// SPDX-License-Identifier: GPL-2.0-only /* * Copyright 2020 Linaro Limited * * Author: Daniel Lezcano * * The powercap based Dynamic Thermal Power Management framework * provides to the userspace a consistent API to set the power limit * on some devices. * * DTPM defines the functions to create a tree of constraints. Each * parent node is a virtual description of the aggregation of the * children. It propagates the constraints set at its level to its * children and collect the children power information. The leaves of * the tree are the real devices which have the ability to get their * current power consumption and set their power limit. */ #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt #include #include #include #include #include #include #include #include "dtpm_subsys.h" #define DTPM_POWER_LIMIT_FLAG 0 static const char *constraint_name[] = { "Instantaneous", }; static DEFINE_MUTEX(dtpm_lock); static struct powercap_control_type *pct; static struct dtpm *root; static int get_time_window_us(struct powercap_zone *pcz, int cid, u64 *window) { return -ENOSYS; } static int set_time_window_us(struct powercap_zone *pcz, int cid, u64 window) { return -ENOSYS; } static int get_max_power_range_uw(struct powercap_zone *pcz, u64 *max_power_uw) { struct dtpm *dtpm = to_dtpm(pcz); *max_power_uw = dtpm->power_max - dtpm->power_min; return 0; } static int __get_power_uw(struct dtpm *dtpm, u64 *power_uw) { struct dtpm *child; u64 power; int ret = 0; if (dtpm->ops) { *power_uw = dtpm->ops->get_power_uw(dtpm); return 0; } *power_uw = 0; list_for_each_entry(child, &dtpm->children, sibling) { ret = __get_power_uw(child, &power); if (ret) break; *power_uw += power; } return ret; } static int get_power_uw(struct powercap_zone *pcz, u64 *power_uw) { return __get_power_uw(to_dtpm(pcz), power_uw); } static void __dtpm_rebalance_weight(struct dtpm *dtpm) { struct dtpm *child; list_for_each_entry(child, &dtpm->children, sibling) { pr_debug("Setting weight '%d' for '%s'\n", child->weight, child->zone.name); child->weight = DIV64_U64_ROUND_CLOSEST( child->power_max * 1024, dtpm->power_max); __dtpm_rebalance_weight(child); } } static void __dtpm_sub_power(struct dtpm *dtpm) { struct dtpm *parent = dtpm->parent; while (parent) { parent->power_min -= dtpm->power_min; parent->power_max -= dtpm->power_max; parent->power_limit -= dtpm->power_limit; parent = parent->parent; } } static void __dtpm_add_power(struct dtpm *dtpm) { struct dtpm *parent = dtpm->parent; while (parent) { parent->power_min += dtpm->power_min; parent->power_max += dtpm->power_max; parent->power_limit += dtpm->power_limit; parent = parent->parent; } } /** * dtpm_update_power - Update the power on the dtpm * @dtpm: a pointer to a dtpm structure to update * * Function to update the power values of the dtpm node specified in * parameter. These new values will be propagated to the tree. * * Return: zero on success, -EINVAL if the values are inconsistent */ int dtpm_update_power(struct dtpm *dtpm) { int ret; __dtpm_sub_power(dtpm); ret = dtpm->ops->update_power_uw(dtpm); if (ret) pr_err("Failed to update power for '%s': %d\n", dtpm->zone.name, ret); if (!test_bit(DTPM_POWER_LIMIT_FLAG, &dtpm->flags)) dtpm->power_limit = dtpm->power_max; __dtpm_add_power(dtpm); if (root) __dtpm_rebalance_weight(root); return ret; } /** * dtpm_release_zone - Cleanup when the node is released * @pcz: a pointer to a powercap_zone structure * * Do some housecleaning and update the weight on the tree. The * release will be denied if the node has children. This