// SPDX-License-Identifier: GPL-2.0 /* * Code for manipulating bucket marks for garbage collection. * * Copyright 2014 Datera, Inc. * * Bucket states: * - free bucket: mark == 0 * The bucket contains no data and will not be read * * - allocator bucket: owned_by_allocator == 1 * The bucket is on a free list, or it is an open bucket * * - cached bucket: owned_by_allocator == 0 && * dirty_sectors == 0 && * cached_sectors > 0 * The bucket contains data but may be safely discarded as there are * enough replicas of the data on other cache devices, or it has been * written back to the backing device * * - dirty bucket: owned_by_allocator == 0 && * dirty_sectors > 0 * The bucket contains data that we must not discard (either only copy, * or one of the 'main copies' for data requiring multiple replicas) * * - metadata bucket: owned_by_allocator == 0 && is_metadata == 1 * This is a btree node, journal or gen/prio bucket * * Lifecycle: * * bucket invalidated => bucket on freelist => open bucket => * [dirty bucket =>] cached bucket => bucket invalidated => ... * * Note that cache promotion can skip the dirty bucket step, as data * is copied from a deeper tier to a shallower tier, onto a cached * bucket. * Note also that a cached bucket can spontaneously become dirty -- * see below. * * Only a traversal of the key space can determine whether a bucket is * truly dirty or cached. * * Transitions: * * - free => allocator: bucket was invalidated * - cached => allocator: bucket was invalidated * * - allocator => dirty: open bucket was filled up * - allocator => cached: open bucket was filled up * - allocator => metadata: metadata was allocated * * - dirty => cached: dirty sectors were copied to a deeper tier * - dirty => free: dirty sectors were overwritten or moved (copy gc) * - cached => free: cached sectors were overwritten * * - metadata => free: metadata was freed * * Oddities: * - cached => dirty: a device was removed so formerly replicated data * is no longer sufficiently replicated * - free => cached: cannot happen * - free => dirty: cannot happen * - free => metadata: cannot happen */ #include "bcachefs.h" #include "alloc.h" #include "btree_gc.h" #include "buckets.h" #include "error.h" #include "movinggc.h" #include "trace.h" #include #ifdef DEBUG_BUCKETS #define lg_local_lock lg_global_lock #define lg_local_unlock lg_global_unlock static void bch2_fs_stats_verify(struct bch_fs *c) { struct bch_fs_usage stats = __bch2_fs_usage_read(c); unsigned i; for (i = 0; i < ARRAY_SIZE(stats.s); i++) { if ((s64) stats.s[i].data[S_META] < 0) panic("replicas %u meta underflow: %lli\n", i + 1, stats.s[i].data[S_META]); if ((s64) stats.s[i].data[S_DIRTY] < 0) panic("replicas %u dirty underflow: %lli\n", i + 1, stats.s[i].data[S_DIRTY]); if ((s64) stats.s[i].persistent_reserved < 0) panic("replicas %u reserved underflow: %lli\n", i + 1, stats.s[i].persistent_reserved); } if ((s64) stats.online_reserved < 0) panic("sectors_online_reserved underflow: %lli\n", stats.online_reserved); } static void bch2_dev_stats_verify(struct bch_dev *ca) { struct bch_dev_usage stats = __bch2_dev_usage_read(ca); u64 n = ca->mi.nbuckets - ca->mi.first_bucket; unsigned i; for (i = 0; i < ARRAY_SIZE(stats.buckets); i++) BUG_ON(stats.buckets[i] > n); BUG_ON(stats.buckets_alloc > n); BUG_ON(stats.buckets_unavailable > n); } static void bch2_disk_reservations_verify(struct bch_fs *c, int flags) { if (!