/* * SH RSPI driver * * Copyright (C) 2012, 2013 Renesas Solutions Corp. * Copyright (C) 2014 Glider bvba * * Based on spi-sh.c: * Copyright (C) 2011 Renesas Solutions Corp. * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; version 2 of the License. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA * */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #define RSPI_SPCR 0x00 /* Control Register */ #define RSPI_SSLP 0x01 /* Slave Select Polarity Register */ #define RSPI_SPPCR 0x02 /* Pin Control Register */ #define RSPI_SPSR 0x03 /* Status Register */ #define RSPI_SPDR 0x04 /* Data Register */ #define RSPI_SPSCR 0x08 /* Sequence Control Register */ #define RSPI_SPSSR 0x09 /* Sequence Status Register */ #define RSPI_SPBR 0x0a /* Bit Rate Register */ #define RSPI_SPDCR 0x0b /* Data Control Register */ #define RSPI_SPCKD 0x0c /* Clock Delay Register */ #define RSPI_SSLND 0x0d /* Slave Select Negation Delay Register */ #define RSPI_SPND 0x0e /* Next-Access Delay Register */ #define RSPI_SPCR2 0x0f /* Control Register 2 (SH only) */ #define RSPI_SPCMD0 0x10 /* Command Register 0 */ #define RSPI_SPCMD1 0x12 /* Command Register 1 */ #define RSPI_SPCMD2 0x14 /* Command Register 2 */ #define RSPI_SPCMD3 0x16 /* Command Register 3 */ #define RSPI_SPCMD4 0x18 /* Command Register 4 */ #define RSPI_SPCMD5 0x1a /* Command Register 5 */ #define RSPI_SPCMD6 0x1c /* Command Register 6 */ #define RSPI_SPCMD7 0x1e /* Command Register 7 */ #define RSPI_SPCMD(i) (RSPI_SPCMD0 + (i) * 2) #define RSPI_NUM_SPCMD 8 #define RSPI_RZ_NUM_SPCMD 4 #define QSPI_NUM_SPCMD 4 /* RSPI on RZ only */ #define RSPI_SPBFCR 0x20 /* Buffer Control Register */ #define RSPI_SPBFDR 0x22 /* Buffer Data Count Setting Register */ /* QSPI only */ #define QSPI_SPBFCR 0x18 /* Buffer Control Register */ #define QSPI_SPBDCR 0x1a /* Buffer Data Count Register */ #define QSPI_SPBMUL0 0x1c /* Transfer Data Length Multiplier Setting Register 0 */ #define QSPI_SPBMUL1 0x20 /* Transfer Data Length Multiplier Setting Register 1 */ #define QSPI_SPBMUL2 0x24 /* Transfer Data Length Multiplier Setting Register 2 */ #define QSPI_SPBMUL3 0x28 /* Transfer Data Length Multiplier Setting Register 3 */ #define QSPI_SPBMUL(i) (QSPI_SPBMUL0 + (i) * 4) /* SPCR - Control Register */ #define SPCR_SPRIE 0x80 /* Receive Interrupt Enable */ #define SPCR_SPE 0x40 /* Function Enable */ #define SPCR_SPTIE 0x20 /* Transmit Interrupt Enable */ #define SPCR_SPEIE 0x10 /* Error Interrupt Enable */ #define SPCR_MSTR 0x08 /* Master/Slave Mode Select */ #define SPCR_MODFEN 0x04 /* Mode Fault Error Detection Enable */ /* RSPI on SH only */ #define SPCR_TXMD 0x02 /* TX Only Mode (vs. Full Duplex) */ #define SPCR_SPMS 0x01 /* 3-wire Mode (vs. 4-wire) */ /* QSPI on R-Car M2 only */ #define SPCR_WSWAP 0x02 /* Word Swap of read-data for DMAC */ #define SPCR_BSWAP 0x01 /* Byte Swap of read-data for DMAC */ /* SSLP - Slave Select Polarity Register */ #define SSLP_SSL1P 0x02 /* SSL1 Signal Polarity Setting */ #define SSLP_SSL0P 0x01 /* SSL0 Signal Polarity Setting */ /* SPPCR - Pin Control Register */ #define SPPCR_MOIFE 0x20 /* MOSI Idle Value Fixing Enable */ #define SPPCR_MOIFV 0x10 /* MOSI Idle Fixed Value */ #define SPPCR_SPOM 0x04 #define SPPCR_SPLP2 0x02 /* Loopback Mode 2 (non-inverting) */ #define SPPCR_SPLP 0x01 /* Loopback Mode (inverting) */ #define SPPCR_IO3FV 0x04 /* Single-/Dual-SPI Mode IO3 Output Fixed Value */ #define SPPCR_IO2FV 0x04 /* Single-/Dual-SPI Mode IO2 Output Fixed Value */ /* SPSR - Status Register */ #define SPSR_SPRF 0x80 /* Receive Buffer Full Flag */ #define SPSR_TEND 0x40 /* Transmit End */ #define SPSR_SPTEF 0x20 /* Transmit Buffer Empty Flag */ #define SPSR_PERF 0x08 /* Parity Error Flag */ #define SPSR_MODF 0x04 /* Mode Fault Error Flag */ #define SPSR_IDLNF 0x02 /* RSPI Idle Flag */ #define SPSR_OVRF 0x01 /* Overrun Error Flag (RSPI only) */ /* SPSCR - Sequence Control Register */ #define