function must * be called by the specific release callback of the different * backends. * * Return: 0 on success, -EBUSY if there are children */ int dtpm_release_zone(struct powercap_zone *pcz) { struct dtpm *dtpm = to_dtpm(pcz); struct dtpm *parent = dtpm->parent; if (!list_empty(&dtpm->children)) return -EBUSY; if (parent) list_del(&dtpm->sibling); __dtpm_sub_power(dtpm); if (dtpm->ops) dtpm->ops->release(dtpm); else kfree(dtpm); if (root == dtpm) root = NULL; return 0; } static int get_power_limit_uw(struct powercap_zone *pcz, int cid, u64 *power_limit) { *power_limit = to_dtpm(pcz)->power_limit; return 0; } /* * Set the power limit on the nodes, the power limit is distributed * given the weight of the children. * * The dtpm node lock must be held when calling this function. */ static int __set_power_limit_uw(struct dtpm *dtpm, int cid, u64 power_limit) { struct dtpm *child; int ret = 0; u64 power; /* * A max power limitation means we remove the power limit, * otherwise we set a constraint and flag the dtpm node. */ if (power_limit == dtpm->power_max) { clear_bit(DTPM_POWER_LIMIT_FLAG, &dtpm->flags); } else { set_bit(DTPM_POWER_LIMIT_FLAG, &dtpm->flags); } pr_debug("Setting power limit for '%s': %llu uW\n", dtpm->zone.name, power_limit); /* * Only leaves of the dtpm tree has ops to get/set the power */ if (dtpm->ops) { dtpm->power_limit = dtpm->ops->set_power_uw(dtpm, power_limit); } else { dtpm->power_limit = 0; list_for_each_entry(child, &dtpm->children, sibling) { /* * Integer division rounding will inevitably * lead to a different min or max value when * set several times. In order to restore the * initial value, we force the child's min or * max power every time if the constraint is * at the boundaries. */ if (power_limit == dtpm->power_max) { power = child->power_max; } else if (power_limit == dtpm->power_min) { power = child->power_min; } else { power = DIV_ROUND_CLOSEST_ULL( power_limit * child->weight, 1024); } pr_debug("Setting power limit for '%s': %llu uW\n", child->zone.name, power); ret = __set_power_limit_uw(child, cid, power); if (!ret) ret = get_power_limit_uw(&child->zone, cid, &power); if (ret) break; dtpm->power_limit += power; } } return ret; } static int set_power_limit_uw(struct powercap_zone *pcz, int cid, u64 power_limit) { struct dtpm *dtpm = to_dtpm(pcz); int ret; /* * Don't allow values outside of the power range previously * set when initializing the power numbers. */ power_limit = clamp_val(power_limit, dtpm->power_min, dtpm->power_max); ret = __set_power_limit_uw(dtpm, cid, power_limit); pr_debug("%s: power limit: %llu uW, power max: %llu uW\n", dtpm->zone.name, dtpm->power_limit, dtpm->power_max); return ret; } static const char *get_constraint_name(struct powercap_zone *pcz, int cid) { return constraint_name[cid]; } static int get_max_power_uw(struct powercap_zone *pcz, int id, u64 *max_power) { *max_power = to_dtpm(pcz)->power_max; return 0; } static struct powercap_zone_constraint_ops constraint_ops = { .set_power_limit_uw = set_power_limit_uw, .get_power_limit_uw = get_power_limit_uw, .set_time_window_us = set_time_window_us, .get_time_window_us = get_time_window_us, .get_max_power_uw = get_max_power_uw, .get_name = get_constraint_name, }; static struct powercap_zone_ops zone_ops = { .get_max_power_range_uw = get_max_power_range_uw, .get_power_uw = get_power_uw, .release = dtpm_release_zone, }; /** * dtpm_init - Allocate and initialize a dtpm struct * @dtpm: The dtpm struct pointer to be initialized * @ops: The dtpm device specific