(flags & BCH_DISK_RESERVATION_NOFAIL)) { u64 used = __bch2_fs_sectors_used(c); u64 cached = 0; u64 avail = atomic64_read(&c->sectors_available); int cpu; for_each_possible_cpu(cpu) cached += per_cpu_ptr(c->usage_percpu, cpu)->available_cache; if (used + avail + cached > c->capacity) panic("used %llu avail %llu cached %llu capacity %llu\n", used, avail, cached, c->capacity); } } #else static void bch2_fs_stats_verify(struct bch_fs *c) {} static void bch2_dev_stats_verify(struct bch_dev *ca) {} static void bch2_disk_reservations_verify(struct bch_fs *c, int flags) {} #endif /* * Clear journal_seq_valid for buckets for which it's not needed, to prevent * wraparound: */ void bch2_bucket_seq_cleanup(struct bch_fs *c) { u64 journal_seq = atomic64_read(&c->journal.seq); u16 last_seq_ondisk = c->journal.last_seq_ondisk; struct bch_dev *ca; struct bucket_array *buckets; struct bucket *g; struct bucket_mark m; unsigned i; if (journal_seq - c->last_bucket_seq_cleanup < (1U << (BUCKET_JOURNAL_SEQ_BITS - 2))) return; c->last_bucket_seq_cleanup = journal_seq; for_each_member_device(ca, c, i) { down_read(&ca->bucket_lock); buckets = bucket_array(ca); for_each_bucket(g, buckets) { bucket_cmpxchg(g, m, ({ if (!m.journal_seq_valid || bucket_needs_journal_commit(m, last_seq_ondisk)) break; m.journal_seq_valid = 0; })); } up_read(&ca->bucket_lock); } } #define bch2_usage_add(_acc, _stats) \ do { \ typeof(_acc) _a = (_acc), _s = (_stats); \ unsigned i; \ \ for (i = 0; i < sizeof(*_a) / sizeof(u64); i++) \ ((u64 *) (_a))[i] += ((u64 *) (_s))[i]; \ } while (0) #define bch2_usage_read_raw(_stats) \ ({ \ typeof(*this_cpu_ptr(_stats)) _acc; \ int cpu; \ \ memset(&_acc, 0, sizeof(_acc)); \ \ for_each_possible_cpu(cpu) \ bch2_usage_add(&_acc, per_cpu_ptr((_stats), cpu)); \ \ _acc; \ }) #define bch2_usage_read_cached(_c, _cached, _uncached) \ ({ \ typeof(_cached) _ret; \ unsigned _seq; \ \ do { \ _seq = read_seqcount_begin(&(_c)->gc_pos_lock); \ _ret = (_c)->gc_pos.phase == GC_PHASE_DONE \ ? bch2_usage_read_raw(_uncached) \ : (_cached); \ } while (read_seqcount_retry(&(_c)->gc_pos_lock, _seq)); \ \ _ret; \ }) struct bch_dev_usage __bch2_dev_usage_read(struct bch_dev *ca) { return bch2_usage_read_raw(ca->usage_percpu); } struct bch_dev_usage bch2_dev_usage_read(struct bch_fs *c, struct bch_dev *ca) { return bch2_usage_read_cached(c, ca->usage_cached, ca->usage_percpu); } struct bch_fs_usage __bch2_fs_usage_read(struct bch_fs *c) { return bch2_usage_read_raw(c->usage_percpu); } struct bch_fs_usage bch2_fs_usage_read(struct bch_fs *c) { return bch2_usage_read_cached(c, c->usage_cached, c->usage_percpu); } struct fs_usage_sum { u64 data; u64 reserved; }; static inline struct fs_usage_sum __fs_usage_sum(struct bch_fs_usage stats) { struct fs_usage_sum sum = { 0 }; unsigned i; for (i = 0; i < ARRAY_SIZE(stats.s); i++) { sum.data += (stats.s[i].data[S_META] + stats.s[i].data[S_DIRTY]) * (i + 1); sum.reserved += stats.s[i].persistent_reserved * (i + 1); } sum.reserved += stats.online_reserved; return sum; } #define RESERVE_FACTOR 6 static u64 reserve_factor(u64 r) { return r + (round_up(r, (1 << RESERVE_FACTOR)) >> RESERVE_FACTOR); } static u64 avail_factor(u64 r) { return (r << RESERVE_FACTOR) / (1 << RESERVE_FACTOR) + 