SPSCR_SPSLN_MASK 0x07 /* Sequence Length Specification */ /* SPSSR - Sequence Status Register */ #define SPSSR_SPECM_MASK 0x70 /* Command Error Mask */ #define SPSSR_SPCP_MASK 0x07 /* Command Pointer Mask */ /* SPDCR - Data Control Register */ #define SPDCR_TXDMY 0x80 /* Dummy Data Transmission Enable */ #define SPDCR_SPLW1 0x40 /* Access Width Specification (RZ) */ #define SPDCR_SPLW0 0x20 /* Access Width Specification (RZ) */ #define SPDCR_SPLLWORD (SPDCR_SPLW1 | SPDCR_SPLW0) #define SPDCR_SPLWORD SPDCR_SPLW1 #define SPDCR_SPLBYTE SPDCR_SPLW0 #define SPDCR_SPLW 0x20 /* Access Width Specification (SH) */ #define SPDCR_SPRDTD 0x10 /* Receive Transmit Data Select (SH) */ #define SPDCR_SLSEL1 0x08 #define SPDCR_SLSEL0 0x04 #define SPDCR_SLSEL_MASK 0x0c /* SSL1 Output Select (SH) */ #define SPDCR_SPFC1 0x02 #define SPDCR_SPFC0 0x01 #define SPDCR_SPFC_MASK 0x03 /* Frame Count Setting (1-4) (SH) */ /* SPCKD - Clock Delay Register */ #define SPCKD_SCKDL_MASK 0x07 /* Clock Delay Setting (1-8) */ /* SSLND - Slave Select Negation Delay Register */ #define SSLND_SLNDL_MASK 0x07 /* SSL Negation Delay Setting (1-8) */ /* SPND - Next-Access Delay Register */ #define SPND_SPNDL_MASK 0x07 /* Next-Access Delay Setting (1-8) */ /* SPCR2 - Control Register 2 */ #define SPCR2_PTE 0x08 /* Parity Self-Test Enable */ #define SPCR2_SPIE 0x04 /* Idle Interrupt Enable */ #define SPCR2_SPOE 0x02 /* Odd Parity Enable (vs. Even) */ #define SPCR2_SPPE 0x01 /* Parity Enable */ /* SPCMDn - Command Registers */ #define SPCMD_SCKDEN 0x8000 /* Clock Delay Setting Enable */ #define SPCMD_SLNDEN 0x4000 /* SSL Negation Delay Setting Enable */ #define SPCMD_SPNDEN 0x2000 /* Next-Access Delay Enable */ #define SPCMD_LSBF 0x1000 /* LSB First */ #define SPCMD_SPB_MASK 0x0f00 /* Data Length Setting */ #define SPCMD_SPB_8_TO_16(bit) (((bit - 1) << 8) & SPCMD_SPB_MASK) #define SPCMD_SPB_8BIT 0x0000 /* QSPI only */ #define SPCMD_SPB_16BIT 0x0100 #define SPCMD_SPB_20BIT 0x0000 #define SPCMD_SPB_24BIT 0x0100 #define SPCMD_SPB_32BIT 0x0200 #define SPCMD_SSLKP 0x0080 /* SSL Signal Level Keeping */ #define SPCMD_SPIMOD_MASK 0x0060 /* SPI Operating Mode (QSPI only) */ #define SPCMD_SPIMOD1 0x0040 #define SPCMD_SPIMOD0 0x0020 #define SPCMD_SPIMOD_SINGLE 0 #define SPCMD_SPIMOD_DUAL SPCMD_SPIMOD0 #define SPCMD_SPIMOD_QUAD SPCMD_SPIMOD1 #define SPCMD_SPRW 0x0010 /* SPI Read/Write Access (Dual/Quad) */ #define SPCMD_SSLA_MASK 0x0030 /* SSL Assert Signal Setting (RSPI) */ #define SPCMD_BRDV_MASK 0x000c /* Bit Rate Division Setting */ #define SPCMD_CPOL 0x0002 /* Clock Polarity Setting */ #define SPCMD_CPHA 0x0001 /* Clock Phase Setting */ /* SPBFCR - Buffer Control Register */ #define SPBFCR_TXRST 0x80 /* Transmit Buffer Data Reset */ #define SPBFCR_RXRST 0x40 /* Receive Buffer Data Reset */ #define SPBFCR_TXTRG_MASK 0x30 /* Transmit Buffer Data Triggering Number */ #define SPBFCR_RXTRG_MASK 0x07 /* Receive Buffer Data Triggering Number */ struct rspi_data { void __iomem *addr; u32 max_speed_hz; struct spi_master *master; wait_queue_head_t wait; struct clk *clk; u16 spcmd; u8 spsr; u8 sppcr; int rx_irq, tx_irq; const struct spi_ops *ops; /* for dmaengine */ struct dma_chan *chan_tx; struct dma_chan *chan_rx; unsigned dma_callbacked:1; unsigned byte_access:1; }; static void rspi_write8(const struct rspi_data *rspi, u8 data, u16 offset) { iowrite8(data, rspi->addr + offset); } static void rspi_write16(const struct rspi_data *rspi, u16 data, u16 offset) { iowrite16(data, rspi->addr + offset); } static void rspi_write32(const struct rspi_data *rspi, u32 data, u16 offset) { iowrite32(data, rspi->addr + offset); } static u8 rspi_read8(const struct rspi_data *rspi, u16 offset) { return ioread8(rspi->addr + offset); } static u16 rspi_read16(const struct rspi_data *rspi, u16 offset) { return ioread16(rspi->addr + offset); } static void rspi_write_data(const struct rspi_data *rspi, u16 data) { if (rspi->byte_access) rspi_write8(rspi, data, RSPI_SPDR); else /* 16 bit */ rspi_write16(rspi, data, RSPI_SPDR); } static u16 rspi_read_data(const struct rspi_data *rspi) { if (rspi->byte_access) return rspi_read8(rspi, RSPI_SPDR); else /* 16 bit */ return rspi_read16(rspi, RSPI_SPDR); } /* optional functions */ struct spi_ops { int (*set_config_register)(struct rspi_data *rspi, int access_size); int (*transfer_one)(struct spi_master *master, struct spi_device *spi, struct spi_transfer *xfer); u16 mode_bits; u16 flags; }; /* * functions for RSPI on legacy SH */ static int rspi_set_config_register(struct rspi_data *rspi, int access_size) { int spbr; /* Sets output mode, MOSI signal, and (optionally) loopback */ rspi_write8(rspi, rspi->sppcr, RSPI_SPPCR); /* Sets transfer bit rate */ spbr = DIV_ROUND_UP(clk_get_rate(rspi->clk), 2 * rspi->max_speed_hz) - 1; rspi_write8(rspi, clamp(spbr, 0, 255), RSPI_SPBR); /* Disable dummy transmission, set 16-bit word access, 1 frame */ rspi_write8(rspi, 0, RSPI_SPDCR); rspi->byte_access = 0; /* Sets RSPCK, SSL, next-access delay value */ rspi_write8(rspi, 0x00, RSPI_SPCKD); rspi_write8(rspi, 0x00, RSPI_SSLND); rspi_write8(rspi, 0x00, RSPI_SPND); /* Sets parity, interrupt mask */ rspi_write8(rspi, 0x00, RSPI_SPCR2); /* Sets SPCMD */ rspi->spcmd |= SPCMD_SPB_8_TO_16(access_size); rspi_write16(rspi, rspi->spcmd, RSPI_SPCMD0); /* Sets RSPI mode */ rspi_write8(rspi, SPCR_MSTR, RSPI_SPCR); return 0; } /* * functions for RSPI on RZ */ static int rspi_rz_set_config_register(struct rspi_data *rspi, int access_size) { int spbr; /* Sets output mode, MOSI signal, and (optionally) loopback */ rspi_write8(rspi, rspi->sppcr, RSPI_SPPCR); /* Sets transfer bit rate */ spbr = DIV_ROUND_UP(clk_get_rate(rspi->clk), 2 * rspi->max_speed_hz) - 1; rspi_write8(rspi, clamp(spbr, 0, 255), RSPI_SPBR); /* Disable dummy transmission, set byte access */ rspi_write8(rspi, SPDCR_SPLBYTE, RSPI_SPDCR); rspi->byte_access = 1; /* Sets RSPCK, SSL, next-access delay value */ rspi_write8(rspi, 0x00, RSPI_SPCKD); rspi_write8(rspi, 0x00, RSPI_SSLND); rspi_write8(rspi, 0x00, RSPI_SPND); /* Sets SPCMD */ rspi->spcmd |= SPCMD_SPB_8_TO_16(access_size); rspi_write16(rspi, rspi->spcmd, RSPI_SPCMD0); /* Sets RSPI mode */ rspi_write8(rspi, SPCR_MSTR, RSPI_SPCR); return 0; } /* * functions for QSPI */ static int qspi_set_config_register(struct rspi_data *rspi, int access_size) { int spbr; /* Sets output mode, MOSI signal, and (optionally) loopback */ rspi_write8(rspi, rspi->sppcr, RSPI_SPPCR); /* Sets transfer bit rate */ spbr = DIV_ROUND_UP(clk_get_rate(rspi->clk), 2 * rspi->max_speed_hz); rspi_write8(rspi, clamp(spbr, 0, 255), RSPI_SPBR); /* Disable dummy transmission, set byte access */ rspi_write8(rspi, 0, RSPI_SPDCR); rspi->byte_access = 1; /* Sets RSPCK, SSL, next-access delay value */ rspi_write8(rspi, 0x00, RSPI_SPCKD); rspi_write8(rspi, 0x00, RSPI_SSLND); rspi_write8(rspi, 0x00, RSPI_SPND); /* Data Length Setting */ if (access_size == 8) rspi->spcmd |= SPCMD_SPB_8BIT; else if (access_size == 16) rspi->spcmd |= SPCMD_SPB_16BIT; else rspi->spcmd |= SPCMD_SPB_32BIT; rspi->spcmd |= SPCMD_SCKDEN | SPCMD_SLNDEN | SPCMD_SPNDEN; /* Resets transfer data length */ rspi_write32(rspi, 0, QSPI_SPBMUL0); /* Resets transmit and receive buffer */ rspi_write8(rspi, SPBFCR_TXRST | SPBFCR_RXRST, QSPI_SPBFCR); /* Sets buffer to allow normal operation */ rspi_write8(rspi, 0x00, QSPI_SPBFCR); /* Sets SPCMD */ rspi_write16(rspi, rspi->spcmd, RSPI_SPCMD0); /* Enables SPI function in master mode */ rspi_write8(rspi, SPCR_SPE | SPCR_MSTR, RSPI_SPCR); return 0; } #define set_config_register(spi, n) spi->ops->set_config_register(spi, n) static void rspi_enable_irq(const struct rspi_data *rspi, u8 enable) { rspi_write8(rspi, rspi_read8(rspi, RSPI_SPCR) | enable, RSPI_SPCR); } static void rspi_disable_irq(const struct rspi_data *rspi, u8 disable) { rspi_write8(rspi, rspi_read8(rspi, RSPI_SPCR) & ~disable, RSPI_SPCR); } static int rspi_wait_for_interrupt(struct rspi_data *rspi, u8 wait_mask, u8 enable_bit) { int ret; rspi->spsr = rspi_read8(rspi, RSPI_SPSR); if (rspi->spsr & wait_mask) return 0; rspi_enable_irq(rspi, enable_bit); ret = wait_event_timeout(rspi->wait, rspi->spsr & wait_mask, HZ); if (ret == 0 && !