// SPDX-License-Identifier: GPL-2.0 /* * linux/fs/proc/base.c * * Copyright (C) 1991, 1992 Linus Torvalds * * proc base directory handling functions * * 1999, Al Viro. Rewritten. Now it covers the whole per-process part. * Instead of using magical inumbers to determine the kind of object * we allocate and fill in-core inodes upon lookup. They don't even * go into icache. We cache the reference to task_struct upon lookup too. * Eventually it should become a filesystem in its own. We don't use the * rest of procfs anymore. * * * Changelog: * 17-Jan-2005 * Allan Bezerra * Bruna Moreira * Edjard Mota * Ilias Biris * Mauricio Lin * * Embedded Linux Lab - 10LE Instituto Nokia de Tecnologia - INdT * * A new process specific entry (smaps) included in /proc. It shows the * size of rss for each memory area. The maps entry lacks information * about physical memory size (rss) for each mapped file, i.e., * rss information for executables and library files. * This additional information is useful for any tools that need to know * about physical memory consumption for a process specific library. * * Changelog: * 21-Feb-2005 * Embedded Linux Lab - 10LE Instituto Nokia de Tecnologia - INdT * Pud inclusion in the page table walking. * * ChangeLog: * 10-Mar-2005 * 10LE Instituto Nokia de Tecnologia - INdT: * A better way to walks through the page table as suggested by Hugh Dickins. * * Simo Piiroinen : * Smaps information related to shared, private, clean and dirty pages. * * Paul Mundt : * Overall revision about smaps. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "internal.h" #include "fd.h" #include "../../lib/kstrtox.h" /* NOTE: * Implementing inode permission operations in /proc is almost * certainly an error. Permission checks need to happen during * each system call not at open time. The reason is that most of * what we wish to check for permissions in /proc varies at runtime. * * The classic example of a problem is opening file descriptors * in /proc for a task before it execs a suid executable. */ static u8 nlink_tid __ro_after_init; static u8 nlink_tgid __ro_after_init; struct pid_entry { const char *name; unsigned int len; umode_t mode; const struct inode_operations *iop; const struct file_operations *fop; union proc_op op; }; #define NOD(NAME, MODE, IOP, FOP, OP) { \ .name = (NAME), \ .len = sizeof(NAME) - 1, \ .mode = MODE, \ .iop = IOP, \ .fop = FOP, \ .op = OP, \ } #define DIR(NAME, MODE, iops, fops) \ NOD(NAME, (S_IFDIR|(MODE)), &iops, &fops, {} ) #define LNK(NAME, get_link) \ NOD(NAME, (S_IFLNK|S_IRWXUGO), \ &proc_pid_link_inode_operations, NULL, \ { .proc_get_link = get_link } ) #define REG(NAME, MODE, fops) \ NOD(NAME, (S_IFREG|(MODE)), NULL, &fops, {}) #define ONE(NAME, MODE, show) \ NOD(NAME, (S_IFREG|(MODE)), \ NULL, &proc_single_file_operations, \ { .proc_show = show } ) #define ATTR(LSM, NAME, MODE) \ NOD(NAME, (S_IFREG|(MODE)), \ NULL, &proc_pid_attr_operations, \ { .lsm = LSM }) /* * Count the number of hardlinks for the pid_entry table, excluding the . * and .. links. */ static unsigned int __init pid_entry_nlink(const struct pid_entry *entries, unsigned int n) { unsigned int i; unsigned int count; count = 2; for (i = 0; i < n; ++i) { if (S_ISDIR(entries[i].mode)) ++count; } return count; } static int get_task_root(struct task_struct *task, struct path *root) { int result = -ENOENT; task_lock(task); if (task->fs) { get_fs_root(task->fs, root); result = 0; } task_unlock(task); return result; } static int proc_cwd_link(struct dentry *dentry, struct path *path) { struct task_struct *task = get_proc_task(d_inode(dentry)); int result = -ENOENT; if (task) { task_lock(task); if (task->fs) { get_fs_pwd(task->fs, path); result = 0; } task_unlock(task); put_task_struct(task); } return result; } static int proc_root_link(struct dentry *dentry, struct path *path) { struct task_struct *task = get_proc_task(d_inode(dentry)); int result = -ENOENT; if (task) { result = get_task_root(task, path); put_task_struct(task); } return result; } /* * If the user used setproctitle(), we just get the string from * user space at arg_start, and limit it to a maximum of one page. */ static ssize_t get_mm_proctitle(struct mm_struct *mm, char __user *buf, size_t count, unsigned long pos, unsigned long arg_start) { char *page; int ret, got; if (pos >= PAGE_SIZE) return 0; page = (char *)__get_free_page(GFP_KERNEL); if (!page) return -ENOMEM; ret = 0; got = access_remote_vm(mm, arg_start, page, PAGE_SIZE, FOLL_ANON); if (got > 0) { int len = strnlen(page, got); /* Include the NUL character if it was found */ if (len < got) len++; if (len > pos) { len -= pos; if (len > count) len = count; len -= copy_to_user(buf, page+pos, len); if (!len) len = -EFAULT; ret = len; } } free_page((unsigned long)page); return ret; } static ssize_t get_mm_cmdline(struct mm_struct *mm, char __user *buf, size_t count, loff_t *ppos) { unsigned long arg_start, arg_end, env_start, env_end; unsigned long pos, len; char *page, c; /* Check if process spawned far enough to have cmdline. */ if (!mm->env_end) return 0; spin_lock(&mm->arg_lock); arg_start = mm->arg_start; arg_end = mm->arg_end; env_start = mm->env_start; env_end = mm->env_end; spin_unlock(&mm->arg_lock); if (arg_start >= arg_end) return 0; /* * We allow setproctitle() to overwrite the argument * strings, and overflow past the original end. But * only when it overflows into the environment area. */ if (env_start != arg_end || env_end < env_start) env_start = env_end = arg_end; len = env_end - arg_start; /* We're not going to care if "*ppos" has high bits set */ pos = *ppos; if (pos >= len) return 0; if (count > len - pos) count = len - pos; if (!count) return 0; /* * Magical special case: if the argv[] end byte is not * zero, the user has overwritten it with setproctitle(3). * * Possible future enhancement: do this only once when * pos is 0, and set a flag in the 'struct file'. */ if (access_remote_vm(mm, arg_end-1, &c, 1, FOLL_ANON) == 1 && c) return get_mm_proctitle(mm, buf, count, pos, arg_start); /* * For the non-setproctitle() case we limit things strictly * to the [arg_start, arg_end[ range. */ pos += arg_start; if (pos < arg_start || pos >= arg_end) return 0; if (count > arg_end - pos) count = arg_end - pos; page = (char *)__get_free_page(GFP_KERNEL); if (!page) return -ENOMEM; len = 0; while (count) { int got; size_t size = min_t(size_t, PAGE_SIZE, count); got = access_remote_vm(mm, pos, page, size, FOLL_ANON); if (got <= 0) break; got -= copy_to_user(buf, page, got); if (unlikely(!got)) { if (!len) len = -EFAULT; break; } pos += got; buf += got; len += got; count -= got; } free_page((unsigned long)page); return len; } static ssize_t get_task_cmdline(struct task_struct *tsk, char __user *buf, size_t count, loff_t *pos) { struct mm_struct *mm; ssize_t ret; mm = get_task_mm(tsk); if (!mm) return 0; ret = get_mm_cmdline(mm, buf, count, pos); mmput(mm); return ret; } static ssize_t proc_pid_cmdline_read(struct file *file, char __user *buf, size_t count, loff_t *pos) { struct task_struct *tsk; ssize_t ret; BUG_ON(*pos < 0); tsk = get_proc_task(file_inode(file)); if (!tsk) return -ESRCH; ret = get_task_cmdline(tsk, buf, count, pos); put_task_struct(tsk); if (ret > 0) *pos += ret; return ret; } static const struct file_operations proc_pid_cmdline_ops = { .read = proc_pid_cmdline_read, .llseek = generic_file_llseek, }; #ifdef CONFIG_KALLSYMS /* * Provides a wchan file via kallsyms in a proper one-value-per-file format. * Returns the resolved symbol. If that fails, simply return the address. */ static int proc_pid_wchan(struct seq_file *m, struct pid_namespace *ns, struct pid *pid, struct task_struct *task) { unsigned long wchan; char symname[KSYM_NAME_LEN]; if (!ptrace_may_access(task, PTRACE_MODE_READ_FSCREDS)) goto print0; wchan = get_wchan(task); if (wchan && !lookup_symbol_name(wchan, symname)) { seq_puts(m, symname); return 0; } print0: seq_putc(m, '0'); return 0; } #endif /* CONFIG_KALLSYMS */ static int lock_trace(struct task_struct *task) { int err = mutex_lock_killable(&task->signal->exec_update_mutex); if (err) return err; if (!ptrace_may_access(task, PTRACE_MODE_ATTACH_FSCREDS)) { mutex_unlock(&task->signal->exec_update_mutex); return -EPERM; } return 0; } static void unlock_trace(struct task_struct *task) { mutex_unlock(&task->signal->exec_update_mutex); } #ifdef CONFIG_STACKTRACE #define MAX_STACK_TRACE_DEPTH 64 static int proc_pid_stack(struct seq_file *m, struct pid_namespace *ns, struct pid *pid, struct task_struct *task) { unsigned long *entries; int err; /* * The ability to racily run the kernel stack unwinder on a running task * and then observe the unwinder output is scary; while it is useful for * debugging kernel issues, it can also allow an attacker to leak kernel * stack contents. * Doing this in a manner that is at least safe from races would require * some work to ensure that the remote task can not be scheduled; and * even then, this would still expose the unwinder as local attack * surface. * Therefore, this interface is restricted to root. */ if (!file_ns_capable(m->file, &init_user_ns, CAP_SYS_ADMIN)) return -EACCES; entries = kmalloc_array(MAX_STACK_TRACE_DEPTH, sizeof(*entries), GFP_KERNEL); if (!entries) return -ENOMEM; err = lock_trace(task); if (!err) { unsigned int i, nr_entries; nr_entries = stack_trace_save_tsk(task, entries, MAX_STACK_TRACE_DEPTH, 0); for (i = 0; i < nr_entries; i++) { seq_printf(m, "[<0>] %pB\n", (void *)entries[i]); } unlock_trace(task); } kfree(entries); return err; } #endif #ifdef CONFIG_SCHED_INFO /* * Provides /proc/PID/schedstat */ static int proc_pid_schedstat(struct seq_file *m, struct pid_namespace *ns, struct pid *pid, struct task_struct *task) { if (unlikely(!sched_info_on())) seq_puts(m, "0 0 0\n"); else seq_printf(m, "%llu %llu %lu\n", (unsigned long long)task->se.sum_exec_runtime, (unsigned long long)task->sched_info.run_delay, task->sched_info.pcount); return 0; } #endif #ifdef CONFIG_LATENCYTOP static int lstats_show_proc(struct seq_file *m, void *v) { int i; struct inode *inode = m->private; struct task_struct *task = get_proc_task(inode); if (!task) return -ESRCH; seq_puts(m, "Latency Top version : v0.1\n"); for (i = 0; i < LT_SAVECOUNT; i++) { struct latency_record *lr = &task->latency_record[i]; if (lr->backtrace[0]) { int q; seq_printf(m, "%i %li %li", lr->count, lr->time, lr->max); for (q = 0; q < LT_BACKTRACEDEPTH; q++) { unsigned long bt = lr->backtrace[q]; if (!bt) break; seq_printf(m, " %ps", (void *)bt); } seq_putc(m, '\n'); } } put_task_struct(task); return 0; } static int lstats_open(struct inode *inode, struct file *file) { return single_open(file, lstats_show_proc, inode); } static ssize_t lstats_write(struct file *file, const char __user *buf, size_t count, loff_t *offs) { struct task_struct *task = get_proc_task(file_inode(file)); if (!task) return -ESRCH; clear_tsk_latency_tracing(task); put_task_struct(task); return count; } static const struct file_operations proc_lstats_operations = { .open = lstats_open, .read = seq_read, .write = lstats_write, .llseek = seq_lseek, .release = single_release, }; #endif static int proc_oom_score(struct seq_file *m, struct pid_namespace *ns, struct pid *pid, struct task_struct *task) { unsigned long totalpages = totalram_pages() + total_swap_pages; unsigned long points = 0; points = oom_badness(task, totalpages) * 1000 / totalpages; seq_printf(m, "%lu\n", points); return 0; } struct limit_names { const char *name; const char *unit; }; static const struct limit_names lnames[RLIM_NLIMITS] = { [RLIMIT_CPU] = {"Max cpu time", "seconds"}, [RLIMIT_FSIZE] = {"Max file size", "bytes"}, [RLIMIT_DATA] = {"Max data size", "bytes"}, [RLIMIT_STACK] = {"Max stack size", "bytes"}, [RLIMIT_CORE] = {"Max core file size", "bytes"}, [RLIMIT_RSS] = {"Max resident set", "bytes"}, [RLIMIT_NPROC] = {"Max processes", "processes"}, [RLIMIT_NOFILE] = {"Max open files", "files"}, [RLIMIT_MEMLOCK] = {"Max locked memory", "bytes"}, [RLIMIT_AS] = {"Max address space", "bytes"}, [RLIMIT_LOCKS] = {"Max file locks", "locks"}, [RLIMIT_SIGPENDING] = {"Max pending signals", "signals"}, [RLIMIT_MSGQUEUE] = {"Max msgqueue size", "bytes"}, [RLIMIT_NICE] = {"Max nice priority", NULL}, [RLIMIT_RTPRIO] = {"Max realtime priority", NULL}, [RLIMIT_RTTIME] = {"Max realtime timeout", "us"}, }; /* Display limits for a process */ static int proc_pid_limits(struct seq_file *m, struct pid_namespace *ns, struct pid *pid, struct task_struct *task) { unsigned int i; unsigned long flags; struct rlimit rlim[RLIM_NLIMITS]; if (!lock_task_sighand(task, &flags)) return 0; memcpy(rlim, task->signal->rlim, sizeof(struct rlimit) * RLIM_NLIMITS); unlock_task_sighand(task, &flags); /* * print the file header */ seq_puts(m, "Limit " "Soft Limit " "Hard Limit " "Units \n"); for (i = 0; i < RLIM_NLIMITS; i++) { if (rlim[i].rlim_cur == RLIM_INFINITY) seq_printf(m, "%-25s %-20s ", lnames[i].name, "unlimited"); else seq_printf(m, "%-25s %-20lu ", lnames[i].name, rlim[i].rlim_cur); if (rlim[i].rlim_max == RLIM_INFINITY) seq_printf(m, "%-20s ", "unlimited"); else seq_printf(m, "%-20lu ", rlim[i].rlim_max); if (lnames[i].unit) seq_printf(m, "%-10s\n", lnames[i].unit); else seq_putc(m, '\n'); } return 0; } #ifdef CONFIG_HAVE_ARCH_TRACEHOOK static int proc_pid_syscall(struct seq_file *m, struct pid_namespace *ns, struct pid *pid, struct task_struct *task) { struct syscall_info info; u64 *args = &info.data.args[0]; int res; res = lock_trace(task); if (res) return res; if (task_current_syscall(task, &info)) seq_puts(m, "running\n"); else if (info.data.nr < 0) seq_printf(m, "%d 0x%llx 0x%llx\n", info.data.nr, info.sp, info.data.instruction_pointer); else seq_printf(m, "%d 0x%llx 0x%llx 0x%llx 0x%llx 0x%llx 0x%llx 0x%llx 0x%llx\n", info.data.nr, args[0], args[1], args[2], args[3], args[4], args[5], info.sp, info.data.instruction_pointer); unlock_trace(task); return 0; } #endif /* CONFIG_HAVE_ARCH_TRACEHOOK */ /************************************************************************/ /* Here the fs part