1; } u64 __bch2_fs_sectors_used(struct bch_fs *c, struct bch_fs_usage stats) { struct fs_usage_sum sum = __fs_usage_sum(stats); return sum.data + reserve_factor(sum.reserved); } u64 bch2_fs_sectors_used(struct bch_fs *c, struct bch_fs_usage stats) { return min(c->capacity, __bch2_fs_sectors_used(c, stats)); } u64 bch2_fs_sectors_free(struct bch_fs *c, struct bch_fs_usage stats) { return avail_factor(c->capacity - bch2_fs_sectors_used(c, stats)); } static inline int is_unavailable_bucket(struct bucket_mark m) { return !is_available_bucket(m); } static inline int is_fragmented_bucket(struct bucket_mark m, struct bch_dev *ca) { if (!m.owned_by_allocator && m.data_type == BCH_DATA_USER && bucket_sectors_used(m)) return max_t(int, 0, (int) ca->mi.bucket_size - bucket_sectors_used(m)); return 0; } static inline enum bch_data_type bucket_type(struct bucket_mark m) { return m.cached_sectors && !m.dirty_sectors ? BCH_DATA_CACHED : m.data_type; } static bool bucket_became_unavailable(struct bch_fs *c, struct bucket_mark old, struct bucket_mark new) { return is_available_bucket(old) && !is_available_bucket(new) && (!c || c->gc_pos.phase == GC_PHASE_DONE); } void bch2_fs_usage_apply(struct bch_fs *c, struct bch_fs_usage *stats, struct disk_reservation *disk_res, struct gc_pos gc_pos) { struct fs_usage_sum sum = __fs_usage_sum(*stats); s64 added = sum.data + sum.reserved; /* * Not allowed to reduce sectors_available except by getting a * reservation: */ BUG_ON(added > (s64) (disk_res ? disk_res->sectors : 0)); if (added > 0) { disk_res->sectors -= added; stats->online_reserved -= added; } percpu_down_read(&c->usage_lock); preempt_disable(); /* online_reserved not subject to gc: */ this_cpu_add(c->usage_percpu->online_reserved, stats->online_reserved); stats->online_reserved = 0; if (!gc_will_visit(c, gc_pos)) bch2_usage_add(this_cpu_ptr(c->usage_percpu), stats); bch2_fs_stats_verify(c); preempt_enable(); percpu_up_read(&c->usage_lock); memset(stats, 0, sizeof(*stats)); } static void bch2_dev_usage_update(struct bch_fs *c, struct bch_dev *ca, struct bucket_mark old, struct bucket_mark new) { struct bch_dev_usage *dev_usage; if (c) percpu_rwsem_assert_held(&c->usage_lock); if (old.data_type && new.data_type && old.data_type != new.data_type) { BUG_ON(!c); bch2_fs_inconsistent(c, "different types of data in same bucket: %s, %s", bch2_data_types[old.data_type], bch2_data_types[new.data_type]); } preempt_disable(); dev_usage = this_cpu_ptr(ca->usage_percpu); dev_usage->buckets[bucket_type(old)]--; dev_usage->buckets[bucket_type(new)]++; dev_usage->buckets_alloc += (int) new.owned_by_allocator - (int) old.owned_by_allocator; dev_usage->buckets_unavailable += is_unavailable_bucket(new) - is_unavailable_bucket(old); dev_usage->sectors[old.data_type] -= old.dirty_sectors; dev_usage->sectors[new.data_type] += new.dirty_sectors; dev_usage->sectors[BCH_DATA_CACHED] += (int) new.cached_sectors - (int) old.cached_sectors; dev_usage->sectors_fragmented += is_fragmented_bucket(new, ca) - is_fragmented_bucket(old, ca); preempt_enable(); if (!is_available_bucket(old) && is_available_bucket(new)) bch2_wake_allocator(ca); bch2_dev_stats_verify(ca); } #define bucket_data_cmpxchg(c, ca, g, new, expr) \ ({ \ struct bucket_mark _old = bucket_cmpxchg(g, new, expr); \ \ bch2_dev_usage_update(c, ca, _old, new); \ _old; \ }) void bch2_invalidate_bucket(struct bch_fs *c, struct bch_dev *ca, size_t b, struct bucket_mark *old) { struct bucket *g; struct bucket_mark new; percpu_rwsem_assert_held(&c->usage_lock); g = bucket(ca, b); *old = bucket_data_cmpxchg(c, ca, g, new, ({ BUG_ON(!is_available_bucket(new)); new.owned_by_allocator = 1; new.data_type = 0; new.cached_sectors = 0; new.dirty_sectors = 0; new.gen++; })); if (!old->owned_by_allocator && old->cached_sectors) trace_invalidate(ca, bucket_to_sector(ca, b), old->cached_sectors); } void bch2_mark_alloc_bucket(struct bch_fs *c, struct bch_dev *ca, size_t b, bool owned_by_allocator, struct gc_pos pos, unsigned flags) { struct bucket *g; struct bucket_mark old, new; percpu_rwsem_assert_held(&c->usage_lock); g = bucket(ca, b); if (!(flags & BCH_BUCKET_MARK_GC_LOCK_HELD) && gc_will_visit(c, pos)) return; old = bucket_data_cmpxchg(c, ca, g, new, ({ new.owned_by_allocator = owned_by_allocator; })); BUG_ON(!owned_by_allocator && !old.owned_by_allocator && c->gc_pos.phase == GC_PHASE_DONE); } #define checked_add(a, b) \ do { \ unsigned _res = (unsigned) (a) + (b); \ (a) = _res; \ BUG_ON((a) != _res); \ } while (0) void bch2_mark_metadata_bucket(struct bch_fs *c, struct bch_dev *ca, size_t b, enum bch_data_type type, unsigned sectors, struct gc_pos pos, unsigned flags) { struct bucket *g; struct bucket_mark old, new; BUG_ON(!type); if (likely(c)) { percpu_rwsem_assert_held(&c->usage_lock); if (!(flags & BCH_BUCKET_MARK_GC_LOCK_HELD) && gc_will_visit(c, pos)) return; } rcu_read_lock(); g = bucket(ca, b); old = bucket_data_cmpxchg(c, ca, g, new, ({ new.data_type = type; checked_add(new.dirty_sectors, sectors); new.dirty_sectors += sectors; })); rcu_read_unlock(); BUG_ON(!(flags & BCH_BUCKET_MARK_MAY_MAKE_UNAVAILABLE) && bucket_became_unavailable(c, old, new)); } /* Reverting this until the copygc + compression issue is fixed: */ static int __disk_sectors(struct bch_extent_crc_unpacked crc, unsigned sectors) { if (!sectors) return 0; return max(1U, DIV_ROUND_UP(sectors * crc.compressed_size, crc.uncompressed_size)); } /* * Checking against gc's position has to be done here, inside the cmpxchg() * loop, to avoid racing with the start of gc clearing all the marks - GC does * that with the gc pos seqlock held. */ static void bch2_mark_pointer(struct bch_fs *c, struct bkey_s_c_extent e, const struct bch_extent_ptr *ptr, struct bch_extent_crc_unpacked crc, s64 sectors, enum s_alloc type, struct bch_fs_usage *stats, u64 journal_seq, unsigned flags) { struct bucket_mark old, new; struct bch_dev *ca = bch_dev_bkey_exists(c, ptr->dev); struct bucket *g = PTR_BUCKET(ca, ptr); enum bch_data_type data_type = type == S_META ? BCH_DATA_BTREE : BCH_DATA_USER; u64 v; if (crc.compression_type) { unsigned old_sectors, new_sectors; if (sectors > 0) { old_sectors = 0; new_sectors = sectors; } else { old_sectors = e.k->size; new_sectors = e.k->size + sectors; } sectors = -__disk_sectors(crc, old_sectors) +__disk_sectors(crc, new_sectors); } if (flags & BCH_BUCKET_MARK_GC_WILL_VISIT) { if (journal_seq) bucket_cmpxchg(g, new, ({ new.journal_seq_valid = 1; new.journal_seq = journal_seq; })); return; } v = atomic64_read(&g->_mark.v); do { new.v.counter = old.v.counter = v; /* * Check this after reading bucket mark to guard against * the allocator