(rspi->spsr & wait_mask)) return -ETIMEDOUT; return 0; } static inline int rspi_wait_for_tx_empty(struct rspi_data *rspi) { return rspi_wait_for_interrupt(rspi, SPSR_SPTEF, SPCR_SPTIE); } static inline int rspi_wait_for_rx_full(struct rspi_data *rspi) { return rspi_wait_for_interrupt(rspi, SPSR_SPRF, SPCR_SPRIE); } static int rspi_data_out(struct rspi_data *rspi, u8 data) { int error = rspi_wait_for_tx_empty(rspi); if (error < 0) { dev_err(&rspi->master->dev, "transmit timeout\n"); return error; } rspi_write_data(rspi, data); return 0; } static int rspi_data_in(struct rspi_data *rspi) { int error; u8 data; error = rspi_wait_for_rx_full(rspi); if (error < 0) { dev_err(&rspi->master->dev, "receive timeout\n"); return error; } data = rspi_read_data(rspi); return data; } static int rspi_pio_transfer(struct rspi_data *rspi, const u8 *tx, u8 *rx, unsigned int n) { while (n-- > 0) { if (tx) { int ret = rspi_data_out(rspi, *tx++); if (ret < 0) return ret; } if (rx) { int ret = rspi_data_in(rspi); if (ret < 0) return ret; *rx++ = ret; } } return 0; } static void rspi_dma_complete(void *arg) { struct rspi_data *rspi = arg; rspi->dma_callbacked = 1; wake_up_interruptible(&rspi->wait); } static int rspi_dma_map_sg(struct scatterlist *sg, const void *buf, unsigned len, struct dma_chan *chan, enum dma_transfer_direction dir) { sg_init_table(sg, 1); sg_set_buf(sg, buf, len); sg_dma_len(sg) = len; return dma_map_sg(chan->device->dev, sg, 1, dir); } static void rspi_dma_unmap_sg(struct scatterlist *sg, struct dma_chan *chan, enum dma_transfer_direction dir) { dma_unmap_sg(chan->device->dev, sg, 1, dir); } static int rspi_send_dma(struct rspi_data *rspi, struct spi_transfer *t) { struct scatterlist sg; const void *buf = t->tx_buf; struct dma_async_tx_descriptor *desc; unsigned int len = t->len; int ret = 0; if (!rspi_dma_map_sg(&sg, buf, len, rspi->chan_tx, DMA_TO_DEVICE)) return -EFAULT; desc = dmaengine_prep_slave_sg(rspi->chan_tx, &sg, 1, DMA_TO_DEVICE, DMA_PREP_INTERRUPT | DMA_CTRL_ACK); if (!desc) { ret = -EIO; goto end; } /* * DMAC needs SPTIE, but if SPTIE is set, this IRQ routine will be * called. So, this driver disables the IRQ while DMA transfer. */ disable_irq(rspi->tx_irq); rspi_write8(rspi, rspi_read8(rspi, RSPI_SPCR) | SPCR_TXMD, RSPI_SPCR); rspi_enable_irq(rspi, SPCR_SPTIE); rspi->dma_callbacked = 0; desc->callback = rspi_dma_complete; desc->callback_param = rspi; dmaengine_submit(desc); dma_async_issue_pending(rspi->chan_tx); ret = wait_event_interruptible_timeout(rspi->wait, rspi->dma_callbacked, HZ); if (ret > 0 && rspi->dma_callbacked) ret = 0; else if (!ret) ret = -ETIMEDOUT; rspi_disable_irq(rspi, SPCR_SPTIE); enable_irq(rspi->tx_irq); end: rspi_dma_unmap_sg(&sg, rspi->chan_tx, DMA_TO_DEVICE); return ret; } static void rspi_receive_init(const struct rspi_data *rspi) { u8 spsr; spsr = rspi_read8(rspi, RSPI_SPSR); if (spsr & SPSR_SPRF) rspi_read_data(rspi); /* dummy read */ if (spsr & SPSR_OVRF) rspi_write8(rspi, rspi_read8(rspi, RSPI_SPSR) & ~SPSR_OVRF, RSPI_SPSR); } static void rspi_rz_receive_init(const struct rspi_data *rspi) { rspi_receive_init(rspi); rspi_write8(rspi, SPBFCR_TXRST | SPBFCR_RXRST, RSPI_SPBFCR); rspi_write8(rspi, 0, RSPI_SPBFCR); } static void qspi_receive_init(const struct rspi_data *rspi) { u8 spsr; spsr = rspi_read8(rspi, RSPI_SPSR); if (spsr & SPSR_SPRF) rspi_read_data(rspi); /* dummy read */ rspi_write8(rspi, SPBFCR_TXRST | SPBFCR_RXRST, QSPI_SPBFCR); rspi_write8(rspi, 0, QSPI_SPBFCR); } static int rspi_send_receive_dma(struct rspi_data *rspi, struct spi_transfer *t) { struct scatterlist