begins */ /************************************************************************/ /* permission checks */ static int proc_fd_access_allowed(struct inode *inode) { struct task_struct *task; int allowed = 0; /* Allow access to a task's file descriptors if it is us or we * may use ptrace attach to the process and find out that * information. */ task = get_proc_task(inode); if (task) { allowed = ptrace_may_access(task, PTRACE_MODE_READ_FSCREDS); put_task_struct(task); } return allowed; } int proc_setattr(struct dentry *dentry, struct iattr *attr) { int error; struct inode *inode = d_inode(dentry); if (attr->ia_valid & ATTR_MODE) return -EPERM; error = setattr_prepare(dentry, attr); if (error) return error; setattr_copy(inode, attr); mark_inode_dirty(inode); return 0; } /* * May current process learn task's sched/cmdline info (for hide_pid_min=1) * or euid/egid (for hide_pid_min=2)? */ static bool has_pid_permissions(struct pid_namespace *pid, struct task_struct *task, int hide_pid_min) { if (pid->hide_pid < hide_pid_min) return true; if (in_group_p(pid->pid_gid)) return true; return ptrace_may_access(task, PTRACE_MODE_READ_FSCREDS); } static int proc_pid_permission(struct inode *inode, int mask) { struct pid_namespace *pid = proc_pid_ns(inode); struct task_struct *task; bool has_perms; task = get_proc_task(inode); if (!task) return -ESRCH; has_perms = has_pid_permissions(pid, task, HIDEPID_NO_ACCESS); put_task_struct(task); if (!has_perms) { if (pid->hide_pid == HIDEPID_INVISIBLE) { /* * Let's make getdents(), stat(), and open() * consistent with each other. If a process * may not stat() a file, it shouldn't be seen * in procfs at all. */ return -ENOENT; } return -EPERM; } return generic_permission(inode, mask); } static const struct inode_operations proc_def_inode_operations = { .setattr = proc_setattr, }; static int proc_single_show(struct seq_file *m, void *v) { struct inode *inode = m->private; struct pid_namespace *ns = proc_pid_ns(inode); struct pid *pid = proc_pid(inode); struct task_struct *task; int ret; task = get_pid_task(pid, PIDTYPE_PID); if (!task) return -ESRCH; ret = PROC_I(inode)->op.proc_show(m, ns, pid, task); put_task_struct(task); return ret; } static int proc_single_open(struct inode *inode, struct file *filp) { return single_open(filp, proc_single_show, inode); } static const struct file_operations proc_single_file_operations = { .open = proc_single_open, .read = seq_read, .llseek = seq_lseek, .release = single_release, }; struct mm_struct *proc_mem_open(struct inode *inode, unsigned int mode) { struct task_struct *task = get_proc_task(inode); struct mm_struct *mm = ERR_PTR(-ESRCH); if (task) { mm = mm_access(task, mode | PTRACE_MODE_FSCREDS); put_task_struct(task); if (!IS_ERR_OR_NULL(mm)) { /* ensure this mm_struct can't be freed */ mmgrab(mm); /* but do not pin its memory */ mmput(mm); } } return mm; } static int __mem_open(struct inode *inode, struct file *file, unsigned int mode) { struct mm_struct *mm = proc_mem_open(inode, mode); if (IS_ERR(mm)) return PTR_ERR(mm); file->private_data = mm; return 0; } static int mem_open(struct inode *inode, struct file *file) { int ret = __mem_open(inode, file, PTRACE_MODE_ATTACH); /* OK to pass negative loff_t, we can catch out-of-range */ file->f_mode |= FMODE_UNSIGNED_OFFSET; return ret; } static ssize_t mem_rw(struct file *file, char __user *buf, size_t count, loff_t *ppos, int write) { struct mm_struct *mm = file->private_data; unsigned long addr = *ppos; ssize_t copied; char *page; unsigned int flags; if (!mm) return 0; page = (char *)__get_free_page(GFP_KERNEL); if (!page) return -ENOMEM; copied = 0; if (!mmget_not_zero(mm)) goto free; flags = FOLL_FORCE | (write ? FOLL_WRITE : 0); while (count > 0) { int this_len = min_t(int, count, PAGE_SIZE); if (write && copy_from_user(page, buf, this_len)) { copied = -EFAULT; break; } this_len = access_remote_vm(mm, addr, page, this_len, flags); if (!this_len) { if (!copied) copied = -EIO; break; } if (!write && copy_to_user(buf, page, this_len)) { copied = -EFAULT; break; } buf += this_len; addr += this_len; copied += this_len; count -= this_len; } *ppos = addr; mmput(mm); free: free_page((unsigned long) page); return copied; } static ssize_t mem_read(struct file *file, char __user *buf, size_t count, loff_t *ppos) { return mem_rw(file, buf, count, ppos, 0); } static ssize_t mem_write(struct file *file, const char __user *buf, size_t count, loff_t *ppos) { return mem_rw(file, (char __user*)buf, count, ppos, 1); } loff_t mem_lseek(struct file *file, loff_t offset, int orig) { switch (orig) { case 0: file->f_pos = offset; break; case 1: file->f_pos += offset; break; default: return -EINVAL; } force_successful_syscall_return(); return file->f_pos; } static int mem_release(struct inode *inode, struct file *file) { struct mm_struct *mm = file->private_data; if (mm) mmdrop(mm); return 0; } static const struct file_operations proc_mem_operations = { .llseek = mem_lseek, .read = mem_read, .write = mem_write, .open = mem_open, .release = mem_release, }; static int environ_open(struct inode *inode, struct file *file) { return __mem_open(inode, file, PTRACE_MODE_READ); } static ssize_t environ_read(struct file *file, char __user *buf, size_t count, loff_t *ppos) { char *page; unsigned long src = *ppos; int ret = 0; struct mm_struct *mm = file->private_data; unsigned long env_start, env_end; /* Ensure the process spawned far enough to have an environment. */ if (!mm || !mm->env_end) return 0; page = (char *)__get_free_page(GFP_KERNEL); if (!page) return -ENOMEM; ret = 0; if (!mmget_not_zero(mm)) goto free; spin_lock(&mm->arg_lock); env_start = mm->env_start; env_end = mm->env_end; spin_unlock(&mm->arg_lock); while (count > 0) { size_t this_len, max_len; int retval; if (src >= (env_end - env_start)) break; this_len = env_end - (env_start + src); max_len = min_t(size_t, PAGE_SIZE, count); this_len = min(max_len, this_len); retval = access_remote_vm(mm, (env_start + src), page, this_len, FOLL_ANON); if (retval <= 0) { ret = retval; break; } if (copy_to_user(buf, page, retval)) { ret = -EFAULT; break; } ret += retval; src += retval; buf += retval; count -= retval; } *ppos = src; mmput(mm); free: free_page((unsigned long) page); return ret; } static const struct file_operations proc_environ_operations = { .open = environ_open, .read = environ_read, .llseek = generic_file_llseek, .release = mem_release, }; static int auxv_open(struct inode *inode, struct file *file) { return __mem_open(inode, file, PTRACE_MODE_READ_FSCREDS); } static ssize_t auxv_read(struct file *file, char __user *buf, size_t count, loff_t *ppos) { struct mm_struct *mm = file->private_data; unsigned int nwords = 0; if (!mm) return 0; do { nwords += 2; } while (mm->saved_auxv[nwords - 2] != 0); /* AT_NULL */ return simple_read_from_buffer(buf, count, ppos, mm->saved_auxv, nwords * sizeof(mm->saved_auxv[0])); } static const struct file_operations proc_auxv_operations = { .open = auxv_open, .read = auxv_read, .llseek = generic_file_llseek, .release = mem_release, }; static ssize_t oom_adj_read(struct file *file, char __user *buf, size_t count, loff_t *ppos) { struct task_struct *task = get_proc_task(file_inode(file)); char buffer[PROC_NUMBUF]; int oom_adj = OOM_ADJUST_MIN; size_t len; if (!task) return -ESRCH; if (task->signal->oom_score_adj == OOM_SCORE_ADJ_MAX) oom_adj = OOM_ADJUST_MAX; else oom_adj = (task->signal->oom_score_adj * -OOM_DISABLE) / OOM_SCORE_ADJ_MAX; put_task_struct(task); len = snprintf(buffer, sizeof(buffer), "%d\n", oom_adj); return simple_read_from_buffer(buf, count, ppos, buffer, len); } static int __set_oom_adj(struct file *file, int oom_adj, bool legacy) { static DEFINE_MUTEX(oom_adj_mutex); struct mm_struct *mm = NULL; struct task_struct *task; int err = 0; task = get_proc_task(file_inode(file)); if (!task) return -ESRCH; mutex_lock(&oom_adj_mutex); if (legacy) { if (oom_adj < task->signal->oom_score_adj && !capable(CAP_SYS_RESOURCE)) { err = -EACCES; goto err_unlock; } /* * /proc/pid/oom_adj is provided for legacy purposes, ask users to use * /proc/pid/oom_score_adj instead. */ pr_warn_once("%s (%d): /proc/%d/oom_adj is deprecated, please use /proc/%d/oom_score_adj instead.\n", current->comm, task_pid_nr(current), task_pid_nr(task), task_pid_nr(task)); } else { if ((short)oom_adj < task->signal->oom_score_adj_min && !capable(CAP_SYS_RESOURCE)) { err = -EACCES; goto err_unlock; } } /* * Make sure we will check other processes sharing the mm if this is * not vfrok which wants its own oom_score_adj. * pin the mm so it doesn't go away and get reused after task_unlock */ if (!task->vfork_done) { struct task_struct *p = find_lock_task_mm(task); if (p) { if (atomic_read(&p->mm->mm_users) > 1) { mm = p->mm; mmgrab(mm); } task_unlock(p); } } task->signal->oom_score_adj = oom_adj; if (!legacy && has_capability_noaudit(current, CAP_SYS_RESOURCE)) task->signal->oom_score_adj_min = (short)oom_adj; trace_oom_score_adj_update(task); if (mm) { struct task_struct *p; rcu_read_lock(); for_each_process(p) { if (same_thread_group(task, p)) continue; /* do not touch kernel threads or the global init */ if (p->flags & PF_KTHREAD || is_global_init(p)) continue; task_lock(p); if (!p->vfork_done && process_shares_mm(p, mm)) { p->signal->oom_score_adj = oom_adj; if (!legacy && has_capability_noaudit(current, CAP_SYS_RESOURCE)) p->signal->oom_score_adj_min = (short)oom_adj; } task_unlock(p); } rcu_read_unlock(); mmdrop(mm); } err_unlock: mutex_unlock(&oom_adj_mutex); put_task_struct(task); return err; } /* * /proc/pid/oom_adj exists solely for backwards compatibility with previous * kernels. The effective policy is defined by oom_score_adj, which has a * different scale: oom_adj grew exponentially and oom_score_adj grows linearly. * Values written to oom_adj are simply mapped linearly to oom_score_adj. * Processes that become oom disabled via oom_adj will still be oom disabled * with this implementation. * * oom_adj cannot be removed since existing userspace binaries use it. */ static ssize_t oom_adj_write(struct file *file, const char __user *buf, size_t count, loff_t *ppos) { char buffer[PROC_NUMBUF]; int oom_adj; int err; memset(buffer, 0, sizeof(buffer)); if (count > sizeof(buffer) - 1) count = sizeof(buffer) - 1; if (copy_from_user(buffer, buf, count)) { err = -EFAULT; goto out; } err = kstrtoint(strstrip(buffer), 0, &oom_adj); if (err) goto out; if ((oom_adj < OOM_ADJUST_MIN || oom_adj > OOM_ADJUST_MAX) && oom_adj != OOM_DISABLE) { err = -EINVAL; goto out; } /* * Scale /proc/pid/oom_score_adj appropriately ensuring that a maximum * value is always attainable. */ if (oom_adj == OOM_ADJUST_MAX) oom_adj = OOM_SCORE_ADJ_MAX; else oom_adj = (oom_adj * OOM_SCORE_ADJ_MAX) / -OOM_DISABLE; err = __set_oom_adj(file, oom_adj, true); out: return err < 0 ? err : count; } static const struct file_operations proc_oom_adj_operations = { .read = oom_adj_read, .write = oom_adj_write, .llseek = generic_file_llseek, }; static ssize_t oom_score_adj_read(struct file *file, char __user *buf, size_t count, loff_t *ppos) { struct task_struct *task = get_proc_task(file_inode(file)); char buffer[PROC_NUMBUF]; short oom_score_adj = OOM_SCORE_ADJ_MIN; size_t len; if (!task) return -ESRCH; oom_score_adj = task->signal->oom_score_adj; put_task_struct(task); len = snprintf(buffer, sizeof(buffer), "%hd\n", oom_score_adj); return simple_read_from_buffer(buf, count, ppos, buffer, len); } static ssize_t oom_score_adj_write(struct file *file, const char __user *buf, size_t count, loff_t *ppos) { char buffer[PROC_NUMBUF]; int oom_score_adj; int err; memset(buffer, 0, sizeof(buffer)); if (count > sizeof(buffer) - 1) count = sizeof(buffer) - 1; if (copy_from_user(buffer, buf, count)) { err = -EFAULT; goto out; } err = kstrtoint(strstrip(buffer), 0, &oom_score_adj); if (err) goto out; if (oom_score_adj < OOM_SCORE_ADJ_MIN || oom_score_adj > OOM_SCORE_ADJ_MAX) { err = -EINVAL; goto out; } err = __set_oom_adj(file, oom_score_adj, false); out: return err < 0 ? err : count; } static const struct file_operations proc_oom_score_adj_operations = { .read = oom_score_adj_read, .write = oom_score_adj_write, .llseek = default_llseek, }; #ifdef CONFIG_AUDIT #define TMPBUFLEN 11 static ssize_t proc_loginuid_read(struct file * file, char __user * buf, size_t count, loff_t *ppos) { struct inode * inode = file_inode(file); struct task_struct *task = get_proc_task(inode); ssize_t length; char tmpbuf[TMPBUFLEN]; if (!task) return -ESRCH; length = scnprintf(tmpbuf, TMPBUFLEN, "%u", from_kuid(file->f_cred->user_ns, audit_get_loginuid(task))); put_task_struct(task); return simple_read_from_buffer(buf, count, ppos, tmpbuf, length); } static ssize_t proc_loginuid_write(struct file * file, const char __user * buf, size_t count, loff_t *ppos) { struct inode * inode = file_inode(file); uid_t loginuid; kuid_t kloginuid; int rv; rcu_read_lock(); if (current != pid_task(proc_pid(inode), PIDTYPE_PID)) { rcu_read_unlock(); return -EPERM; } rcu_read_unlock(); if (*ppos != 0) { /* No partial writes. */ return -EINVAL; } rv = kstrtou32_from_user(buf, count, 10, &loginuid); if (rv < 0) return rv; /* is userspace tring to explicitly UNSET the loginuid? */ if (loginuid == AUDIT_UID_UNSET) { kloginuid = INVALID_UID; } else { kloginuid = make_kuid(file->f_cred->user_ns, loginuid); if (!uid_valid(kloginuid)) return -EINVAL; } rv = audit_set_loginuid(kloginuid); if (rv < 0) return rv; return count; } static const struct file_operations proc_loginuid_operations = { .read = proc_loginuid_read, .write = proc_loginuid_write, .llseek = generic_file_llseek, }; static ssize_t proc_sessionid_read(struct file * file, char __user * buf, size_t count, loff_t *ppos) { struct inode * inode = file_inode(file); struct task_struct *task = get_proc_task(inode); ssize_t length; char tmpbuf[TMPBUFLEN]; if (!task) return -ESRCH; length = scnprintf(tmpbuf, TMPBUFLEN, "%u", audit_get_sessionid(task)); put_task_struct(task); return simple_read_from_buffer(buf, count, ppos, tmpbuf, length); } static const