WRITE], (unsigned long long)stat.sectors[STAT_WRITE], (unsigned int)div_u64(stat.nsecs[STAT_WRITE], NSEC_PER_MSEC), inflight, jiffies_to_msecs(stat.io_ticks), (unsigned int)div_u64(stat.nsecs[STAT_READ] + stat.nsecs[STAT_WRITE] + stat.nsecs[STAT_DISCARD] + stat.nsecs[STAT_FLUSH], NSEC_PER_MSEC), stat.ios[STAT_DISCARD], stat.merges[STAT_DISCARD], (unsigned long long)stat.sectors[STAT_DISCARD], (unsigned int)div_u64(stat.nsecs[STAT_DISCARD], NSEC_PER_MSEC), stat.ios[STAT_FLUSH], (unsigned int)div_u64(stat.nsecs[STAT_FLUSH], NSEC_PER_MSEC)); } ssize_t part_inflight_show(struct device *dev, struct device_attribute *attr, char *buf) { struct block_device *bdev = dev_to_bdev(dev); struct request_queue *q = bdev->bd_disk->queue; unsigned int inflight[2]; if (queue_is_mq(q)) blk_mq_in_flight_rw(q, bdev, inflight); else part_in_flight_rw(bdev, inflight); return sprintf(buf, "%8u %8u\n", inflight[0], inflight[1]); } static ssize_t disk_capability_show(struct device *dev, struct device_attribute *attr, char *buf) { struct gendisk *disk = dev_to_disk(dev); return sprintf(buf, "%x\n", disk->flags); } static ssize_t disk_alignment_offset_show(struct device *dev, struct device_attribute *attr, char *buf) { struct gendisk *disk = dev_to_disk(dev); return sprintf(buf, "%d\n", queue_alignment_offset(disk->queue)); } static ssize_t disk_discard_alignment_show(struct device *dev, struct device_attribute *attr, char *buf) { struct gendisk *disk = dev_to_disk(dev); return sprintf(buf, "%d\n", queue_discard_alignment(disk->queue)); } static ssize_t diskseq_show(struct device *dev, struct device_attribute *attr, char *buf) { struct gendisk *disk = dev_to_disk(dev); return sprintf(buf, "%llu\n", disk->diskseq); } static DEVICE_ATTR(range, 0444, disk_range_show, NULL); static DEVICE_ATTR(ext_range, 0444, disk_ext_range_show, NULL); static DEVICE_ATTR(removable, 0444, disk_removable_show, NULL); static DEVICE_ATTR(hidden, 0444, disk_hidden_show, NULL); static DEVICE_ATTR(ro, 0444, disk_ro_show, NULL); static DEVICE_ATTR(size, 0444, part_size_show, NULL); static DEVICE_ATTR(alignment_offset, 0444, disk_alignment_offset_show, NULL); static DEVICE_ATTR(discard_alignment, 0444, disk_discard_alignment_show, NULL); static DEVICE_ATTR(capability, 0444, disk_capability_show, NULL); static DEVICE_ATTR(stat, 0444, part_stat_show, NULL); static DEVICE_ATTR(inflight, 0444, part_inflight_show, NULL); static DEVICE_ATTR(badblocks, 0644, disk_badblocks_show, disk_badblocks_store); static DEVICE_ATTR(diskseq, 0444, diskseq_show, NULL); #ifdef CONFIG_FAIL_MAKE_REQUEST ssize_t part_fail_show(struct device *dev, struct device_attribute *attr, char *buf) { return sprintf(buf, "%d\n", dev_to_bdev(dev)->bd_make_it_fail); } ssize_t part_fail_store(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { int i; if (count > 0 && sscanf(buf, "%d", &i) > 0) dev_to_bdev(dev)->bd_make_it_fail = i; return count; } static struct device_attribute dev_attr_fail = __ATTR(make-it-fail, 0644, part_fail_show, part_fail_store); #endif /* CONFIG_FAIL_MAKE_REQUEST */ #ifdef CONFIG_FAIL_IO_TIMEOUT static struct device_attribute dev_attr_fail_timeout = __ATTR(io-timeout-fail, 0644, part_timeout_show, part_timeout_store); #endif static struct attribute *disk_attrs[] = { &dev_attr_range.attr, &dev_attr_ext_range.attr, &dev_attr_removable.attr, &dev_attr_hidden.attr, &dev_attr_ro.attr, &dev_attr_size.attr, &dev_attr_alignment_offset.attr, &dev_attr_discard_alignment.attr, &dev_attr_capability.attr, &dev_attr_stat.attr, &dev_attr_inflight.attr, &dev_attr_badblocks.attr, &dev_attr_events.attr, &dev_attr_events_async.attr, &dev_attr_events_poll_msecs.attr, &dev_attr_diskseq.attr, #ifdef CONFIG_FAIL_MAKE_REQUEST &dev_attr_fail.attr, #endif #ifdef CONFIG_FAIL_IO_TIMEOUT &dev_attr_fail_timeout.attr, #endif NULL }; static umode_t disk_visible(struct kobject *kobj, struct attribute *a, int n) { struct device *dev = container_of(kobj, typeof(*dev), kobj); struct gendisk *disk = dev_to_disk(dev); if (a == &dev_attr_badblocks.attr && !disk->bb) return 0; return a->mode; } static struct attribute_group disk_attr_group = { .attrs = disk_attrs, .is_visible = disk_visible, }; static const struct attribute_group *disk_attr_groups[] = { &disk_attr_group, NULL }; /** * disk_release - releases all allocated resources of the gendisk * @dev: the device representing this disk * * This function releases all allocated resources of the gendisk. * * Drivers which used __device_add_disk() have a gendisk with a request_queue * assigned. Since the request_queue sits on top of the gendisk for these * drivers we also call blk_put_queue() for them, and we expect the * request_queue refcount to reach 0 at this point, and so the request_queue * will also be freed prior to the disk. * * Context: can sleep */ static void disk_release(struct device *dev) { struct gendisk *disk = dev_to_disk(dev); might_sleep(); disk_release_events(disk); kfree(disk->random); xa_destroy(&disk->part_tbl); blk_put_queue(disk->queue); iput(disk->part0->bd_inode); /* frees the disk */ } static int block_uevent(struct device *dev, struct kobj_uevent_env *env) { struct gendisk *disk = dev_to_disk(dev); return add_uevent_var(env, "DISKSEQ=%llu", disk->diskseq); } struct class block_class = { .name = "block", .dev_uevent = block_uevent, }; static char *block_devnode(struct device *dev, umode_t *mode, kuid_t *uid, kgid_t *gid) { struct gendisk *disk = dev_to_disk(dev); if (disk->fops->devnode) return disk->fops->devnode(disk, mode); return NULL; } const struct device_type disk_type = { .name = "disk", .groups = disk_attr_groups, .release = disk_release, .devnode = block_devnode, }; #ifdef CONFIG_PROC_FS /* * aggregate disk stat collector. Uses the same stats that the sysfs * entries do, above, but makes them available through one seq_file. * * The output looks suspiciously like /proc/partitions with a bunch of * extra fields. */ static int diskstats_show(struct seq_file *seqf, void *v) { struct gendisk *gp = v; struct block_device *hd; unsigned int inflight; struct disk_stats stat; unsigned long idx; /* if (&disk_to_dev(gp)->kobj.entry == block_class.devices.next) seq_puts(seqf, "major minor name" " rio rmerge rsect ruse wio wmerge " "wsect wuse running use aveq" "\n\n"); */ rcu_read_lock(); xa_for_each(&gp->part_tbl, idx, hd) { if (bdev_is_partition(hd) && !bdev_nr_sectors(hd)) continue; part_stat_read_all(hd, &stat); if (queue_is_mq(gp->queue)) inflight = blk_mq_in_flight(gp->queue, hd); else inflight = part_in_flight(hd); seq_printf(seqf, "%4d %7d %pg " "%lu %lu %lu %u " "%lu %lu %lu %u " "%u %u %u " "%lu %lu %lu %u " "%lu %u" "\n", MAJOR(hd->bd_dev), MINOR(hd->bd_dev), hd, stat.ios[STAT_READ], stat.merges[STAT_READ], stat.sectors[STAT_READ], (unsigned int)div_u64(stat.nsecs[STAT_READ], NSEC_PER_MSEC), stat.ios[STAT_WRITE], stat.merges[STAT_WRITE], stat.sectors[STAT_WRITE], (unsigned int)div_u64(stat.nsecs[STAT_WRITE], NSEC_PER_MSEC), inflight, jiffies_to_msecs(stat.io_ticks), (unsigned int)div_u64(stat.nsecs[STAT_READ] + stat.nsecs[STAT_WRITE] + stat.nsecs[STAT_DISCARD] + stat.nsecs[STAT_FLUSH], NSEC_PER_MSEC), stat.ios[STAT_DISCARD], stat.merges[STAT_DISCARD], stat.sectors[STAT_DISCARD], (unsigned int)div_u64(stat.nsecs[STAT_DISCARD], NSEC_PER_MSEC), stat.ios[STAT_FLUSH], (unsigned int)div_u64(stat.nsecs[STAT_FLUSH], NSEC_PER_MSEC) ); } rcu_read_unlock(); return 0; } static const struct seq_operations diskstats_op = { .start = disk_seqf_start, .next = disk_seqf_next, .stop = disk_seqf_stop, .show = diskstats_show }; static int __init proc_genhd_init(void) { proc_create_seq("diskstats", 0, NULL, &diskstats_op); proc_create_seq("partitions", 0, NULL, &partitions_op); return 0; } module_init(proc_genhd_init); #endif /* CONFIG_PROC_FS */ dev_t part_devt(struct gendisk *disk, u8 partno) { struct block_device *part; dev_t devt = 0; rcu_read_lock(); part = xa_load(&disk->part_tbl, partno); if (part) devt = part->bd_dev; rcu_read_unlock(); return