sg_rx, sg_tx; const void *tx_buf = t->tx_buf; void *rx_buf = t->rx_buf; struct dma_async_tx_descriptor *desc_tx, *desc_rx; unsigned int len = t->len; int ret = 0; /* prepare transmit transfer */ if (!rspi_dma_map_sg(&sg_tx, tx_buf, len, rspi->chan_tx, DMA_TO_DEVICE)) return -EFAULT; desc_tx = dmaengine_prep_slave_sg(rspi->chan_tx, &sg_tx, 1, DMA_TO_DEVICE, DMA_PREP_INTERRUPT | DMA_CTRL_ACK); if (!desc_tx) { ret = -EIO; goto end_tx_mapped; } /* prepare receive transfer */ if (!rspi_dma_map_sg(&sg_rx, rx_buf, len, rspi->chan_rx, DMA_FROM_DEVICE)) { ret = -EFAULT; goto end_tx_mapped; } desc_rx = dmaengine_prep_slave_sg(rspi->chan_rx, &sg_rx, 1, DMA_FROM_DEVICE, DMA_PREP_INTERRUPT | DMA_CTRL_ACK); if (!desc_rx) { ret = -EIO; goto end; } rspi_receive_init(rspi); /* * DMAC needs SPTIE, but if SPTIE is set, this IRQ routine will be * called. So, this driver disables the IRQ while DMA transfer. */ disable_irq(rspi->tx_irq); if (rspi->rx_irq != rspi->tx_irq) disable_irq(rspi->rx_irq); rspi_write8(rspi, rspi_read8(rspi, RSPI_SPCR) & ~SPCR_TXMD, RSPI_SPCR); rspi_enable_irq(rspi, SPCR_SPTIE | SPCR_SPRIE); rspi->dma_callbacked = 0; desc_rx->callback = rspi_dma_complete; desc_rx->callback_param = rspi; dmaengine_submit(desc_rx); dma_async_issue_pending(rspi->chan_rx); desc_tx->callback = NULL; /* No callback */ dmaengine_submit(desc_tx); dma_async_issue_pending(rspi->chan_tx); ret = wait_event_interruptible_timeout(rspi->wait, rspi->dma_callbacked, HZ); if (ret > 0 && rspi->dma_callbacked) ret = 0; else if (!ret) ret = -ETIMEDOUT; rspi_disable_irq(rspi, SPCR_SPTIE | SPCR_SPRIE); enable_irq(rspi->tx_irq); if (rspi->rx_irq != rspi->tx_irq) enable_irq(rspi->rx_irq); end: rspi_dma_unmap_sg(&sg_rx, rspi->chan_rx, DMA_FROM_DEVICE); end_tx_mapped: rspi_dma_unmap_sg(&sg_tx, rspi->chan_tx, DMA_TO_DEVICE); return ret; } static int rspi_is_dma(const struct rspi_data *rspi, struct spi_transfer *t) { /* If the module receives data by DMAC, it also needs TX DMAC */ if (t->rx_buf) return rspi->chan_tx && rspi->chan_rx; if (rspi->chan_tx) return 1; return 0; } static int rspi_transfer_out_in(struct rspi_data *rspi, struct spi_transfer *xfer) { u8 spcr; int ret; spcr = rspi_read8(rspi, RSPI_SPCR); if (xfer->rx_buf) { rspi_receive_init(rspi); spcr &= ~SPCR_TXMD; } else { spcr |= SPCR_TXMD; } rspi_write8(rspi, spcr, RSPI_SPCR); ret = rspi_pio_transfer(rspi, xfer->tx_buf, xfer->rx_buf, xfer->len); if (ret < 0) return ret; /* Wait for the last transmission */ rspi_wait_for_tx_empty(rspi); return 0; } static int rspi_transfer_one(struct spi_master *master, struct spi_device *spi, struct spi_transfer *xfer) { struct rspi_data *rspi = spi_master_get_devdata(master); if (!rspi_is_dma(rspi, xfer)) return rspi_transfer_out_in(rspi, xfer); if (xfer->rx_buf) return rspi_send_receive_dma(rspi, xfer); else return rspi_send_dma(rspi, xfer); } static int rspi_rz_transfer_out_in(struct rspi_data *rspi, struct spi_transfer *xfer) { int ret; rspi_rz_receive_init(rspi); ret = rspi_pio_transfer(rspi, xfer->tx_buf, xfer->rx_buf, xfer->len); if (ret < 0) return ret; /* Wait for the last transmission */ rspi_wait_for_tx_empty(rspi); return 0; } static int rspi_rz_transfer_one(struct spi_master *master, struct spi_device *spi, struct spi_transfer *xfer) { struct rspi_data *rspi = spi_master_get_devdata(master); return rspi_rz_transfer_out_in(rspi, xfer); } static int qspi_transfer_out_in(struct rspi_data *rspi, struct spi_transfer *xfer) { int ret; qspi_receive_init(rspi); ret = rspi_pio_transfer(rspi, xfer->tx_buf, xfer->rx_buf, xfer->len); if (ret < 0) return ret; /* Wait for the last transmission */ rspi_wait_for_tx_empty(rspi); return 0; } static int qspi_transfer_out(struct rspi_data *rspi, struct spi_transfer *xfer) { int ret; ret = rspi_pio_transfer(rspi, xfer->tx_buf, NULL, xfer->len); if (ret < 0) return ret; /* Wait for the last transmission */ rspi_wait_for_tx_empty(rspi); return 0; } static