struct file_operations proc_sessionid_operations = { .read = proc_sessionid_read, .llseek = generic_file_llseek, }; #endif #ifdef CONFIG_FAULT_INJECTION static ssize_t proc_fault_inject_read(struct file * file, char __user * buf, size_t count, loff_t *ppos) { struct task_struct *task = get_proc_task(file_inode(file)); char buffer[PROC_NUMBUF]; size_t len; int make_it_fail; if (!task) return -ESRCH; make_it_fail = task->make_it_fail; put_task_struct(task); len = snprintf(buffer, sizeof(buffer), "%i\n", make_it_fail); return simple_read_from_buffer(buf, count, ppos, buffer, len); } static ssize_t proc_fault_inject_write(struct file * file, const char __user * buf, size_t count, loff_t *ppos) { struct task_struct *task; char buffer[PROC_NUMBUF]; int make_it_fail; int rv; if (!capable(CAP_SYS_RESOURCE)) return -EPERM; memset(buffer, 0, sizeof(buffer)); if (count > sizeof(buffer) - 1) count = sizeof(buffer) - 1; if (copy_from_user(buffer, buf, count)) return -EFAULT; rv = kstrtoint(strstrip(buffer), 0, &make_it_fail); if (rv < 0) return rv; if (make_it_fail < 0 || make_it_fail > 1) return -EINVAL; task = get_proc_task(file_inode(file)); if (!task) return -ESRCH; task->make_it_fail = make_it_fail; put_task_struct(task); return count; } static const struct file_operations proc_fault_inject_operations = { .read = proc_fault_inject_read, .write = proc_fault_inject_write, .llseek = generic_file_llseek, }; static ssize_t proc_fail_nth_write(struct file *file, const char __user *buf, size_t count, loff_t *ppos) { struct task_struct *task; int err; unsigned int n; err = kstrtouint_from_user(buf, count, 0, &n); if (err) return err; task = get_proc_task(file_inode(file)); if (!task) return -ESRCH; task->fail_nth = n; put_task_struct(task); return count; } static ssize_t proc_fail_nth_read(struct file *file, char __user *buf, size_t count, loff_t *ppos) { struct task_struct *task; char numbuf[PROC_NUMBUF]; ssize_t len; task = get_proc_task(file_inode(file)); if (!task) return -ESRCH; len = snprintf(numbuf, sizeof(numbuf), "%u\n", task->fail_nth); put_task_struct(task); return simple_read_from_buffer(buf, count, ppos, numbuf, len); } static const struct file_operations proc_fail_nth_operations = { .read = proc_fail_nth_read, .write = proc_fail_nth_write, }; #endif #ifdef CONFIG_SCHED_DEBUG /* * Print out various scheduling related per-task fields: */ static int sched_show(struct seq_file *m, void *v) { struct inode *inode = m->private; struct pid_namespace *ns = proc_pid_ns(inode); struct task_struct *p; p = get_proc_task(inode); if (!p) return -ESRCH; proc_sched_show_task(p, ns, m); put_task_struct(p); return 0; } static ssize_t sched_write(struct file *file, const char __user *buf, size_t count, loff_t *offset) { struct inode *inode = file_inode(file); struct task_struct *p; p = get_proc_task(inode); if (!p) return -ESRCH; proc_sched_set_task(p); put_task_struct(p); return count; } static int sched_open(struct inode *inode, struct file *filp) { return single_open(filp, sched_show, inode); } static const struct file_operations proc_pid_sched_operations = { .open = sched_open, .read = seq_read, .write = sched_write, .llseek = seq_lseek, .release = single_release, }; #endif #ifdef CONFIG_SCHED_AUTOGROUP /* * Print out autogroup related information: */ static int sched_autogroup_show(struct seq_file *m, void *v) { struct inode *inode = m->private; struct task_struct *p; p = get_proc_task(inode); if (!p) return -ESRCH; proc_sched_autogroup_show_task(p, m); put_task_struct(p); return 0; } static ssize_t sched_autogroup_write(struct file *file, const char __user *buf, size_t count, loff_t *offset) { struct inode *inode = file_inode(file); struct task_struct *p; char buffer[PROC_NUMBUF]; int nice; int err; memset(buffer, 0, sizeof(buffer)); if (count > sizeof(buffer) - 1) count = sizeof(buffer) - 1; if (copy_from_user(buffer, buf, count)) return -EFAULT; err = kstrtoint(strstrip(buffer), 0, &nice); if (err < 0) return err; p = get_proc_task(inode); if (!p) return -ESRCH; err = proc_sched_autogroup_set_nice(p, nice); if (err) count = err; put_task_struct(p); return count; } static int sched_autogroup_open(struct inode *inode, struct file *filp) { int ret; ret = single_open(filp, sched_autogroup_show, NULL); if (!ret) { struct seq_file *m = filp->private_data; m->private = inode; } return ret; } static const struct file_operations proc_pid_sched_autogroup_operations = { .open = sched_autogroup_open, .read = seq_read, .write = sched_autogroup_write, .llseek = seq_lseek, .release = single_release, }; #endif /* CONFIG_SCHED_AUTOGROUP */ #ifdef CONFIG_TIME_NS static int timens_offsets_show(struct seq_file *m, void *v) { struct task_struct *p; p = get_proc_task(file_inode(m->file)); if (!p) return -ESRCH; proc_timens_show_offsets(p, m); put_task_struct(p); return 0; } static ssize_t timens_offsets_write(struct file *file, const char __user *buf, size_t count, loff_t *ppos) { struct inode *inode = file_inode(file); struct proc_timens_offset offsets[2]; char *kbuf = NULL, *pos, *next_line; struct task_struct *p; int ret, noffsets; /* Only allow < page size writes at the beginning of the file */ if ((*ppos != 0) || (count >= PAGE_SIZE)) return -EINVAL; /* Slurp in the user data */ kbuf = memdup_user_nul(buf, count); if (IS_ERR(kbuf)) return PTR_ERR(kbuf); /* Parse the user data */ ret = -EINVAL; noffsets = 0; for (pos = kbuf; pos; pos = next_line) { struct proc_timens_offset *off = &offsets[noffsets]; int err; /* Find the end of line and ensure we don't look past it */ next_line = strchr(pos, '\n'); if (next_line) { *next_line = '\0'; next_line++; if (*next_line == '\0') next_line = NULL; } err = sscanf(pos, "%u %lld %lu", &off->clockid, &off->val.tv_sec, &off->val.tv_nsec); if (err != 3 || off->val.tv_nsec >= NSEC_PER_SEC) goto out; noffsets++; if (noffsets == ARRAY_SIZE(offsets)) { if (next_line) count = next_line - kbuf; break; } } ret = -ESRCH; p = get_proc_task(inode); if (!p) goto out; ret = proc_timens_set_offset(file, p, offsets, noffsets); put_task_struct(p); if (ret) goto out; ret = count; out: kfree(kbuf); return ret; } static int timens_offsets_open(struct inode *inode, struct file *filp) { return single_open(filp, timens_offsets_show, inode); } static const struct file_operations proc_timens_offsets_operations = { .open = timens_offsets_open, .read = seq_read, .write = timens_offsets_write, .llseek = seq_lseek, .release = single_release, }; #endif /* CONFIG_TIME_NS */ static ssize_t comm_write(struct file *file, const char __user *buf, size_t count, loff_t *offset) { struct inode *inode = file_inode(file); struct task_struct *p; char buffer[TASK_COMM_LEN]; const size_t maxlen = sizeof(buffer) - 1; memset(buffer, 0, sizeof(buffer)); if (copy_from_user(buffer, buf, count > maxlen ? maxlen : count)) return -EFAULT; p = get_proc_task(inode); if (!p) return -ESRCH; if (same_thread_group(current, p)) set_task_comm(p, buffer); else count = -EINVAL; put_task_struct(p); return count; } static int comm_show(struct