devt; } dev_t blk_lookup_devt(const char *name, int partno) { dev_t devt = MKDEV(0, 0); struct class_dev_iter iter; struct device *dev; class_dev_iter_init(&iter, &block_class, NULL, &disk_type); while ((dev = class_dev_iter_next(&iter))) { struct gendisk *disk = dev_to_disk(dev); if (strcmp(dev_name(dev), name)) continue; if (partno < disk->minors) { /* We need to return the right devno, even * if the partition doesn't exist yet. */ devt = MKDEV(MAJOR(dev->devt), MINOR(dev->devt) + partno); } else { devt = part_devt(disk, partno); if (devt) break; } } class_dev_iter_exit(&iter); return devt; } struct gendisk *__alloc_disk_node(struct request_queue *q, int node_id, struct lock_class_key *lkclass) { struct gendisk *disk; if (!blk_get_queue(q)) return NULL; disk = kzalloc_node(sizeof(struct gendisk), GFP_KERNEL, node_id); if (!disk) goto out_put_queue; disk->bdi = bdi_alloc(node_id); if (!disk->bdi) goto out_free_disk; disk->part0 = bdev_alloc(disk, 0); if (!disk->part0) goto out_free_bdi; disk->node_id = node_id; mutex_init(&disk->open_mutex); xa_init(&disk->part_tbl); if (xa_insert(&disk->part_tbl, 0, disk->part0, GFP_KERNEL)) goto out_destroy_part_tbl; rand_initialize_disk(disk); disk_to_dev(disk)->class = &block_class; disk_to_dev(disk)->type = &disk_type; device_initialize(disk_to_dev(disk)); inc_diskseq(disk); disk->queue = q; lockdep_init_map(&disk->lockdep_map, "(bio completion)", lkclass, 0); #ifdef CONFIG_BLOCK_HOLDER_DEPRECATED INIT_LIST_HEAD(&disk->slave_bdevs); #endif return disk; out_destroy_part_tbl: xa_destroy(&disk->part_tbl); iput(disk->part0->bd_inode); out_free_bdi: bdi_put(disk->bdi); out_free_disk: kfree(disk); out_put_queue: blk_put_queue(q); return NULL; } EXPORT_SYMBOL(__alloc_disk_node); struct gendisk *__blk_alloc_disk(int node, struct lock_class_key *lkclass) { struct request_queue *q; struct gendisk *disk; q = blk_alloc_queue(node); if (!q) return NULL; disk = __alloc_disk_node(q, node, lkclass); if (!disk) { blk_cleanup_queue(q); return NULL; } return disk; } EXPORT_SYMBOL(__blk_alloc_disk); /** * put_disk - decrements the gendisk refcount * @disk: the struct gendisk to decrement the refcount for * * This decrements the refcount for the struct gendisk. When this reaches 0 * we'll have disk_release() called. * * Context: Any context, but the last reference must not be dropped from * atomic context. */ void put_disk(struct gendisk *disk) { if (disk) put_device(disk_to_dev(disk)); } EXPORT_SYMBOL(put_disk); /** * blk_cleanup_disk - shutdown a gendisk allocated by blk_alloc_disk * @disk: gendisk to shutdown * * Mark the queue hanging off @disk DYING, drain all pending requests, then mark * the queue DEAD, destroy and put it and the gendisk structure. * * Context: can sleep */ void blk_cleanup_disk(struct gendisk *disk) { blk_cleanup_queue(disk->queue); put_disk(disk); } EXPORT_SYMBOL(blk_cleanup_disk); static void set_disk_ro_uevent(struct gendisk *gd, int ro) { char event[] = "DISK_RO=1"; char *envp[] = { event, NULL }; if (!ro) event[8] = '0'; kobject_uevent_env(&disk_to_dev(gd)->kobj, KOBJ_CHANGE, envp); } /** * set_disk_ro - set a gendisk read-only * @disk: gendisk to operate on * @read_only: %true to set the disk read-only, %false set the disk read/write * * This function is used to indicate whether a given disk device should have its * read-only flag set. set_disk_ro() is typically used by device drivers to * indicate whether the underlying physical device is write-protected. */ void set_disk_ro(struct gendisk *disk, bool read_only) { if (read_only) { if (test_and_set_bit(GD_READ_ONLY, &disk->state)) return; } else { if (!test_and_clear_bit(GD_READ_ONLY, &disk->state)) return; } set_disk_ro_uevent(disk, read_only); } EXPORT_SYMBOL(set_disk_ro); int bdev_read_only(struct block_device *bdev) { return bdev->bd_read_only || get_disk_ro(bdev->bd_disk); } EXPORT_SYMBOL(bdev_read_only); void inc_diskseq(struct gendisk *disk) { disk->diskseq = atomic64_inc_return(&diskseq); }