int qspi_transfer_in(struct rspi_data *rspi, struct spi_transfer *xfer) { return rspi_pio_transfer(rspi, NULL, xfer->rx_buf, xfer->len); } static int qspi_transfer_one(struct spi_master *master, struct spi_device *spi, struct spi_transfer *xfer) { struct rspi_data *rspi = spi_master_get_devdata(master); if (spi->mode & SPI_LOOP) { return qspi_transfer_out_in(rspi, xfer); } else if (xfer->tx_nbits > SPI_NBITS_SINGLE) { /* Quad or Dual SPI Write */ return qspi_transfer_out(rspi, xfer); } else if (xfer->rx_nbits > SPI_NBITS_SINGLE) { /* Quad or Dual SPI Read */ return qspi_transfer_in(rspi, xfer); } else { /* Single SPI Transfer */ return qspi_transfer_out_in(rspi, xfer); } } static int rspi_setup(struct spi_device *spi) { struct rspi_data *rspi = spi_master_get_devdata(spi->master); rspi->max_speed_hz = spi->max_speed_hz; rspi->spcmd = SPCMD_SSLKP; if (spi->mode & SPI_CPOL) rspi->spcmd |= SPCMD_CPOL; if (spi->mode & SPI_CPHA) rspi->spcmd |= SPCMD_CPHA; /* CMOS output mode and MOSI signal from previous transfer */ rspi->sppcr = 0; if (spi->mode & SPI_LOOP) rspi->sppcr |= SPPCR_SPLP; set_config_register(rspi, 8); return 0; } static u16 qspi_transfer_mode(const struct spi_transfer *xfer) { if (xfer->tx_buf) switch (xfer->tx_nbits) { case SPI_NBITS_QUAD: return SPCMD_SPIMOD_QUAD; case SPI_NBITS_DUAL: return SPCMD_SPIMOD_DUAL; default: return 0; } if (xfer->rx_buf) switch (xfer->rx_nbits) { case SPI_NBITS_QUAD: return SPCMD_SPIMOD_QUAD | SPCMD_SPRW; case SPI_NBITS_DUAL: return SPCMD_SPIMOD_DUAL | SPCMD_SPRW; default: return 0; } return 0; } static int qspi_setup_sequencer(struct rspi_data *rspi, const struct spi_message *msg) { const struct spi_transfer *xfer; unsigned int i = 0, len = 0; u16 current_mode = 0xffff, mode; list_for_each_entry(xfer, &msg->transfers, transfer_list) { mode = qspi_transfer_mode(xfer); if (mode == current_mode) { len += xfer->len; continue; } /* Transfer mode change */ if (i) { /* Set transfer data length of previous transfer */ rspi_write32(rspi, len, QSPI_SPBMUL(i - 1)); } if (i >= QSPI_NUM_SPCMD) { dev_err(&msg->spi->dev, "Too many different transfer modes"); return -EINVAL; } /* Program transfer mode for this transfer */ rspi_write16(rspi, rspi->spcmd | mode, RSPI_SPCMD(i)); current_mode = mode; len = xfer->len; i++; } if (i) { /* Set final transfer data length and sequence length */ rspi_write32(rspi, len, QSPI_SPBMUL(i - 1)); rspi_write8(rspi, i - 1, RSPI_SPSCR); } return 0; } static int rspi_prepare_message(struct spi_master *master, struct spi_message *msg) { struct rspi_data *rspi = spi_master_get_devdata(master); int ret; if (msg->spi->mode & (SPI_TX_DUAL | SPI_TX_QUAD | SPI_RX_DUAL | SPI_RX_QUAD)) { /* Setup sequencer for messages with multiple transfer modes */ ret = qspi_setup_sequencer(rspi, msg); if (ret < 0) return ret; } /* Enable SPI function in master mode */ rspi_write8(rspi, rspi_read8(rspi, RSPI_SPCR) | SPCR_SPE, RSPI_SPCR); return 0; } static int rspi_unprepare_message(struct spi_master *master, struct spi_message *msg) { struct rspi_data *rspi = spi_master_get_devdata(master); /* Disable SPI function */ rspi_write8(rspi, rspi_read8(rspi, RSPI_SPCR) & ~SPCR_SPE, RSPI_SPCR); /* Reset sequencer for Single SPI Transfers */ rspi_write16(rspi, rspi->spcmd, RSPI_SPCMD0); rspi_write8(rspi, 0, RSPI_SPSCR); return 0; } static irqreturn_t rspi_irq_mux(int irq, void *_sr) { struct rspi_data *rspi = _sr; u8 spsr; irqreturn_t ret = IRQ_NONE; u8 disable_irq = 0; rspi->spsr = spsr = rspi_read8(rspi, RSPI_SPSR); if (spsr & SPSR_SPRF) disable_irq |= SPCR_SPRIE; if (spsr & SPSR_SPTEF) disable_irq |= SPCR_SPTIE; if (disable_irq) { ret = IRQ_HANDLED; rspi_disable_irq(rspi, disable_irq); wake_up(&rspi->wait); } return ret; } static irqreturn_t rspi_irq_rx(int irq, void *_sr) { struct rspi_data *rspi = _sr; u8 spsr; rspi->spsr = spsr = rspi_read8(rspi, RSPI_SPSR); if (spsr & SPSR_SPRF) { rspi_disable_irq(rspi, SPCR_SPRIE); wake_up(&rspi->wait); return