seq_file *m, void *v) { struct inode *inode = m->private; struct task_struct *p; p = get_proc_task(inode); if (!p) return -ESRCH; proc_task_name(m, p, false); seq_putc(m, '\n'); put_task_struct(p); return 0; } static int comm_open(struct inode *inode, struct file *filp) { return single_open(filp, comm_show, inode); } static const struct file_operations proc_pid_set_comm_operations = { .open = comm_open, .read = seq_read, .write = comm_write, .llseek = seq_lseek, .release = single_release, }; static int proc_exe_link(struct dentry *dentry, struct path *exe_path) { struct task_struct *task; struct file *exe_file; task = get_proc_task(d_inode(dentry)); if (!task) return -ENOENT; exe_file = get_task_exe_file(task); put_task_struct(task); if (exe_file) { *exe_path = exe_file->f_path; path_get(&exe_file->f_path); fput(exe_file); return 0; } else return -ENOENT; } static const char *proc_pid_get_link(struct dentry *dentry, struct inode *inode, struct delayed_call *done) { struct path path; int error = -EACCES; if (!dentry) return ERR_PTR(-ECHILD); /* Are we allowed to snoop on the tasks file descriptors? */ if (!proc_fd_access_allowed(inode)) goto out; error = PROC_I(inode)->op.proc_get_link(dentry, &path); if (error) goto out; error = nd_jump_link(&path); out: return ERR_PTR(error); } static int do_proc_readlink(struct path *path, char __user *buffer, int buflen) { char *tmp = (char *)__get_free_page(GFP_KERNEL); char *pathname; int len; if (!tmp) return -ENOMEM; pathname = d_path(path, tmp, PAGE_SIZE); len = PTR_ERR(pathname); if (IS_ERR(pathname)) goto out; len = tmp + PAGE_SIZE - 1 - pathname; if (len > buflen) len = buflen; if (copy_to_user(buffer, pathname, len)) len = -EFAULT; out: free_page((unsigned long)tmp); return len; } static int proc_pid_readlink(struct dentry * dentry, char __user * buffer, int buflen) { int error = -EACCES; struct inode *inode = d_inode(dentry); struct path path; /* Are we allowed to snoop on the tasks file descriptors? */ if (!proc_fd_access_allowed(inode)) goto out; error = PROC_I(inode)->op.proc_get_link(dentry, &path); if (error) goto out; error = do_proc_readlink(&path, buffer, buflen); path_put(&path); out: return error; } const struct inode_operations proc_pid_link_inode_operations = { .readlink = proc_pid_readlink, .get_link = proc_pid_get_link, .setattr = proc_setattr, }; /* building an inode */ void task_dump_owner(struct task_struct *task, umode_t mode, kuid_t *ruid, kgid_t *rgid) { /* Depending on the state of dumpable compute who should own a * proc file for a task. */ const struct cred *cred; kuid_t uid; kgid_t gid; if (unlikely(task->flags & PF_KTHREAD)) { *ruid = GLOBAL_ROOT_UID; *rgid = GLOBAL_ROOT_GID; return; } /* Default to the tasks effective ownership */ rcu_read_lock(); cred = __task_cred(task); uid = cred->euid; gid = cred->egid; rcu_read_unlock(); /* * Before the /proc/pid/status file was created the only way to read * the effective uid of a /process was to stat /proc/pid. Reading * /proc/pid/status is slow enough that procps and other packages * kept stating /proc/pid. To keep the rules in /proc simple I have * made this apply to all per process world readable and executable * directories. */ if (mode != (S_IFDIR|S_IRUGO|S_IXUGO)) { struct mm_struct *mm; task_lock(task); mm = task->mm; /* Make non-dumpable tasks owned by some root */ if (mm) { if (get_dumpable(mm) != SUID_DUMP_USER) { struct user_namespace *user_ns = mm->user_ns; uid = make_kuid(user_ns, 0); if (!uid_valid(uid)) uid = GLOBAL_ROOT_UID; gid = make_kgid(user_ns, 0); if (!gid_valid(gid)) gid = GLOBAL_ROOT_GID; } } else { uid = GLOBAL_ROOT_UID; gid = GLOBAL_ROOT_GID; } task_unlock(task); } *ruid = uid; *rgid = gid; } void proc_pid_evict_inode(struct proc_inode *ei) { struct pid *pid = ei->pid; if (S_ISDIR(ei->vfs_inode.i_mode)) { spin_lock(&pid->lock); hlist_del_init_rcu(&ei->sibling_inodes); spin_unlock(&pid->lock); } put_pid(pid); } struct inode *proc_pid_make_inode(struct super_block * sb, struct task_struct *task, umode_t mode) { struct inode * inode; struct proc_inode *ei; struct pid *pid; /* We need a new inode */ inode = new_inode(sb); if (!inode) goto out; /* Common stuff */ ei = PROC_I(inode); inode->i_mode = mode; inode->i_ino = get_next_ino(); inode->i_mtime = inode->i_atime = inode->i_ctime = current_time(inode); inode->i_op = &proc_def_inode_operations; /* * grab the reference to task. */ pid = get_task_pid(task, PIDTYPE_PID); if (!pid) goto out_unlock; /* Let the pid remember us for quick removal */ ei->pid = pid; if (S_ISDIR(mode)) { spin_lock(&pid->lock); hlist_add_head_rcu(&ei->sibling_inodes, &pid->inodes); spin_unlock(&pid->lock); } task_dump_owner(task, 0, &inode->i_uid, &inode->i_gid); security_task_to_inode(task, inode); out: return inode; out_unlock: iput(inode); return NULL; } int pid_getattr(const struct path *path, struct kstat *stat, u32 request_mask, unsigned int query_flags) { struct inode *inode = d_inode(path->dentry); struct pid_namespace *pid = proc_pid_ns(inode); struct task_struct *task; generic_fillattr(inode, stat); stat->uid = GLOBAL_ROOT_UID; stat->gid = GLOBAL_ROOT_GID; rcu_read_lock(); task = pid_task(proc_pid(inode), PIDTYPE_PID); if (task) { if (!has_pid_permissions(pid, task, HIDEPID_INVISIBLE)) { rcu_read_unlock(); /* * This doesn't prevent learning whether PID exists, * it only makes getattr() consistent with readdir(). */ return -ENOENT; } task_dump_owner(task, inode->i_mode, &stat->uid, &stat->gid); } rcu_read_unlock(); return 0; } /* dentry stuff */ /* * Set /... inode ownership (can change due to setuid(), etc.) */ void pid_update_inode(struct task_struct *task, struct inode *inode) { task_dump_owner(task, inode->i_mode, &inode->i_uid, &inode->i_gid); inode->i_mode &= ~(S_ISUID | S_ISGID); security_task_to_inode(task, inode); } /* * Rewrite the inode's ownerships here because the owning task may have * performed a setuid(), etc. * */ static int pid_revalidate(struct dentry *dentry, unsigned int flags) { struct inode *inode; struct task_struct *task; if (flags & LOOKUP_RCU) return -ECHILD; inode = d_inode(dentry); task = get_proc_task(inode); if (task) { pid_update_inode(task, inode); put_task_struct(task); return 1; } return 0; } static inline bool proc_inode_is_dead(struct inode *inode) { return !proc_pid(inode)->tasks[PIDTYPE_PID].first; } int pid_delete_dentry(const struct dentry *dentry) { /* Is the task we represent dead? * If so, then don't put the dentry on the lru list, * kill it immediately. */ return proc_inode_is_dead(d_inode(dentry)); } const struct dentry_operations pid_dentry_operations = { .d_revalidate = pid_revalidate, .d_delete = pid_delete_dentry, }; /* Lookups */ /* * Fill a directory entry. * * If possible create the dcache entry and derive our inode number and * file type from dcache entry. * * Since all of the proc inode numbers are dynamically generated, the inode * numbers do not exist until the inode is cache. This means creating the * the dcache entry in readdir is necessary to keep the inode