// SPDX-License-Identifier: GPL-2.0-or-later /* * Copyright(c) 2004 - 2006 Intel Corporation. All rights reserved. */ /* * This code implements the DMA subsystem. It provides a HW-neutral interface * for other kernel code to use asynchronous memory copy capabilities, * if present, and allows different HW DMA drivers to register as providing * this capability. * * Due to the fact we are accelerating what is already a relatively fast * operation, the code goes to great lengths to avoid additional overhead, * such as locking. * * LOCKING: * * The subsystem keeps a global list of dma_device structs it is protected by a * mutex, dma_list_mutex. * * A subsystem can get access to a channel by calling dmaengine_get() followed * by dma_find_channel(), or if it has need for an exclusive channel it can call * dma_request_channel(). Once a channel is allocated a reference is taken * against its corresponding driver to disable removal. * * Each device has a channels list, which runs unlocked but is never modified * once the device is registered, it's just setup by the driver. * * See Documentation/driver-api/dmaengine for more details */ #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include static DEFINE_MUTEX(dma_list_mutex); static DEFINE_IDA(dma_ida); static LIST_HEAD(dma_device_list); static long dmaengine_ref_count; /* --- sysfs implementation --- */ /** * dev_to_dma_chan - convert a device pointer to its sysfs container object * @dev - device node * * Must be called under dma_list_mutex */ static struct dma_chan *dev_to_dma_chan(struct device *dev) { struct dma_chan_dev *chan_dev; chan_dev = container_of(dev, typeof(*chan_dev), device); return chan_dev->chan; } static ssize_t memcpy_count_show(struct device *dev, struct device_attribute *attr, char *buf) { struct dma_chan *chan; unsigned long count = 0; int i; int err; mutex_lock(&dma_list_mutex); chan = dev_to_dma_chan(dev); if (chan) { for_each_possible_cpu(i) count += per_cpu_ptr(chan->local, i)->memcpy_count; err = sprintf(buf, "%lu\n", count); } else err = -ENODEV; mutex_unlock(&dma_list_mutex); return err; } static DEVICE_ATTR_RO(memcpy_count); static ssize_t bytes_transferred_show(struct device *dev, struct device_attribute *attr, char *buf) { struct dma_chan *chan; unsigned long count = 0; int i; int err; mutex_lock(&dma_list_mutex); chan = dev_to_dma_chan(dev); if (chan) { for_each_possible_cpu(i) count += per_cpu_ptr(chan->local, i)->bytes_transferred; err = sprintf(buf, "%lu\n", count); } else err = -ENODEV; mutex_unlock(&dma_list_mutex); return err; } static DEVICE_ATTR_RO(bytes_transferred); static ssize_t in_use_show(struct device *dev, struct device_attribute *attr, char *buf) { struct dma_chan *chan; int err; mutex_lock(&dma_list_mutex); chan = dev_to_dma_chan(dev); if (chan) err = sprintf(buf, "%d\n", chan->client_count); else err = -ENODEV; mutex_unlock(&dma_list_mutex); return err; } static DEVICE_ATTR_RO(in_use); static struct attribute *dma_dev_attrs[] = { &dev_attr_memcpy_count.attr, &dev_attr_bytes_transferred.attr, &dev_attr_in_use.attr, NULL, }; ATTRIBUTE_GROUPS(dma_dev); static void chan_dev_release(struct device *dev) { struct dma_chan_dev *chan_dev; chan_dev = container_of(dev, typeof(*chan_dev), device); if (atomic_dec_and_test(chan_dev->idr_ref)) { ida_free(&dma_ida, chan_dev->dev_id); kfree(chan_dev->idr_ref); } kfree(chan_dev); } static struct class dma_devclass = { .name = "dma", .dev_groups = dma_dev_groups, .dev_release = chan_dev_release, }; /* --- client and device registration --- */ #define dma_device_satisfies_mask(device, mask) \ __dma_device_satisfies_mask((device), &(mask)) static int __dma_device_satisfies_mask(struct dma_device *device, const dma_cap_mask_t *want) { dma_cap_mask_t has; bitmap_and(has.bits, want->bits, device->cap_mask.bits, DMA_TX_TYPE_END); return bitmap_equal(want->bits, has.bits, DMA_TX_TYPE_END); } static struct module *dma_chan_to_owner(struct dma_chan *chan) { return chan->device->owner; } /** * balance_ref_count - catch up the channel reference count * @chan - channel to balance ->client_count versus dmaengine_ref_count * * balance_ref_count must be called under dma_list_mutex */ static void balance_ref_count(struct dma_chan *chan) { struct module *owner = dma_chan_to_owner(chan); while (chan->client_count < dmaengine_ref_count) { __module_get(owner); chan->client_count++; } } /** * dma_chan_get - try to grab a dma channel's parent driver module * @chan - channel to grab * * Must be called under dma_list_mutex */ static int dma_chan_get(struct dma_chan *chan) { struct module *owner = dma_chan_to_owner(chan); int ret; /* The channel is already in use, update client count */ if (chan->client_count) { __module_get(owner); goto out; } if (!try_module_get(owner)) return -ENODEV; /* allocate upon first client reference */ if (chan->device->device_alloc_chan_resources) { ret = chan->device->device_alloc_chan_resources(chan); if (ret < 0) goto err_out; } if (!dma_has_cap(DMA_PRIVATE, chan->device->cap_mask)) balance_ref_count(chan); out: chan->client_count++; return 0; err_out: module_put(owner); return ret; } /** * dma_chan_put - drop a reference to a dma channel's parent driver module * @chan - channel to release * * Must be called under dma_list_mutex */ static void dma_chan_put(struct dma_chan *chan) { /* This channel is not in use, bail out */ if (!chan->client_count) return; chan->client_count--; /* This channel is not in use anymore, free it */ if (!chan->client_count && chan->device->device_free_chan_resources) { /* Make sure all operations have completed */ dmaengine_synchronize(chan); chan->device->device_free_chan_resources(chan); } module_put(dma_chan_to_owner(chan)); /* If the channel is used via a DMA request router, free the mapping */ if (chan->router && chan->router->route_free) { chan->router->route_free(chan->router->dev, chan->route_data); chan->router = NULL; chan->route_data = NULL; } } enum dma_status dma_sync_wait(struct dma_chan *chan, dma_cookie_t cookie) { enum dma_status status; unsigned long dma_sync_wait_timeout = jiffies + msecs_to_jiffies(5000); dma_async_issue_pending(chan); do { status = dma_async_is_tx_complete(chan, cookie, NULL, NULL); if (time_after_eq(jiffies, dma_sync_wait_timeout)) { dev_err(chan->device->dev, "%s: timeout!\n", __func__); return DMA_ERROR; } if (status != DMA_IN_PROGRESS) break; cpu_relax(); } while (1); return status; } EXPORT_SYMBOL(dma_sync_wait); /** * dma_cap_mask_all - enable iteration over all operation types */ static dma_cap_mask_t dma_cap_mask_all; /** * dma_chan_tbl_ent - tracks channel allocations per core/operation * @chan - associated channel for this entry */ struct dma_chan_tbl_ent { struct dma_chan *chan; }; /** * channel_table - percpu lookup table for memory-to-memory offload providers */ static struct dma_chan_tbl_ent __percpu *channel_table[DMA_TX_TYPE_END]; static int __init dma_channel_table_init(void) { enum dma_transaction_type cap; int err = 0; bitmap_fill(dma_cap_mask_all.bits, DMA_TX_TYPE_END); /* 'interrupt', 'private', and 'slave' are channel capabilities, * but are not associated with an operation so they do not need * an entry in the channel_table */ clear_bit(DMA_INTERRUPT, dma_cap_mask_all.bits); clear_bit(DMA_PRIVATE, dma_cap_mask_all.bits); clear_bit(DMA_SLAVE, dma_cap_mask_all.bits); for_each_dma_cap_mask(cap, dma_cap_mask_all) { channel_table[cap] = alloc_percpu(struct dma_chan_tbl_ent); if (!channel_table[cap]) { err = -ENOMEM; break; } } if (err) { pr_err("initialization failure\n"); for_each_dma_cap_mask(cap, dma_cap_mask_all) free_percpu(channel_table[cap]); } return err; } arch_initcall(dma_channel_table_init); /** * dma_find_channel - find a channel to carry out the operation * @tx_type: transaction type */ struct dma_chan *dma_find_channel(enum dma_transaction_type tx_type) { return this_cpu_read(channel_table[tx_type]->chan); } EXPORT_SYMBOL(dma_find_channel); /** * dma_issue_pending_all - flush all pending operations across all channels */ void dma_issue_pending_all(void) { struct dma_device *device; struct dma_chan *chan; rcu_read_lock(); list_for_each_entry_rcu(device, &dma_device_list, global_node) { if (dma_has_cap(DMA_PRIVATE, device->cap_mask)) continue; list_for_each_entry(chan, &device->channels, device_node) if (chan->client_count) device->device_issue_pending(chan); } rcu_read_unlock(); } EXPORT_SYMBOL(dma_issue_pending_all); /** * dma_chan_is_local - returns true if the channel is in the same numa-node as the cpu */ static bool dma_chan_is_local(struct dma_chan *chan, int cpu) { int node = dev_to_node(chan->device->dev); return node == NUMA_NO_NODE || cpumask_test_cpu(cpu, cpumask_of_node(node)); } /** * min_chan - returns the channel with min count and in the same numa-node as the cpu * @cap: capability to match * @cpu: cpu index which the channel should be close to * * If some channels are close to the given cpu, the one with the lowest * reference count is returned. Otherwise, cpu is ignored and only the * reference count is taken into account. * Must be called under dma_list_mutex. */ static struct dma_chan *min_chan(enum dma_transaction_type cap, int cpu) { struct dma_device *device; struct dma_chan *chan; struct dma_chan *min = NULL; struct dma_chan *localmin = NULL; list_for_each_entry(device, &dma_device_list, global_node) { if (!dma_has_cap(cap, device->cap_mask) || dma_has_cap(DMA_PRIVATE, device->cap_mask)) continue; list_for_each_entry(chan, &device->channels, device_node) { if (!chan->client_count) continue; if (!min || chan->table_count < min->table_count) min = chan; if (dma_chan_is_local(chan, cpu)) if (!localmin || chan->table_count < localmin->table_count) localmin = chan; } } chan = localmin ? localmin : min; if (chan) chan->table_count++; return chan; } /** * dma_channel_rebalance - redistribute the available channels * * Optimize for cpu isolation (each cpu gets a dedicated channel for an * operation type) in the SMP case, and operation isolation (avoid * multi-tasking channels) in the non-SMP case. Must be called under * dma_list_mutex. */ static void dma_channel_rebalance(void) { struct dma_chan *chan; struct dma_device *device; int cpu; int cap; /* undo the last distribution */ for_each_dma_cap_mask(cap, dma_cap_mask_all) for_each_possible_cpu(cpu) per_cpu_ptr(channel_table[cap], cpu)->chan = NULL; list_for_each_entry(device, &dma_device_list, global_node) { if (dma_has_cap(DMA_PRIVATE, device->cap_mask)) continue; list_for_each_entry(chan, &device->channels, device_node) chan->table_count = 0; } /* don't populate the channel_table if no clients are available */ if (!dmaengine_ref_count) return; /* redistribute available channels */ for_each_dma_cap_mask(cap, dma_cap_mask_all) for_each_online_cpu(cpu) { chan = min_chan(cap, cpu); per_cpu_ptr(channel_table[cap], cpu)->chan = chan; } } int dma_get_slave_caps(struct dma_chan *chan, struct dma_slave_caps *caps) { struct dma_device *device; if (!chan || !caps) return -EINVAL; device = chan->device; /* check if the channel supports slave transactions */ if (!(test_bit(DMA_SLAVE, device->cap_mask.bits) || test_bit(DMA_CYCLIC, device->cap_mask.bits))) return -ENXIO; /* * Check whether it reports it uses the generic slave * capabilities, if not, that means it doesn't support any * kind of slave capabilities reporting. */ if (!device->directions) return -ENXIO; caps->src_addr_widths = device->src_addr_widths; caps->dst_addr_widths = device->dst_addr_widths; caps->directions = device->directions; caps->max_burst = device->max_burst; caps->residue_granularity = device->residue_granularity; caps->descriptor_reuse = device->descriptor_reuse; caps->cmd_pause = !!device->device_pause; caps->cmd_resume = !!device->device_resume; caps->cmd_terminate = !!device->device_terminate_all; return 0; } EXPORT_SYMBOL_GPL(dma_get_slave_caps); static struct dma_chan *private_candidate(const dma_cap_mask_t *mask, struct dma_device *dev, dma_filter_fn fn, void *fn_param) { struct dma_chan *chan; if (mask && !