IRQ_HANDLED; } return 0; } static irqreturn_t rspi_irq_tx(int irq, void *_sr) { struct rspi_data *rspi = _sr; u8 spsr; rspi->spsr = spsr = rspi_read8(rspi, RSPI_SPSR); if (spsr & SPSR_SPTEF) { rspi_disable_irq(rspi, SPCR_SPTIE); wake_up(&rspi->wait); return IRQ_HANDLED; } return 0; } static struct dma_chan *rspi_request_dma_chan(struct device *dev, enum dma_transfer_direction dir, unsigned int id, dma_addr_t port_addr) { dma_cap_mask_t mask; struct dma_chan *chan; struct dma_slave_config cfg; int ret; dma_cap_zero(mask); dma_cap_set(DMA_SLAVE, mask); chan = dma_request_channel(mask, shdma_chan_filter, (void *)(unsigned long)id); if (!chan) { dev_warn(dev, "dma_request_channel failed\n"); return NULL; } memset(&cfg, 0, sizeof(cfg)); cfg.slave_id = id; cfg.direction = dir; if (dir == DMA_MEM_TO_DEV) cfg.dst_addr = port_addr; else cfg.src_addr = port_addr; ret = dmaengine_slave_config(chan, &cfg); if (ret) { dev_warn(dev, "dmaengine_slave_config failed %d\n", ret); dma_release_channel(chan); return NULL; } return chan; } static int rspi_request_dma(struct rspi_data *rspi, struct platform_device *pdev) { const struct rspi_plat_data *rspi_pd = dev_get_platdata(&pdev->dev); struct resource *res = platform_get_resource(pdev, IORESOURCE_MEM, 0); if (!res || !rspi_pd) return 0; /* The driver assumes no error. */ /* If the module receives data by DMAC, it also needs TX DMAC */ if (rspi_pd->dma_rx_id && rspi_pd->dma_tx_id) { rspi->chan_rx = rspi_request_dma_chan(&pdev->dev, DMA_DEV_TO_MEM, rspi_pd->dma_rx_id, res->start + RSPI_SPDR); if (!rspi->chan_rx) return -ENODEV; dev_info(&pdev->dev, "Use DMA when rx.\n"); } if (rspi_pd->dma_tx_id) { rspi->chan_tx = rspi_request_dma_chan(&pdev->dev, DMA_MEM_TO_DEV, rspi_pd->dma_tx_id, res->start + RSPI_SPDR); if (!rspi->chan_tx) return -ENODEV; dev_info(&pdev->dev, "Use DMA when tx\n"); } return 0; } static void rspi_release_dma(struct rspi_data *rspi) { if (rspi->chan_tx) dma_release_channel(rspi->chan_tx); if (rspi->chan_rx) dma_release_channel(rspi->chan_rx); } static int rspi_remove(struct platform_device *pdev) { struct rspi_data *rspi = platform_get_drvdata(pdev); rspi_release_dma(rspi); pm_runtime_disable(&pdev->dev); return 0; } static const struct spi_ops rspi_ops = { .set_config_register = rspi_set_config_register, .transfer_one = rspi_transfer_one, .mode_bits = SPI_CPHA | SPI_CPOL | SPI_LOOP, .flags = SPI_MASTER_MUST_TX, }; static const struct spi_ops rspi_rz_ops = { .set_config_register = rspi_rz_set_config_register, .transfer_one = rspi_rz_transfer_one, .mode_bits = SPI_CPHA | SPI_CPOL | SPI_LOOP, .flags = SPI_MASTER_MUST_RX | SPI_MASTER_MUST_TX, }; static const struct spi_ops qspi_ops = { .set_config_register = qspi_set_config_register, .transfer_one = qspi_transfer_one, .mode_bits = SPI_CPHA | SPI_CPOL | SPI_LOOP | SPI_TX_DUAL | SPI_TX_QUAD | SPI_RX_DUAL | SPI_RX_QUAD, .flags = SPI_MASTER_MUST_RX | SPI_MASTER_MUST_TX, }; #ifdef CONFIG_OF static const struct of_device_id rspi_of_match[] = { /* RSPI on legacy SH */ { .compatible = "renesas,rspi", .data = &rspi_ops }, /* RSPI on RZ/A1H */ { .compatible = "renesas,rspi-rz", .data = &rspi_rz_ops }, /* QSPI on R-Car Gen2 */ { .compatible = "renesas,qspi", .data = &qspi_ops }, { /* sentinel */ } }; MODULE_DEVICE_TABLE(of, rspi_of_match); static int rspi_parse_dt(struct device *dev, struct spi_master *master) { u32 num_cs; int error; /* Parse DT properties */ error = of_property_read_u32(dev->of_node, "num-cs", &num_cs); if (error) { dev_err(dev, "of_property_read_u32 num-cs failed %d\n", error); return error; } master->num_chipselect = num_cs; return 0; } #else #define rspi_of_match NULL static inline int rspi_parse_dt(struct device *dev, struct spi_master *master) { return -EINVAL; } #endif /* CONFIG_OF */ static int rspi_request_irq(struct device *dev, unsigned int irq, irq_handler_t handler, const char *suffix, void *dev_id) { const char *base = dev_name(dev); size_t len = strlen(base) + strlen(suffix) + 2; char *name = devm_kzalloc(dev, len, GFP_KERNEL); if (!name) return -ENOMEM; snprintf(name, len, "%s:%s", base, suffix); return devm_request_irq(dev, irq, handler, 0, name, dev_id); } static int rspi_probe(struct platform_device *pdev) { struct resource *res; struct spi_master *master; struct rspi_data *rspi; int ret; const struct of_device_id *of_id; const struct rspi_plat_data *rspi_pd; const struct spi_ops *ops; master = spi_alloc_master(&pdev->dev, sizeof(struct rspi_data)); if (master == NULL) { dev_err(&pdev->dev, "spi_alloc_master error.\n"); return -ENOMEM; } of_id = of_match_device(rspi_of_match, &pdev->dev); if (of_id) { ops = of_id->data; ret = rspi_parse_dt(&pdev->dev, master); if (ret) goto error1; } else { ops = (struct spi_ops *)pdev->id_entry->driver_data; rspi_pd = dev_get_platdata(&pdev->dev); if (rspi_pd && rspi_pd->num_chipselect) master->num_chipselect = rspi_pd->num_chipselect; else master->num_chipselect = 2; /* default */ }; /* ops parameter check */ if (!ops->set_config_register) { dev_err(&pdev->dev, "there is no set_config_register\n"); ret = -ENODEV; goto error1; } rspi = spi_master_get_devdata(master); platform_set_drvdata(pdev, rspi); rspi->ops = ops; rspi->master = master; res = platform_get_resource(pdev, IORESOURCE_MEM, 0); rspi->addr = devm_ioremap_resource(&pdev->dev, res); if (IS_ERR(rspi->addr)) { ret = PTR_ERR(rspi->addr); goto error1; } rspi->clk = devm_clk_get(&pdev->dev, NULL); if (IS_ERR(rspi->clk)) { dev_err(&pdev->dev, "cannot get clock\n"); ret = PTR_ERR(rspi->clk); goto error1; } pm_runtime_enable(&pdev->dev); init_waitqueue_head(&rspi->wait); master->bus_num = pdev->id; master->setup = rspi_setup; master->auto_runtime_pm = true; master->transfer_one = ops->transfer_one; master->prepare_message = rspi_prepare_message; master->unprepare_message = rspi_unprepare_message; master->mode_bits = ops->mode_bits; master->flags = ops->flags; master->dev.of_node = pdev->dev.of_node; ret = platform_get_irq_byname(pdev, "rx"); if (ret < 0) { ret = platform_get_irq_byname(pdev, "mux"); if (ret < 0) ret = platform_get_irq(pdev, 0); if (ret >= 0) rspi->rx_irq = rspi->tx_irq = ret; } else { rspi->rx_irq = ret; ret = platform_get_irq_byname(pdev, "tx"); if (ret >= 0) rspi->tx_irq = ret; } if (ret < 0) { dev_err(&pdev->dev, "platform_get_irq error\n"); goto error2; } if (rspi->rx_irq == rspi->tx_irq) { /* Single multiplexed interrupt */ ret = rspi_request_irq(&pdev->dev, rspi->rx_irq, rspi_irq_mux, "mux", rspi); } else { /* Multi-interrupt mode, only SPRI and SPTI are used */ ret = rspi_request_irq(&pdev->dev, rspi->rx_irq, rspi_irq_rx, "rx", rspi); if (!ret) ret = rspi_request_irq(&pdev->dev, rspi->tx_irq, rspi_irq_tx, "tx", rspi); } if (ret < 0) { dev_err(&pdev->dev, "request_irq error\n"); goto error2; } ret = rspi_request_dma(rspi, pdev); if (ret < 0) dev_warn(&pdev->dev, "DMA not available, using PIO\n"); ret = devm_spi_register_master(&pdev->dev, master); if (ret < 0) { dev_err(&pdev->dev, "spi_register_master error.\n"); goto error3; } dev_info(&pdev->dev, "probed\n"); return 0; error3: rspi_release_dma(rspi); error2: pm_runtime_disable(&pdev->dev); error1: spi_master_put(master); return ret; } static struct platform_device_id spi_driver_ids[] = { { "rspi", (kernel_ulong_t)&rspi_ops }, { "rspi-rz", (kernel_ulong_t)&rspi_rz_ops }, { "qspi", (kernel_ulong_t)&qspi_ops }, {}, }; MODULE_DEVICE_TABLE(platform, spi_driver_ids); static struct platform_driver rspi_driver = { .probe = rspi_probe, .remove = rspi_remove, .id_table = spi_driver_ids, .driver = { .name = "renesas_spi", .owner = THIS_MODULE, .of_match_table = of_match_ptr(rspi_of_match), }, }; module_platform_driver(rspi_driver); MODULE_DESCRIPTION("Renesas RSPI bus driver"); MODULE_LICENSE("GPL v2"); MODULE_AUTHOR("Yoshihiro Shimoda"); MODULE_ALIAS("platform:rspi");