numbers * reported by readdir in sync with the inode numbers reported * by stat. */ bool proc_fill_cache(struct file *file, struct dir_context *ctx, const char *name, unsigned int len, instantiate_t instantiate, struct task_struct *task, const void *ptr) { struct dentry *child, *dir = file->f_path.dentry; struct qstr qname = QSTR_INIT(name, len); struct inode *inode; unsigned type = DT_UNKNOWN; ino_t ino = 1; child = d_hash_and_lookup(dir, &qname); if (!child) { DECLARE_WAIT_QUEUE_HEAD_ONSTACK(wq); child = d_alloc_parallel(dir, &qname, &wq); if (IS_ERR(child)) goto end_instantiate; if (d_in_lookup(child)) { struct dentry *res; res = instantiate(child, task, ptr); d_lookup_done(child); if (unlikely(res)) { dput(child); child = res; if (IS_ERR(child)) goto end_instantiate; } } } inode = d_inode(child); ino = inode->i_ino; type = inode->i_mode >> 12; dput(child); end_instantiate: return dir_emit(ctx, name, len, ino, type); } /* * dname_to_vma_addr - maps a dentry name into two unsigned longs * which represent vma start and end addresses. */ static int dname_to_vma_addr(struct dentry *dentry, unsigned long *start, unsigned long *end) { const char *str = dentry->d_name.name; unsigned long long sval, eval; unsigned int len; if (str[0] == '0' && str[1] != '-') return -EINVAL; len = _parse_integer(str, 16, &sval); if (len & KSTRTOX_OVERFLOW) return -EINVAL; if (sval != (unsigned long)sval) return -EINVAL; str += len; if (*str != '-') return -EINVAL; str++; if (str[0] == '0' && str[1]) return -EINVAL; len = _parse_integer(str, 16, &eval); if (len & KSTRTOX_OVERFLOW) return -EINVAL; if (eval != (unsigned long)eval) return -EINVAL; str += len; if (*str != '\0') return -EINVAL; *start = sval; *end = eval; return 0; } static int map_files_d_revalidate(struct dentry *dentry, unsigned int flags) { unsigned long vm_start, vm_end; bool exact_vma_exists = false; struct mm_struct *mm = NULL; struct task_struct *task; struct inode *inode; int status = 0; if (flags & LOOKUP_RCU) return -ECHILD; inode = d_inode(dentry); task = get_proc_task(inode); if (!task) goto out_notask; mm = mm_access(task, PTRACE_MODE_READ_FSCREDS); if (IS_ERR_OR_NULL(mm)) goto out; if (!dname_to_vma_addr(dentry, &vm_start, &vm_end)) { status = down_read_killable(&mm->mmap_sem); if (!status) { exact_vma_exists = !!find_exact_vma(mm, vm_start, vm_end); up_read(&mm->mmap_sem); } } mmput(mm); if (exact_vma_exists) { task_dump_owner(task, 0, &inode->i_uid, &inode->i_gid); security_task_to_inode(task, inode); status = 1; } out: put_task_struct(task); out_notask: return status; } static const struct dentry_operations tid_map_files_dentry_operations = { .d_revalidate = map_files_d_revalidate, .d_delete = pid_delete_dentry, }; static int map_files_get_link(struct dentry *dentry, struct path *path) { unsigned long vm_start, vm_end; struct vm_area_struct *vma; struct task_struct *task; struct mm_struct *mm; int rc; rc = -ENOENT; task = get_proc_task(d_inode(dentry)); if (!task) goto out; mm = get_task_mm(task); put_task_struct(task); if (!mm) goto out; rc = dname_to_vma_addr(dentry, &vm_start, &vm_end); if (rc) goto out_mmput; rc = down_read_killable(&mm->mmap_sem); if (rc) goto out_mmput; rc = -ENOENT; vma = find_exact_vma(mm, vm_start, vm_end); if (vma && vma->vm_file) { *path = vma->vm_file->f_path; path_get(path); rc = 0; } up_read(&mm->mmap_sem); out_mmput: mmput(mm); out: return rc; } struct map_files_info { unsigned long start; unsigned long end; fmode_t mode; }; /* * Only allow CAP_SYS_ADMIN to follow the links, due to concerns about how the * symlinks may be used to bypass permissions on ancestor directories in the * path to the file in question. */ static const char * proc_map_files_get_link(struct dentry *dentry, struct inode *inode, struct delayed_call *done) { if (!capable(CAP_SYS_ADMIN)) return ERR_PTR(-EPERM); return proc_pid_get_link(dentry, inode, done); } /* * Identical to proc_pid_link_inode_operations except for get_link() */ static const struct inode_operations proc_map_files_link_inode_operations = { .readlink = proc_pid_readlink, .get_link = proc_map_files_get_link, .setattr = proc_setattr, }; static struct dentry * proc_map_files_instantiate(struct dentry *dentry, struct task_struct *task, const void *ptr) { fmode_t mode = (fmode_t)(unsigned long)ptr; struct proc_inode *ei; struct inode *inode; inode = proc_pid_make_inode(dentry->d_sb, task, S_IFLNK | ((mode & FMODE_READ ) ? S_IRUSR : 0) | ((mode & FMODE_WRITE) ? S_IWUSR : 0)); if (!inode) return ERR_PTR(-ENOENT); ei = PROC_I(inode); ei->op.proc_get_link = map_files_get_link; inode->i_op = &proc_map_files_link_inode_operations; inode->i_size = 64; d_set_d_op(dentry, &tid_map_files_dentry_operations); return d_splice_alias(inode, dentry); } static struct dentry *proc_map_files_lookup(struct inode *dir, struct dentry *dentry, unsigned int flags) { unsigned long vm_start, vm_end; struct vm_area_struct *vma; struct task_struct *task; struct dentry *result; struct mm_struct *mm; result = ERR_PTR(-ENOENT); task = get_proc_task(dir); if (!task) goto out; result = ERR_PTR(-EACCES); if (!ptrace_may_access(task, PTRACE_MODE_READ_FSCREDS)) goto out_put_task; result = ERR_PTR(-ENOENT); if (dname_to_vma_addr(dentry, &vm_start, &vm_end)) goto out_put_task; mm = get_task_mm(task); if (!mm) goto out_put_task; result = ERR_PTR(-EINTR); if (down_read_killable(&mm->mmap_sem)) goto out_put_mm; result = ERR_PTR(-ENOENT); vma = find_exact_vma(mm, vm_start, vm_end); if (!vma) goto out_no_vma; if (vma->vm_file) result = proc_map_files_instantiate(dentry, task, (void *)(unsigned long)vma->vm_file->f_mode); out_no_vma: up_read(&mm->mmap_sem); out_put_mm: mmput(mm); out_put_task: put_task_struct(task); out: return result; } static const struct inode_operations proc_map_files_inode_operations = { .lookup = proc_map_files_lookup, .permission = proc_fd_permission, .setattr = proc_setattr, }; static int proc_map_files_readdir(struct file *file, struct dir_context *ctx) { struct vm_area_struct *vma; struct task_struct *task; struct mm_struct *mm; unsigned long nr_files, pos, i; GENRADIX(struct map_files_info) fa; struct map_files_info *p; int ret; genradix_init(&fa); ret = -ENOENT; task = get_proc_task(file_inode(file)); if (!task) goto out; ret = -EACCES; if (!ptrace_may_access(task, PTRACE_MODE_READ_FSCREDS)) goto out_put_task; ret = 0; if (!dir_emit_dots(file, ctx)) goto out_put_task; mm = get_task_mm(task); if (!mm) goto out_put_task; ret = down_read_killable(&mm->mmap_sem); if (ret) { mmput(mm); goto out_put_task; } nr_files = 0; /* * We need two passes here: * * 1) Collect vmas of mapped files with mmap_sem taken * 2) Release mmap_sem and instantiate entries * * otherwise we get lockdep complained, since filldir() * routine might require mmap_sem taken in might_fault(). */ for (vma = mm->mmap, pos = 2; vma; vma = vma->vm_next) { if (!vma->vm_file) continue; if (++pos <= ctx->pos) continue; p = genradix_ptr_alloc(&fa, nr_files++, GFP_KERNEL); if (!p) { ret = -ENOMEM; up_read(&mm->mmap_sem); mmput(mm); goto