__dma_device_satisfies_mask(dev, mask)) { dev_dbg(dev->dev, "%s: wrong capabilities\n", __func__); return NULL; } /* devices with multiple channels need special handling as we need to * ensure that all channels are either private or public. */ if (dev->chancnt > 1 && !dma_has_cap(DMA_PRIVATE, dev->cap_mask)) list_for_each_entry(chan, &dev->channels, device_node) { /* some channels are already publicly allocated */ if (chan->client_count) return NULL; } list_for_each_entry(chan, &dev->channels, device_node) { if (chan->client_count) { dev_dbg(dev->dev, "%s: %s busy\n", __func__, dma_chan_name(chan)); continue; } if (fn && !fn(chan, fn_param)) { dev_dbg(dev->dev, "%s: %s filter said false\n", __func__, dma_chan_name(chan)); continue; } return chan; } return NULL; } static struct dma_chan *find_candidate(struct dma_device *device, const dma_cap_mask_t *mask, dma_filter_fn fn, void *fn_param) { struct dma_chan *chan = private_candidate(mask, device, fn, fn_param); int err; if (chan) { /* Found a suitable channel, try to grab, prep, and return it. * We first set DMA_PRIVATE to disable balance_ref_count as this * channel will not be published in the general-purpose * allocator */ dma_cap_set(DMA_PRIVATE, device->cap_mask); device->privatecnt++; err = dma_chan_get(chan); if (err) { if (err == -ENODEV) { dev_dbg(device->dev, "%s: %s module removed\n", __func__, dma_chan_name(chan)); list_del_rcu(&device->global_node); } else dev_dbg(device->dev, "%s: failed to get %s: (%d)\n", __func__, dma_chan_name(chan), err); if (--device->privatecnt == 0) dma_cap_clear(DMA_PRIVATE, device->cap_mask); chan = ERR_PTR(err); } } return chan ? chan : ERR_PTR(-EPROBE_DEFER); } /** * dma_get_slave_channel - try to get specific channel exclusively * @chan: target channel */ struct dma_chan *dma_get_slave_channel(struct dma_chan *chan) { int err = -EBUSY; /* lock against __dma_request_channel */ mutex_lock(&dma_list_mutex); if (chan->client_count == 0) { struct dma_device *device = chan->device; dma_cap_set(DMA_PRIVATE, device->cap_mask); device->privatecnt++; err = dma_chan_get(chan); if (err) { dev_dbg(chan->device->dev, "%s: failed to get %s: (%d)\n", __func__, dma_chan_name(chan), err); chan = NULL; if (--device->privatecnt == 0) dma_cap_clear(DMA_PRIVATE, device->cap_mask); } } else chan = NULL; mutex_unlock(&dma_list_mutex); return chan; } EXPORT_SYMBOL_GPL(dma_get_slave_channel); struct dma_chan *dma_get_any_slave_channel(struct dma_device *device) { dma_cap_mask_t mask; struct dma_chan *chan; dma_cap_zero(mask); dma_cap_set(DMA_SLAVE, mask); /* lock against __dma_request_channel */ mutex_lock(&dma_list_mutex); chan = find_candidate(device, &mask, NULL, NULL); mutex_unlock(&dma_list_mutex); return IS_ERR(chan) ? NULL : chan; } EXPORT_SYMBOL_GPL(dma_get_any_slave_channel); /** * __dma_request_channel - try to allocate an exclusive channel * @mask: capabilities that the channel must satisfy * @fn: optional callback to disposition available channels * @fn_param: opaque parameter to pass to dma_filter_fn * @np: device node to look for DMA channels * * Returns pointer to appropriate DMA channel on success or NULL. */ struct dma_chan *__dma_request_channel(const dma_cap_mask_t *mask, dma_filter_fn fn, void *fn_param, struct device_node *np) { struct dma_device *device, *_d; struct dma_chan *chan = NULL; /* Find a channel */ mutex_lock(&dma_list_mutex); list_for_each_entry_safe(device, _d, &dma_device_list, global_node) { /* Finds a DMA controller with matching device node */ if (np && device->dev->of_node && np != device->dev->of_node) continue; chan = find_candidate(device, mask, fn, fn_param); if (!IS_ERR(chan)) break; chan = NULL; } mutex_unlock(&dma_list_mutex); pr_debug("%s: %s (%s)\n", __func__, chan ? "success" : "fail", chan ? dma_chan_name(chan) : NULL); return chan; } EXPORT_SYMBOL_GPL(__dma_request_channel); static const struct dma_slave_map *dma_filter_match(struct dma_device *device, const char *name, struct device *dev) { int i; if (!device->filter.mapcnt) return NULL; for (i = 0; i < device->filter.mapcnt; i++) { const struct dma_slave_map *map = &device->filter.map[i]; if (!strcmp(map->devname, dev_name(dev)) && !strcmp(map->slave, name)) return