ops, NULL for a virtual node */ void dtpm_init(struct dtpm *dtpm, struct dtpm_ops *ops) { if (dtpm) { INIT_LIST_HEAD(&dtpm->children); INIT_LIST_HEAD(&dtpm->sibling); dtpm->weight = 1024; dtpm->ops = ops; } } /** * dtpm_unregister - Unregister a dtpm node from the hierarchy tree * @dtpm: a pointer to a dtpm structure corresponding to the node to be removed * * Call the underlying powercap unregister function. That will call * the release callback of the powercap zone. */ void dtpm_unregister(struct dtpm *dtpm) { powercap_unregister_zone(pct, &dtpm->zone); pr_debug("Unregistered dtpm node '%s'\n", dtpm->zone.name); } /** * dtpm_register - Register a dtpm node in the hierarchy tree * @name: a string specifying the name of the node * @dtpm: a pointer to a dtpm structure corresponding to the new node * @parent: a pointer to a dtpm structure corresponding to the parent node * * Create a dtpm node in the tree. If no parent is specified, the node * is the root node of the hierarchy. If the root node already exists, * then the registration will fail. The powercap controller must be * initialized before calling this function. * * The dtpm structure must be initialized with the power numbers * before calling this function. * * Return: zero on success, a negative value in case of error: * -EAGAIN: the function is called before the framework is initialized. * -EBUSY: the root node is already inserted * -EINVAL: * there is no root node yet and @parent is specified * * no all ops are defined * * parent have ops which are reserved for leaves * Other negative values are reported back from the powercap framework */ int dtpm_register(const char *name, struct dtpm *dtpm, struct dtpm *parent) { struct powercap_zone *pcz; if (!pct) return -EAGAIN; if (root && !parent) return -EBUSY; if (!root && parent) return -EINVAL; if (parent && parent->ops) return -EINVAL; if (!dtpm) return -EINVAL; if (dtpm->ops && !(dtpm->ops->set_power_uw && dtpm->ops->get_power_uw && dtpm->ops->update_power_uw && dtpm->ops->release)) return -EINVAL; pcz = powercap_register_zone(&dtpm->zone, pct, name, parent ? &parent->zone : NULL, &zone_ops, MAX_DTPM_CONSTRAINTS, &constraint_ops); if (IS_ERR(pcz)) return PTR_ERR(pcz); if (parent) { list_add_tail(&dtpm->sibling, &parent->children); dtpm->parent = parent; } else { root = dtpm; } if (dtpm->ops && !dtpm->ops->update_power_uw(dtpm)) { __dtpm_add_power(dtpm); dtpm->power_limit = dtpm->power_max; } pr_debug("Registered dtpm node '%s' / %llu-%llu uW, \n", dtpm->zone.name, dtpm->power_min, dtpm->power_max); return 0; } static struct dtpm *dtpm_setup_virtual(const struct dtpm_node *hierarchy, struct dtpm *parent) { struct dtpm *dtpm; int ret; dtpm = kzalloc(sizeof(*dtpm), GFP_KERNEL); if (!dtpm) return ERR_PTR(-ENOMEM); dtpm_init(dtpm, NULL); ret = dtpm_register(hierarchy->name, dtpm, parent); if (ret) { pr_err("Failed to register dtpm node '%s': %d\n", hierarchy->name, ret); kfree(dtpm); return ERR_PTR(ret); } return dtpm; } static struct dtpm *dtpm_setup_dt(const struct dtpm_node *hierarchy, struct dtpm *parent) { struct device_node *np; int i, ret; np = of_find_node_by_path(hierarchy->name); if (!np) { pr_err("Failed to find '%s'\n", hierarchy->name); return ERR_PTR(-ENXIO); } for (i = 0; i < ARRAY_SIZE(dtpm_subsys); i++) { if (!dtpm_subsys[i]->setup) continue; ret = dtpm_subsys[i]->setup(parent, np); if (ret) { pr_err("Failed to setup '%s': %d\n", dtpm_subsys[i]->name, ret); of_node_put(np); return ERR_PTR(ret); } } of_node_put(np); /* * By returning a NULL pointer, we let know