invalidating a bucket after we've already * checked the gen */ if (gen_after(new.gen, ptr->gen)) { BUG_ON(!test_bit(BCH_FS_ALLOC_READ_DONE, &c->flags)); EBUG_ON(!ptr->cached && test_bit(JOURNAL_REPLAY_DONE, &c->journal.flags)); return; } if (!ptr->cached) checked_add(new.dirty_sectors, sectors); else checked_add(new.cached_sectors, sectors); if (!new.dirty_sectors && !new.cached_sectors) { new.data_type = 0; if (journal_seq) { new.journal_seq_valid = 1; new.journal_seq = journal_seq; } } else { new.data_type = data_type; } if (flags & BCH_BUCKET_MARK_NOATOMIC) { g->_mark = new; break; } } while ((v = atomic64_cmpxchg(&g->_mark.v, old.v.counter, new.v.counter)) != old.v.counter); bch2_dev_usage_update(c, ca, old, new); BUG_ON(!(flags & BCH_BUCKET_MARK_MAY_MAKE_UNAVAILABLE) && bucket_became_unavailable(c, old, new)); } void bch2_mark_key(struct bch_fs *c, struct bkey_s_c k, s64 sectors, bool metadata, struct gc_pos pos, struct bch_fs_usage *stats, u64 journal_seq, unsigned flags) { /* * synchronization w.r.t. GC: * * Normally, bucket sector counts/marks are updated on the fly, as * references are added/removed from the btree, the lists of buckets the * allocator owns, other metadata buckets, etc. * * When GC is in progress and going to mark this reference, we do _not_ * mark this reference here, to avoid double counting - GC will count it * when it gets to it. * * To know whether we should mark a given reference (GC either isn't * running, or has already marked references at this position) we * construct a total order for everything GC walks. Then, we can simply * compare the position of the reference we're marking - @pos - with * GC's current position. If GC is going to mark this reference, GC's * current position will be less than @pos; if GC's current position is * greater than @pos GC has either already walked this position, or * isn't running. * * To avoid racing with GC's position changing, we have to deal with * - GC's position being set to GC_POS_MIN when GC starts: * usage_lock guards against this * - GC's position overtaking @pos: we guard against this with * whatever lock protects the data structure the reference lives in * (e.g. the btree node lock, or the relevant allocator lock). */ percpu_down_read(&c->usage_lock); if (!(flags & BCH_BUCKET_MARK_GC_LOCK_HELD) && gc_will_visit(c, pos)) flags |= BCH_BUCKET_MARK_GC_WILL_VISIT; if (!stats) stats = this_cpu_ptr(c->usage_percpu); switch (k.k->type) { case BCH_EXTENT: case BCH_EXTENT_CACHED: { struct bkey_s_c_extent e = bkey_s_c_to_extent(k); const struct bch_extent_ptr *ptr; struct bch_extent_crc_unpacked crc; enum s_alloc type = metadata ? S_META : S_DIRTY; unsigned replicas = 0; BUG_ON(metadata && bkey_extent_is_cached(e.k)); BUG_ON(!sectors); extent_for_each_ptr_crc(e, ptr, crc) { bch2_mark_pointer(c, e, ptr, crc, sectors, type, stats, journal_seq, flags); replicas += !ptr->cached; } if (replicas) { BUG_ON(replicas - 1 > ARRAY_SIZE(stats->s)); stats->s[replicas - 1].data[type] += sectors; } break; } case BCH_RESERVATION: { struct bkey_s_c_reservation r = bkey_s_c_to_reservation(k); if (r.v->nr_replicas) { BUG_ON(r.v->nr_replicas - 1 > ARRAY_SIZE(stats->s)); stats->s[r.v->nr_replicas - 1].persistent_reserved += sectors; } break; } } percpu_up_read(&c->usage_lock); } /* Disk reservations: */ static u64 __recalc_sectors_available(struct bch_fs *c) { int cpu; for_each_possible_cpu(cpu) per_cpu_ptr(c->usage_percpu, cpu)->available_cache = 0; return bch2_fs_sectors_free(c, bch2_fs_usage_read(c)); } /* Used by gc when it's starting: */ void bch2_recalc_sectors_available(struct bch_fs *c) { percpu_down_write(&c->usage_lock); atomic64_set(&c->sectors_available, __recalc_sectors_available(c)); percpu_up_write(&c->usage_lock); } void __bch2_disk_reservation_put(struct bch_fs *c, struct disk_reservation *res) { percpu_down_read(&c->usage_lock); this_cpu_sub(c->usage_percpu->online_reserved, res->sectors); bch2_fs_stats_verify(c); percpu_up_read(&c->usage_lock); res->sectors = 0; } #define SECTORS_CACHE 1024 int bch2_disk_reservation_add(struct bch_fs *c, struct disk_reservation *res, unsigned sectors, int flags) { struct bch_fs_usage *stats; u64 old, v, get; s64 sectors_available; int ret; percpu_down_read(&c->usage_lock); preempt_disable(); stats = this_cpu_ptr(c->usage_percpu); if (sectors <= stats->available_cache) goto out; v = atomic64_read(&c->sectors_available); do { old = v; get = min((u64) sectors + SECTORS_CACHE, old); if (get < sectors) { preempt_enable(); percpu_up_read(&c->usage_lock); goto recalculate; } } while ((v = atomic64_cmpxchg(&c->sectors_available, old, old - get)) != old); stats->available_cache += get; out: stats->available_cache -= sectors; stats->online_reserved += sectors; res->sectors += sectors; bch2_disk_reservations_verify(c, flags); bch2_fs_stats_verify(c); preempt_enable(); percpu_up_read(&c->usage_lock); return 0; recalculate: /* * GC recalculates sectors_available when it starts, so that hopefully * we don't normally end up blocking here: */ /* * Piss fuck, we can be called from extent_insert_fixup() with btree * locks held: */ if (!(flags & BCH_DISK_RESERVATION_GC_LOCK_HELD)) { if (!(flags & BCH_DISK_RESERVATION_BTREE_LOCKS_HELD)) down_read(&c->gc_lock); else if (!down_read_trylock(&c->gc_lock)) return -EINTR; } percpu_down_write(&c->usage_lock); sectors_available = __recalc_sectors_available(c); if (sectors <= sectors_available || (flags & BCH_DISK_RESERVATION_NOFAIL)) { atomic64_set(&c->sectors_available, max_t(s64, 0, sectors_available - sectors)); stats->online_reserved += sectors; res->sectors += sectors; ret = 0; bch2_disk_reservations_verify(c, flags); } else { atomic64_set(&c->sectors_available, sectors_available); ret = -ENOSPC; } bch2_fs_stats_verify(c); percpu_up_write(&c->usage_lock); if (!(flags & BCH_DISK_RESERVATION_GC_LOCK_HELD)) up_read(&c->gc_lock); return ret; } /* Startup/shutdown: */ static void buckets_free_rcu(struct rcu_head *rcu) { struct bucket_array *buckets = container_of(rcu, struct bucket_array, rcu); kvpfree(buckets, sizeof(struct bucket_array) + buckets->nbuckets * sizeof(struct bucket)); } int bch2_dev_buckets_resize(struct bch_fs *c, struct bch_dev *ca, u64 nbuckets) { struct bucket_array *buckets = NULL, *old_buckets = NULL; unsigned long *buckets_dirty = NULL; u8 *oldest_gens = NULL; alloc_fifo free[RESERVE_NR]; alloc_fifo free_inc; alloc_heap alloc_heap; copygc_heap copygc_heap; size_t btree_reserve = DIV_ROUND_UP(BTREE_NODE_RESERVE, ca->mi.bucket_size / c->opts.btree_node_size); /* XXX: these should be tunable */ size_t reserve_none = max_t(size_t, 4, nbuckets >> 9); size_t copygc_reserve = max_t(size_t, 16, nbuckets >> 7); size_t free_inc_nr = max(max_t(size_t, 16, nbuckets >> 12), btree_reserve); bool resize = ca->buckets != NULL, start_copygc = ca->copygc_thread != NULL; int ret = -ENOMEM; unsigned i; memset(&free, 0, sizeof(free)); memset(&free_inc, 0, sizeof(free_inc)); memset(&alloc_heap, 0, sizeof(alloc_heap)); memset(©gc_heap, 0, sizeof(copygc_heap)); if (!