// SPDX-License-Identifier: GPL-2.0 /* * Moving/copying garbage collector * * Copyright 2012 Google, Inc. */ #include "bcachefs.h" #include "alloc_foreground.h" #include "btree_iter.h" #include "btree_update.h" #include "buckets.h" #include "clock.h" #include "disk_groups.h" #include "error.h" #include "extents.h" #include "eytzinger.h" #include "io.h" #include "keylist.h" #include "move.h" #include "movinggc.h" #include "super-io.h" #include "trace.h" #include #include #include #include #include #include /* * We can't use the entire copygc reserve in one iteration of copygc: we may * need the buckets we're freeing up to go back into the copygc reserve to make * forward progress, but if the copygc reserve is full they'll be available for * any allocation - and it's possible that in a given iteration, we free up most * of the buckets we're going to free before we allocate most of the buckets * we're going to allocate. * * If we only use half of the reserve per iteration, then in steady state we'll * always have room in the reserve for the buckets we're going to need in the * next iteration: */ #define COPYGC_BUCKETS_PER_ITER(ca) \ ((ca)->free[RESERVE_MOVINGGC].size / 2) static int bucket_offset_cmp(const void *_l, const void *_r, size_t size) { const struct copygc_heap_entry *l = _l; const struct copygc_heap_entry *r = _r; return cmp_int(l->dev, r->dev) ?: cmp_int(l->offset, r->offset); } static enum data_cmd copygc_pred(struct bch_fs *c, void *arg, struct bkey_s_c k, struct bch_io_opts *io_opts, struct data_opts *data_opts) { copygc_heap *h = &c->copygc_heap; struct bkey_ptrs_c ptrs = bch2_bkey_ptrs_c(k); const union bch_extent_entry *entry; struct extent_ptr_decoded p = { 0 }; bkey_for_each_ptr_decode(k.k, ptrs, p, entry) { struct bch_dev *ca = bch_dev_bkey_exists(c, p.ptr.dev); struct copygc_heap_entry search = { .dev = p.ptr.dev, .offset = p.ptr.offset, }; ssize_t i = eytzinger0_find_le(h->data, h->used, sizeof(h->data[0]), bucket_offset_cmp, &search); #if 0 /* eytzinger search verify code: */ ssize_t j = -1, k; for (k = 0; k < h->used; k++) if (h->data[k].offset <= ptr->offset && (j < 0 || h->data[k].offset > h->data[j].offset)) j = k; BUG_ON(i != j); #endif if (i >= 0 && p.ptr.offset < h->data[i].offset + ca->mi.bucket_size && p.ptr.gen == h->data[i].gen) { /* * We need to use the journal reserve here, because * - journal reclaim depends on btree key cache * flushing to make forward progress, * - which has to make forward progress when the * journal is pre-reservation full, * - and depends on allocation - meaning allocator and * copygc */ data_opts->target = io_opts->background_target; data_opts->nr_replicas = 1; data_opts->btree_insert_flags = BTREE_INSERT_USE_RESERVE| BTREE_INSERT_JOURNAL_RESERVED; data_opts->rewrite_dev = p.ptr.dev; if (p.has_ec) data_opts->nr_replicas += p.ec.redundancy; return DATA_REWRITE; } } return DATA_SKIP; } static bool have_copygc_reserve(struct bch_dev *ca) { bool ret; spin_lock(&ca->fs->freelist_lock); ret = fifo_full(&ca->free[RESERVE_MOVINGGC]) || ca->allocator_state != ALLOCATOR_running; spin_unlock(&ca->fs->freelist_lock); return ret; } static inline int fragmentation_cmp(copygc_heap *heap, struct copygc_heap_entry l, struct copygc_heap_entry r) { return cmp_int(l.fragmentation, r.fragmentation); } static int bch2_copygc(struct bch_fs *c) { copygc_heap *h = &c->copygc_heap; struct copygc_heap_entry e, *i; struct bucket_array *buckets; struct bch_move_stats move_stats; u64 sectors_to_move = 0, sectors_not_moved = 0; u64 sectors_reserved = 0; u64 buckets_to_move, buckets_not_moved = 0; struct bch_dev *ca; unsigned dev_idx; size_t b, heap_size = 0; int ret; memset(&move_stats, 0, sizeof(move_stats)); /* * Find buckets with lowest sector counts, skipping completely * empty buckets, by building a maxheap sorted by sector count, * and repeatedly replacing the maximum element until all * buckets have been visited. */ h->used = 0; for_each_rw_member(ca, c, dev_idx) heap_size += ca->mi.nbuckets >> 7; if (h->size < heap_size) { free_heap(&c->copygc_heap); if (!init_heap(&c->copygc_heap, heap_size, GFP_KERNEL)) { bch_err(c, "error allocating copygc heap"); return 0; } } for_each_rw_member(ca, c, dev_idx) { closure_wait_event(&c->freelist_wait, have_copygc_reserve(ca)); spin_lock(&ca->fs->freelist_lock); sectors_reserved += fifo_used(&ca->free[RESERVE_MOVINGGC]) * ca->mi.bucket_size; spin_unlock(&ca->fs->freelist_lock); down_read(&ca->bucket_lock); buckets = bucket_array(ca); for (b = buckets->first_bucket; b < buckets->nbuckets; b++) { struct bucket *g = buckets->b + b; struct bucket_mark m = READ_ONCE(g->mark); struct copygc_heap_entry e; if (m.owned_by_allocator || m.data_type != BCH_DATA_user || !bucket_sectors_used(m) || bucket_sectors_used(m) >= ca->mi.bucket_size) continue; WARN_ON(m.stripe && !g->stripe_redundancy); e = (struct copygc_heap_entry) { .dev = dev_idx, .gen = m.gen, .replicas = 1 + g->stripe_redundancy, .fragmentation = bucket_sectors_used(m) * (1U << 15) / ca->mi.bucket_size, .sectors = bucket_sectors_used(m), .offset = bucket_to_sector(ca, b), }; heap_add_or_replace(h, e, -fragmentation_cmp, NULL); } up_read(&ca->bucket_lock); } if (!sectors_reserved) { bch2_fs_fatal_error(c, "stuck, ran out of copygc reserve!"); return -1; } /* * Our btree node allocations also come out of RESERVE_MOVINGGC: */ sectors_to_move = (sectors_to_move * 3) / 4; for (i = h->data; i < h->data + h->used; i++) sectors_to_move += i->sectors * i->replicas; while (sectors_to_move > sectors_reserved) { BUG_ON(!heap_pop(h, e, -fragmentation_cmp, NULL)); sectors_to_move -= e.sectors * e.replicas; } buckets_to_move = h->used; if (!buckets_to_move) return 0; eytzinger0_sort(h->data, h->used, sizeof(h->data[0]), bucket_offset_cmp, NULL); ret = bch2_move_data(c, 0, POS_MIN, BTREE_ID_NR, POS_MAX, NULL, writepoint_ptr(&c->copygc_write_point), copygc_pred, NULL, &move_stats); for_each_rw_member(ca, c, dev_idx) { down_read(&ca->bucket_lock); buckets = bucket_array(ca); for (i = h->data; i < h->data + h->used; i++) { struct bucket_mark m; size_t b; if (i->dev != dev_idx) continue; b = sector_to_bucket(ca, i->offset); m = READ_ONCE(buckets->b[b].mark); if (i->gen == m.gen && bucket_sectors_used(m)) { sectors_not_moved += bucket_sectors_used(m); buckets_not_moved++; } } up_read(&ca->bucket_lock); } if (sectors_not_moved && !ret) bch_warn_ratelimited(c, "copygc finished but %llu/%llu sectors, %llu/%llu buckets not moved (move stats: moved %llu sectors, raced %llu keys, %llu sectors)", sectors_not_moved, sectors_to_move, buckets_not_moved, buckets_to_move, atomic64_read(&move_stats.sectors_moved), atomic64_read(&move_stats.keys_raced), atomic64_read(&move_stats.sectors_raced)); trace_copygc(c, atomic64_read(&move_stats.sectors_moved), sectors_not_moved, buckets_to_move, buckets_not_moved); return 0; } /* * Copygc runs when the amount of fragmented data is above some arbitrary * threshold: * * The threshold at the limit - when the device is full - is the amount of space * we reserved in bch2_recalc_capacity; we can't have more than that amount of * disk space stranded due to fragmentation and store everything we have * promised to store. * * But we don't want to be running copygc unnecessarily when the device still * has plenty of free space - rather, we want copygc to smoothly run every so * often and continually reduce the amount of fragmented space as the device * fills up. So, we increase the threshold by half the current free space. */ unsigned long bch2_copygc_wait_amount(struct bch_fs *c) { struct bch_dev *ca; unsigned dev_idx; s64 wait = S64_MAX, fragmented_allowed, fragmented; for_each_rw_member(ca, c, dev_idx) { struct bch_dev_usage usage = bch2_dev_usage_read(ca); fragmented_allowed = ((__dev_buckets_reclaimable(ca, usage) * ca->mi.bucket_size) >> 1); fragmented = usage.d[BCH_DATA_user].fragmented; wait = min(wait, max(0LL, fragmented_allowed - fragmented)); } return wait; } static int bch2_copygc_thread(void *arg) { struct bch_fs *c = arg; struct io_clock *clock = &c->io_clock[WRITE]; u64 last, wait; set_freezable(); while (!kthread_should_stop()) { cond_resched(); if (kthread_wait_freezable(c->copy_gc_enabled)) break; last = atomic64_read(&clock->now); wait = bch2_copygc_wait_amount(c); if (wait > clock->max_slop) { trace_copygc_wait(c, wait, last + wait); c->copygc_wait = last + wait; bch2_kthread_io_clock_wait(clock, last + wait, MAX_SCHEDULE_TIMEOUT); continue; } c->copygc_wait = 0; if (bch2_copygc(c)) break; } return 0; } void bch2_copygc_stop(struct bch_fs *c) { if (c->copygc_thread) { kthread_stop(c->copygc_thread); put_task_struct(c->copygc_thread); } c->copygc_thread = NULL; } int bch2_copygc_start(struct bch_fs *c) { struct task_struct *t; if (c->copygc_thread) return 0; if (c->opts.nochanges) return 0; if (bch2_fs_init_fault("copygc_start")) return -ENOMEM; t = kthread_create(bch2_copygc_thread, c, "bch-copygc/%s", c->name); if (IS_ERR(t)) { bch_err(c, "error creating copygc thread: %li", PTR_ERR(t)); return PTR_ERR(t); } get_task_struct(t); c->copygc_thread = t; wake_up_process(c->copygc_thread); return 0; } void bch2_fs_copygc_init(struct bch_fs *c) { }