the caller there * is no child for us as we are a leaf of the tree */ return NULL; } typedef struct dtpm * (*dtpm_node_callback_t)(const struct dtpm_node *, struct dtpm *); dtpm_node_callback_t dtpm_node_callback[] = { [DTPM_NODE_VIRTUAL] = dtpm_setup_virtual, [DTPM_NODE_DT] = dtpm_setup_dt, }; static int dtpm_for_each_child(const struct dtpm_node *hierarchy, const struct dtpm_node *it, struct dtpm *parent) { struct dtpm *dtpm; int i, ret; for (i = 0; hierarchy[i].name; i++) { if (hierarchy[i].parent != it) continue; dtpm = dtpm_node_callback[hierarchy[i].type](&hierarchy[i], parent); /* * A NULL pointer means there is no children, hence we * continue without going deeper in the recursivity. */ if (!dtpm) continue; /* * There are multiple reasons why the callback could * fail. The generic glue is abstracting the backend * and therefore it is not possible to report back or * take a decision based on the error. In any case, * if this call fails, it is not critical in the * hierarchy creation, we can assume the underlying * service is not found, so we continue without this * branch in the tree but with a warning to log the * information the node was not created. */ if (IS_ERR(dtpm)) { pr_warn("Failed to create '%s' in the hierarchy\n", hierarchy[i].name); continue; } ret = dtpm_for_each_child(hierarchy, &hierarchy[i], dtpm); if (ret) return ret; } return 0; } /** * dtpm_create_hierarchy - Create the dtpm hierarchy * @hierarchy: An array of struct dtpm_node describing the hierarchy * * The function is called by the platform specific code with the * description of the different node in the hierarchy. It creates the * tree in the sysfs filesystem under the powercap dtpm entry. * * The expected tree has the format: * * struct dtpm_node hierarchy[] = { * [0] { .name = "topmost", type = DTPM_NODE_VIRTUAL }, * [1] { .name = "package", .type = DTPM_NODE_VIRTUAL, .parent = &hierarchy[0] }, * [2] { .name = "/cpus/cpu0", .type = DTPM_NODE_DT, .parent = &hierarchy[1] }, * [3] { .name = "/cpus/cpu1", .type = DTPM_NODE_DT, .parent = &hierarchy[1] }, * [4] { .name = "/cpus/cpu2", .type = DTPM_NODE_DT, .parent = &hierarchy[1] }, * [5] { .name = "/cpus/cpu3", .type = DTPM_NODE_DT, .parent = &hierarchy[1] }, * [6] { } * }; * * The last element is always an empty one and marks the end of the * array. * * Return: zero on success, a negative value in case of error. Errors * are reported back from the underlying functions. */ int dtpm_create_hierarchy(struct of_device_id *dtpm_match_table) { const struct of_device_id *match; const struct dtpm_node *hierarchy; struct device_node *np; int i, ret; mutex_lock(&dtpm_lock); if (pct) { ret = -EBUSY; goto out_unlock; } pct = powercap_register_control_type(NULL, "dtpm", NULL); if (IS_ERR(pct)) { pr_err("Failed to register control type\n"); ret = PTR_ERR(pct); goto out_pct; } ret = -ENODEV; np = of_find_node_by_path("/"); if (!np) goto out_err; match = of_match_node(dtpm_match_table, np); of_node_put(np); if (!match) goto out_err; hierarchy = match->data; if (!hierarchy) { ret = -EFAULT; goto out_err; } ret = dtpm_for_each_child(hierarchy, NULL, NULL); if (ret) goto out_err; for (i = 0; i < ARRAY_SIZE(dtpm_subsys); i++) { if (!dtpm_subsys[i]->init) continue; ret = dtpm_subsys[i]->init(); if (ret) pr_info("Failed to initialze '%s': %d", dtpm_subsys[i]->name, ret); } mutex_unlock(&dtpm_lock); return 0; out_err: powercap_unregister_control_type(pct); out_pct: pct = NULL; out_unlock: mutex_unlock(&dtpm_lock); return ret; } EXPORT_SYMBOL_GPL(dtpm_create_hierarchy);