(buckets = kvpmalloc(sizeof(struct bucket_array) + nbuckets * sizeof(struct bucket), GFP_KERNEL|__GFP_ZERO)) || !(oldest_gens = kvpmalloc(nbuckets * sizeof(u8), GFP_KERNEL|__GFP_ZERO)) || !(buckets_dirty = kvpmalloc(BITS_TO_LONGS(nbuckets) * sizeof(unsigned long), GFP_KERNEL|__GFP_ZERO)) || !init_fifo(&free[RESERVE_BTREE], btree_reserve, GFP_KERNEL) || !init_fifo(&free[RESERVE_MOVINGGC], copygc_reserve, GFP_KERNEL) || !init_fifo(&free[RESERVE_NONE], reserve_none, GFP_KERNEL) || !init_fifo(&free_inc, free_inc_nr, GFP_KERNEL) || !init_heap(&alloc_heap, ALLOC_SCAN_BATCH(ca) << 1, GFP_KERNEL) || !init_heap(©gc_heap, copygc_reserve, GFP_KERNEL)) goto err; buckets->first_bucket = ca->mi.first_bucket; buckets->nbuckets = nbuckets; bch2_copygc_stop(ca); if (resize) { down_write(&c->gc_lock); down_write(&ca->bucket_lock); percpu_down_write(&c->usage_lock); } old_buckets = bucket_array(ca); if (resize) { size_t n = min(buckets->nbuckets, old_buckets->nbuckets); memcpy(buckets->b, old_buckets->b, n * sizeof(struct bucket)); memcpy(oldest_gens, ca->oldest_gens, n * sizeof(u8)); memcpy(buckets_dirty, ca->buckets_dirty, BITS_TO_LONGS(n) * sizeof(unsigned long)); } rcu_assign_pointer(ca->buckets, buckets); buckets = old_buckets; swap(ca->oldest_gens, oldest_gens); swap(ca->buckets_dirty, buckets_dirty); if (resize) percpu_up_write(&c->usage_lock); spin_lock(&c->freelist_lock); for (i = 0; i < RESERVE_NR; i++) { fifo_move(&free[i], &ca->free[i]); swap(ca->free[i], free[i]); } fifo_move(&free_inc, &ca->free_inc); swap(ca->free_inc, free_inc); spin_unlock(&c->freelist_lock); /* with gc lock held, alloc_heap can't be in use: */ swap(ca->alloc_heap, alloc_heap); /* and we shut down copygc: */ swap(ca->copygc_heap, copygc_heap); nbuckets = ca->mi.nbuckets; if (resize) { up_write(&ca->bucket_lock); up_write(&c->gc_lock); } if (start_copygc && bch2_copygc_start(c, ca)) bch_err(ca, "error restarting copygc thread"); ret = 0; err: free_heap(©gc_heap); free_heap(&alloc_heap); free_fifo(&free_inc); for (i = 0; i < RESERVE_NR; i++) free_fifo(&free[i]); kvpfree(buckets_dirty, BITS_TO_LONGS(nbuckets) * sizeof(unsigned long)); kvpfree(oldest_gens, nbuckets * sizeof(u8)); if (buckets) call_rcu(&old_buckets->rcu, buckets_free_rcu); return ret; } void bch2_dev_buckets_free(struct bch_dev *ca) { unsigned i; free_heap(&ca->copygc_heap); free_heap(&ca->alloc_heap); free_fifo(&ca->free_inc); for (i = 0; i < RESERVE_NR; i++) free_fifo(&ca->free[i]); kvpfree(ca->buckets_dirty, BITS_TO_LONGS(ca->mi.nbuckets) * sizeof(unsigned long)); kvpfree(ca->oldest_gens, ca->mi.nbuckets * sizeof(u8)); kvpfree(rcu_dereference_protected(ca->buckets, 1), sizeof(struct bucket_array) + ca->mi.nbuckets * sizeof(struct bucket)); free_percpu(ca->usage_percpu); } int bch2_dev_buckets_alloc(struct bch_fs *c, struct bch_dev *ca) { if (!(ca->usage_percpu = alloc_percpu(struct bch_dev_usage))) return -ENOMEM; return bch2_dev_buckets_resize(c, ca, ca->mi.nbuckets);; }