map; } return NULL; } /** * dma_request_chan - try to allocate an exclusive slave channel * @dev: pointer to client device structure * @name: slave channel name * * Returns pointer to appropriate DMA channel on success or an error pointer. */ struct dma_chan *dma_request_chan(struct device *dev, const char *name) { struct dma_device *d, *_d; struct dma_chan *chan = NULL; /* If device-tree is present get slave info from here */ if (dev->of_node) chan = of_dma_request_slave_channel(dev->of_node, name); /* If device was enumerated by ACPI get slave info from here */ if (has_acpi_companion(dev) && !chan) chan = acpi_dma_request_slave_chan_by_name(dev, name); if (chan) { /* Valid channel found or requester needs to be deferred */ if (!IS_ERR(chan) || PTR_ERR(chan) == -EPROBE_DEFER) return chan; } /* Try to find the channel via the DMA filter map(s) */ mutex_lock(&dma_list_mutex); list_for_each_entry_safe(d, _d, &dma_device_list, global_node) { dma_cap_mask_t mask; const struct dma_slave_map *map = dma_filter_match(d, name, dev); if (!map) continue; dma_cap_zero(mask); dma_cap_set(DMA_SLAVE, mask); chan = find_candidate(d, &mask, d->filter.fn, map->param); if (!IS_ERR(chan)) break; } mutex_unlock(&dma_list_mutex); return chan ? chan : ERR_PTR(-EPROBE_DEFER); } EXPORT_SYMBOL_GPL(dma_request_chan); /** * dma_request_slave_channel - try to allocate an exclusive slave channel * @dev: pointer to client device structure * @name: slave channel name * * Returns pointer to appropriate DMA channel on success or NULL. */ struct dma_chan *dma_request_slave_channel(struct device *dev, const char *name) { struct dma_chan *ch = dma_request_chan(dev, name); if (IS_ERR(ch)) return NULL; return ch; } EXPORT_SYMBOL_GPL(dma_request_slave_channel); /** * dma_request_chan_by_mask - allocate a channel satisfying certain capabilities * @mask: capabilities that the channel must satisfy * * Returns pointer to appropriate DMA channel on success or an error pointer. */ struct dma_chan *dma_request_chan_by_mask(const dma_cap_mask_t *mask) { struct dma_chan *chan; if (!mask) return ERR_PTR(-ENODEV); chan = __dma_request_channel(mask, NULL, NULL, NULL); if (!chan) { mutex_lock(&dma_list_mutex); if (list_empty(&dma_device_list)) chan = ERR_PTR(-EPROBE_DEFER); else chan = ERR_PTR(-ENODEV); mutex_unlock(&dma_list_mutex); } return chan; } EXPORT_SYMBOL_GPL(dma_request_chan_by_mask); void dma_release_channel(struct dma_chan *chan) { mutex_lock(&dma_list_mutex); WARN_ONCE(chan->client_count != 1, "chan reference count %d != 1\n", chan->client_count); dma_chan_put(chan); /* drop PRIVATE cap enabled by __dma_request_channel() */ if (--chan->device->privatecnt == 0) dma_cap_clear(DMA_PRIVATE, chan->device->cap_mask); mutex_unlock(&dma_list_mutex); } EXPORT_SYMBOL_GPL(dma_release_channel); /** * dmaengine_get - register interest in dma_channels */ void dmaengine_get(void) { struct dma_device *device, *_d; struct dma_chan *chan; int err; mutex_lock(&dma_list_mutex); dmaengine_ref_count++; /* try to grab channels */ list_for_each_entry_safe(device, _d, &dma_device_list, global_node) { if (dma_has_cap(DMA_PRIVATE, device->cap_mask)) continue; list_for_each_entry(chan, &device->channels, device_node) { err = dma_chan_get(chan); if (err == -ENODEV) { /* module removed before we could use it */ list_del_rcu(&device->global_node); break; } else if (err) dev_dbg(chan->device->dev, "%s: failed to get %s: (%d)\n", __func__, dma_chan_name(chan), err); } } /* if this is the first reference and there were channels * waiting we need to rebalance to get those channels * incorporated into the channel table */ if (dmaengine_ref_count == 1) dma_channel_rebalance(); mutex_unlock(&dma_list_mutex); } EXPORT_SYMBOL(dmaengine_get); /** * dmaengine_put - let dma drivers be removed when ref_count == 0 */ void dmaengine_put(void) { struct dma_device *device; struct dma_chan *chan; mutex_lock(&dma_list_mutex); dmaengine_ref_count--; BUG_ON(dmaengine_ref_count < 0); /* drop channel references */ list_for_each_entry(device, &dma_device_list, global_node) { if (dma_has_cap(DMA_PRIVATE, device->cap_mask)) continue; list_for_each_entry(chan, &device->channels, device_node) dma_chan_put(chan); } mutex_unlock(&dma_list_mutex); } EXPORT_SYMBOL(dmaengine_put); static bool device_has_all_tx_types(struct dma_device *device) { /* A device that satisfies this test has channels that will never cause * an async_tx channel switch event as all possible operation types can * be handled. */ #ifdef CONFIG_ASYNC_TX_DMA if (!dma_has_cap(DMA_INTERRUPT, device->cap_mask)) return false; #endif #if IS_ENABLED(CONFIG_ASYNC_MEMCPY) if (!dma_has_cap(DMA_MEMCPY, device->cap_mask)) return false; #endif #if IS_ENABLED(CONFIG_ASYNC_XOR) if (!dma_has_cap(DMA_XOR, device->cap_mask)) return false; #ifndef CONFIG_ASYNC_TX_DISABLE_XOR_VAL_DMA if (!dma_has_cap(DMA_XOR_VAL, device->cap_mask)) return false; #endif #endif #if IS_ENABLED(CONFIG_ASYNC_PQ) if (!dma_has_cap(DMA_PQ, device->cap_mask)) return false; #ifndef CONFIG_ASYNC_TX_DISABLE_PQ_VAL_DMA if (!dma_has_cap(DMA_PQ_VAL, device->cap_mask)) return false; #endif #endif return true; } static int get_dma_id(struct dma_device *device) { int rc = ida_alloc(&dma_ida, GFP_KERNEL); if (rc < 0) return rc; device->dev_id = rc; return 0; } /** * dma_async_device_register - registers DMA devices found * @device: &dma_device */ int dma_async_device_register(struct dma_device *device) { int chancnt = 0, rc; struct dma_chan* chan; atomic_t *idr_ref; if (!device) return -ENODEV; /* validate device routines */ if (!device->dev) { pr_err("DMAdevice must have dev\n"); return -EIO; } device->owner = device->dev->driver->owner; if (dma_has_cap(DMA_MEMCPY, device->cap_mask) && !device->device_prep_dma_memcpy) { dev_err(device->dev, "Device claims capability %s, but op is not defined\n", "DMA_MEMCPY"); return -EIO; } if (dma_has_cap(DMA_XOR, device->cap_mask) && !device->device_prep_dma_xor) { dev_err(device->dev, "Device claims capability %s, but op is not defined\n", "DMA_XOR"); return -EIO; } if (dma_has_cap(DMA_XOR_VAL, device->cap_mask) && !device->device_prep_dma_xor_val) { dev_err(device->dev, "Device claims capability %s, but op is not defined\n", "DMA_XOR_VAL"); return -EIO; } if (dma_has_cap(DMA_PQ, device->cap_mask) && !device->device_prep_dma_pq) { dev_err(device->dev, "Device claims capability %s, but op is not defined\n", "DMA_PQ"); return -EIO; } if (dma_has_cap(DMA_PQ_VAL, device->cap_mask) && !device->device_prep_dma_pq_val) { dev_err(device->dev, "Device claims capability %s, but op is not defined\n", "DMA_PQ_VAL"); return -EIO; } if (dma_has_cap(DMA_MEMSET, device->cap_mask) && !device->device_prep_dma_memset) { dev_err(device->dev, "Device claims capability %s, but op is not defined\n", "DMA_MEMSET"); return -EIO; } if (dma_has_cap(DMA_INTERRUPT, device->cap_mask) && !device->device_prep_dma_interrupt) { dev_err(device->dev, "Device claims capability %s, but op is not defined\n", "DMA_INTERRUPT"); return -EIO; } if (dma_has_cap(DMA_CYCLIC, device->cap_mask) && !device->device_prep_dma_cyclic) { dev_err(device->dev, "Device claims capability %s, but op is not defined\n", "DMA_CYCLIC"); return -EIO; } if (dma_has_cap(DMA_INTERLEAVE, device->cap_mask) && !device->device_prep_interleaved_dma) { dev_err(device->dev, "Device claims capability %s, but op is not defined\n", "DMA_INTERLEAVE"); return -EIO; } if (!device->device_tx_status) { dev_err(device->dev, "Device tx_status is not defined\n"); return -EIO; } if (!device->device_issue_pending) { dev_err(device->dev, "Device issue_pending is not defined\n"); return -EIO; } /* note: this only matters in the * CONFIG_ASYNC_TX_ENABLE_CHANNEL_SWITCH=n case */ if (device_has_all_tx_types(device)) dma_cap_set(DMA_ASYNC_TX, device->cap_mask); idr_ref = kmalloc(sizeof(*idr_ref), GFP_KERNEL); if (!idr_ref) return -ENOMEM; rc = get_dma_id(device); if (rc != 0) { kfree(idr_ref); return rc; } atomic_set(idr_ref, 0); /* represent channels in sysfs. Probably want devs too */ list_for_each_entry(chan, &device->channels, device_node) { rc = -ENOMEM; chan->local = alloc_percpu(typeof(*chan->local)); if (chan->local == NULL) goto err_out; chan->dev = kzalloc(sizeof(*chan->dev), GFP_KERNEL); if (chan->dev == NULL) { free_percpu(chan->local); chan->local = NULL; goto err_out; } chan->chan_id = chancnt++; chan->dev->device.class = &dma_devclass; chan->dev->device.parent = device->dev; chan->dev->chan = chan; chan->dev->idr_ref = idr_ref; chan->dev->dev_id = device->dev_id; atomic_inc(idr_ref); dev_set_name(&chan->dev->device, "dma%dchan%d", device->dev_id, chan->chan_id); rc = device_register(&chan->dev->device); if (rc) { free_percpu(chan->local); chan->local = NULL; kfree(chan->dev); atomic_dec(idr_ref); goto err_out; } chan->client_count = 0; } if (!chancnt) { dev_err(device->dev, "%s: device has no channels!\n", __func__); rc = -ENODEV; goto err_out; } device->chancnt = chancnt; mutex_lock(&dma_list_mutex); /* take references on public channels */ if (dmaengine_ref_count && !dma_has_cap(DMA_PRIVATE, device->cap_mask)) list_for_each_entry(chan, &device->channels, device_node) { /* if clients are already waiting for channels we need * to take references on their behalf */ if (dma_chan_get(chan) == -ENODEV) { /* note we can only get here for the first * channel as the remaining channels are * guaranteed to get a reference */ rc = -ENODEV; mutex_unlock(&dma_list_mutex); goto err_out; } } list_add_tail_rcu(&device->global_node, &dma_device_list); if (dma_has_cap(DMA_PRIVATE, device->cap_mask)) device->privatecnt++; /* Always private */ dma_channel_rebalance(); mutex_unlock(&dma_list_mutex); return 0; err_out: /* if we never registered a channel just release the idr */ if (atomic_read(idr_ref) == 0) { ida_free(&dma_ida, device->dev_id); kfree(idr_ref); return rc; } list_for_each_entry(chan, &device->channels, device_node) { if (chan->local == NULL) continue; mutex_lock(&dma_list_mutex); chan->dev->chan = NULL; mutex_unlock(&dma_list_mutex); device_unregister(&chan->dev->device); free_percpu(chan->local); } return rc; } EXPORT_SYMBOL(dma_async_device_register); /** * dma_async_device_unregister - unregister a DMA device * @device: &dma_device * * This routine is called by dma driver exit routines, dmaengine holds module * references to prevent it being called while channels are in use. */ void dma_async_device_unregister(struct dma_device *device) { struct dma_chan *chan; mutex_lock(&dma_list_mutex); list_del_rcu(&device->global_node); dma_channel_rebalance(); mutex_unlock(&dma_list_mutex); list_for_each_entry(chan, &device->channels, device_node) { WARN_ONCE(chan->client_count, "%s called while %d clients hold a reference\n", __func__, chan->client_count); mutex_lock(&dma_list_mutex); chan->dev->chan = NULL; mutex_unlock(&dma_list_mutex); device_unregister(&chan->dev->device); free_percpu(chan->local); } } EXPORT_SYMBOL(dma_async_device_unregister); static void dmam_device_release(struct device *dev, void *res) { struct dma_device *device; device = *(struct dma_device **)res; dma_async_device_unregister(device); } /** * dmaenginem_async_device_register - registers DMA devices found * @device: &dma_device * * The operation is managed and will be undone on driver detach. */ int dmaenginem_async_device_register(struct dma_device *device) { void *p; int ret; p = devres_alloc(dmam_device_release, sizeof(void *), GFP_KERNEL); if (!p) return -ENOMEM; ret = dma_async_device_register(device); if (!ret) { *(struct dma_device **)p = device; devres_add(device->dev, p); } else { devres_free(p); } return ret; } EXPORT_SYMBOL(dmaenginem_async_device_register); struct dmaengine_unmap_pool { struct kmem_cache *cache; const char *name; mempool_t *pool; size_t size; }; #define __UNMAP_POOL(x) { .size = x, .name = "dmaengine-unmap-" __stringify(x) } static struct dmaengine_unmap_pool unmap_pool[] = { __UNMAP_POOL(2), #if IS_ENABLED(CONFIG_DMA_ENGINE_RAID) __UNMAP_POOL(16), __UNMAP_POOL(128), __UNMAP_POOL(256), #endif }; static struct dmaengine_unmap_pool *__get_unmap_pool(int nr) { int order = get_count_order(nr); switch (order) { case 0 ... 1: return &unmap_pool[0]; #if IS_ENABLED(CONFIG_DMA_ENGINE_RAID) case 2 ... 4: return &unmap_pool[1]; case 5 ... 7: return &unmap_pool[2]; case 8: return &unmap_pool[3]; #endif default: BUG(); return NULL; } } static void dmaengine_unmap(struct kref *kref) { struct dmaengine_unmap_data *unmap = container_of(kref, typeof(*unmap), kref); struct device *dev = unmap->dev; int cnt, i; cnt = unmap->to_cnt; for (i = 0; i < cnt; i++) dma_unmap_page(dev, unmap->addr[i], unmap->len, DMA_TO_DEVICE); cnt += unmap->from_cnt; for (; i < cnt; i++) dma_unmap_page(dev, unmap->addr[i], unmap->len, DMA_FROM_DEVICE); cnt += unmap->bidi_cnt; for (; i < cnt; i++) { if (unmap->addr[i] == 0) continue; dma_unmap_page(dev, unmap->addr[i], unmap->len, DMA_BIDIRECTIONAL); } cnt = unmap->map_cnt; mempool_free(unmap, __get_unmap_pool(cnt)->pool); } void dmaengine_unmap_put(struct dmaengine_unmap_data *unmap) { if (unmap) kref_put(&unmap->kref, dmaengine_unmap); } EXPORT_SYMBOL_GPL(dmaengine_unmap_put); static void dmaengine_destroy_unmap_pool(void) { int i; for (i = 0; i < ARRAY_SIZE(unmap_pool); i++) { struct dmaengine_unmap_pool *p = &unmap_pool[i]; mempool_destroy(p->pool); p->pool = NULL; kmem_cache_destroy(p->cache); p->cache = NULL; } } static int __init dmaengine_init_unmap_pool(void) { int i; for (i = 0; i < ARRAY_SIZE(unmap_pool); i++) { struct dmaengine_unmap_pool *p = &unmap_pool[i]; size_t size; size = sizeof(struct dmaengine_unmap_data) + sizeof(dma_addr_t) * p->size; p->cache = kmem_cache_create(p->name, size, 0, SLAB_HWCACHE_ALIGN, NULL); if (!p->cache) break; p->pool = mempool_create_slab_pool(1, p->cache); if (!p->pool) break; } if (i == ARRAY_SIZE(unmap_pool)) return 0; dmaengine_destroy_unmap_pool(); return -ENOMEM; } struct dmaengine_unmap_data * dmaengine_get_unmap_data(struct device *dev, int nr, gfp_t flags) { struct dmaengine_unmap_data *unmap; unmap = mempool_alloc(__get_unmap_pool(nr)->pool, flags); if (!unmap) return NULL; memset(unmap, 0, sizeof(*unmap)); kref_init(&unmap->kref); unmap->dev = dev; unmap->map_cnt = nr; return unmap; } EXPORT_SYMBOL(dmaengine_get_unmap_data); void dma_async_tx_descriptor_init(struct dma_async_tx_descriptor *tx, struct dma_chan *chan) { tx->chan = chan; #ifdef CONFIG_ASYNC_TX_ENABLE_CHANNEL_SWITCH spin_lock_init(&tx->lock); #endif } EXPORT_SYMBOL(dma_async_tx_descriptor_init); /* dma_wait_for_async_tx - spin wait for a transaction to complete * @tx: in-flight transaction to wait on */ enum dma_status dma_wait_for_async_tx(struct dma_async_tx_descriptor *tx) { unsigned long dma_sync_wait_timeout = jiffies + msecs_to_jiffies(5000); if (!tx) return DMA_COMPLETE; while (tx->cookie == -EBUSY) { if (time_after_eq(jiffies, dma_sync_wait_timeout)) { dev_err(tx->chan->device->dev, "%s timeout waiting for descriptor submission\n", __func__); return DMA_ERROR; } cpu_relax(); } return dma_sync_wait(tx->chan, tx->cookie); } EXPORT_SYMBOL_GPL(dma_wait_for_async_tx); /* dma_run_dependencies - helper routine for dma drivers to process * (start) dependent operations on their target channel * @tx: transaction with dependencies */ void dma_run_dependencies(struct dma_async_tx_descriptor *tx) { struct dma_async_tx_descriptor *dep = txd_next(tx); struct dma_async_tx_descriptor *dep_next; struct dma_chan *chan; if (!dep) return; /* we'll submit tx->next now, so clear the link */ txd_clear_next(tx); chan = dep->chan; /* keep submitting up until a channel switch is detected * in that case we will be called again as a result of * processing the interrupt from async_tx_channel_switch */ for (; dep; dep = dep_next) { txd_lock(dep); txd_clear_parent(dep); dep_next = txd_next(dep); if (dep_next && dep_next->chan == chan) txd_clear_next(dep); /* ->next will be submitted */ else dep_next = NULL; /* submit current dep and terminate */ txd_unlock(dep); dep->tx_submit(dep); } chan->device->device_issue_pending(chan); } EXPORT_SYMBOL_GPL(dma_run_dependencies); static int __init dma_bus_init(void) { int err = dmaengine_init_unmap_pool(); if (err) return err; return class_register(&dma_devclass); } arch_initcall(dma_bus_init);