out_put_task; } p->start = vma->vm_start; p->end = vma->vm_end; p->mode = vma->vm_file->f_mode; } up_read(&mm->mmap_sem); mmput(mm); for (i = 0; i < nr_files; i++) { char buf[4 * sizeof(long) + 2]; /* max: %lx-%lx\0 */ unsigned int len; p = genradix_ptr(&fa, i); len = snprintf(buf, sizeof(buf), "%lx-%lx", p->start, p->end); if (!proc_fill_cache(file, ctx, buf, len, proc_map_files_instantiate, task, (void *)(unsigned long)p->mode)) break; ctx->pos++; } out_put_task: put_task_struct(task); out: genradix_free(&fa); return ret; } static const struct file_operations proc_map_files_operations = { .read = generic_read_dir, .iterate_shared = proc_map_files_readdir, .llseek = generic_file_llseek, }; #if defined(CONFIG_CHECKPOINT_RESTORE) && defined(CONFIG_POSIX_TIMERS) struct timers_private { struct pid *pid; struct task_struct *task; struct sighand_struct *sighand; struct pid_namespace *ns; unsigned long flags; }; static void *timers_start(struct seq_file *m, loff_t *pos) { struct timers_private *tp = m->private; tp->task = get_pid_task(tp->pid, PIDTYPE_PID); if (!tp->task) return ERR_PTR(-ESRCH); tp->sighand = lock_task_sighand(tp->task, &tp->flags); if (!tp->sighand) return ERR_PTR(-ESRCH); return seq_list_start(&tp->task->signal->posix_timers, *pos); } static void *timers_next(struct seq_file *m, void *v, loff_t *pos) { struct timers_private *tp = m->private; return seq_list_next(v, &tp->task->signal->posix_timers, pos); } static void timers_stop(struct seq_file *m, void *v) { struct timers_private *tp = m->private; if (tp->sighand) { unlock_task_sighand(tp->task, &tp->flags); tp->sighand = NULL; } if (tp->task) { put_task_struct(tp->task); tp->task = NULL; } } static int show_timer(struct seq_file *m, void *v) { struct k_itimer *timer; struct timers_private *tp = m->private; int notify; static const char * const nstr[] = { [SIGEV_SIGNAL] = "signal", [SIGEV_NONE] = "none", [SIGEV_THREAD] = "thread", }; timer = list_entry((struct list_head *)v, struct k_itimer, list); notify = timer->it_sigev_notify; seq_printf(m, "ID: %d\n", timer->it_id); seq_printf(m, "signal: %d/%px\n", timer->sigq->info.si_signo, timer->sigq->info.si_value.sival_ptr); seq_printf(m, "notify: %s/%s.%d\n", nstr[notify & ~SIGEV_THREAD_ID], (notify & SIGEV_THREAD_ID) ? "tid" : "pid", pid_nr_ns(timer->it_pid, tp->ns)); seq_printf(m, "ClockID: %d\n", timer->it_clock); return 0; } static const struct seq_operations proc_timers_seq_ops = { .start = timers_start, .next = timers_next, .stop = timers_stop, .show = show_timer, }; static int proc_timers_open(struct inode *inode, struct file *file) { struct timers_private *tp; tp = __seq_open_private(file, &proc_timers_seq_ops, sizeof(struct timers_private)); if (!tp) return -ENOMEM; tp->pid = proc_pid(inode); tp->ns = proc_pid_ns(inode); return 0; } static const struct file_operations proc_timers_operations = { .open = proc_timers_open, .read = seq_read, .llseek = seq_lseek, .release = seq_release_private, }; #endif static ssize_t timerslack_ns_write(struct file *file, const char __user *buf, size_t count, loff_t *offset) { struct inode *inode = file_inode(file); struct task_struct *p; u64 slack_ns; int err; err = kstrtoull_from_user(buf, count, 10, &slack_ns); if (err < 0) return err; p = get_proc_task(inode); if (!p) return -ESRCH; if (p != current) { rcu_read_lock(); if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) { rcu_read_unlock(); count = -EPERM; goto out; } rcu_read_unlock(); err = security_task_setscheduler(p); if (err) { count = err; goto out; } } task_lock(p); if (slack_ns == 0) p->timer_slack_ns = p->default_timer_slack_ns; else p->timer_slack_ns = slack_ns; task_unlock(p); out: put_task_struct(p); return count; } static int timerslack_ns_show(struct seq_file *m, void *v) { struct inode *inode = m->private; struct task_struct *p; int err = 0; p = get_proc_task(inode); if (!p) return -ESRCH; if (p != current) { rcu_read_lock(); if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) { rcu_read_unlock(); err = -EPERM; goto out; } rcu_read_unlock(); err = security_task_getscheduler(p); if (err) goto out; } task_lock(p); seq_printf(m, "%llu\n", p->timer_slack_ns); task_unlock(p); out: put_task_struct(p); return err; } static int timerslack_ns_open(struct inode *inode, struct file *filp) { return single_open(filp, timerslack_ns_show, inode); } static const struct file_operations proc_pid_set_timerslack_ns_operations = { .open = timerslack_ns_open, .read = seq_read, .write = timerslack_ns_write, .llseek = seq_lseek, .release = single_release, }; static struct dentry *proc_pident_instantiate(struct dentry *dentry, struct task_struct *task, const void *ptr) { const struct pid_entry *p = ptr; struct inode *inode; struct proc_inode *ei; inode = proc_pid_make_inode(dentry->d_sb, task, p->mode); if (!inode) return ERR_PTR(-ENOENT); ei = PROC_I(inode); if (S_ISDIR(inode->i_mode)) set_nlink(inode, 2); /* Use getattr to fix if necessary */ if (p->iop) inode->i_op = p->iop; if (p->fop) inode->i_fop = p->fop; ei->op = p->op; pid_update_inode(task, inode); d_set_d_op(dentry, &pid_dentry_operations); return d_splice_alias(inode, dentry); } static struct dentry *proc_pident_lookup(struct inode *dir, struct dentry *dentry, const struct pid_entry *p, const struct pid_entry *end) { struct task_struct *task = get_proc_task(dir); struct dentry *res = ERR_PTR(-ENOENT); if (!task) goto out_no_task; /* * Yes, it does not scale. And it should not. Don't add * new entries into /proc// without very good reasons. */ for (; p < end; p++) { if (p->len != dentry->d_name.len) continue; if (!memcmp(dentry->d_name.name, p->name, p->len)) { res = proc_pident_instantiate(dentry, task, p); break; } } put_task_struct(task); out_no_task: return res; } static int proc_pident_readdir(struct file *file, struct dir_context *ctx, const struct pid_entry *ents, unsigned int nents) { struct task_struct *task = get_proc_task(file_inode(file)); const struct pid_entry *p; if (!task) return -ENOENT; if (!dir_emit_dots(file, ctx)) goto out; if (ctx->pos >= nents + 2) goto out; for (p = ents + (ctx->pos - 2); p < ents + nents; p++) { if (!proc_fill_cache(file, ctx, p->name, p->len, proc_pident_instantiate, task, p)) break; ctx->pos++; } out: put_task_struct(task); return 0; } #ifdef CONFIG_SECURITY static ssize_t proc_pid_attr_read(struct file * file, char __user * buf, size_t count, loff_t *ppos) { struct inode * inode = file_inode(file); char *p = NULL; ssize_t length; struct task_struct *task = get_proc_task(inode); if (!task) return -ESRCH; length = security_getprocattr(task, PROC_I(inode)->op.lsm, (char*)file->f_path.dentry->d_name.name, &p); put_task_struct(task); if (length > 0) length = simple_read_from_buffer(buf, count, ppos, p, length); kfree(p); return length; } static ssize_t proc_pid_attr_write(struct file * file, const char __user * buf, size_t count, loff_t *ppos) { struct inode * inode = file_inode(file); struct task_struct *task; void *page; int rv; rcu_read_lock(); task = pid_task(proc_pid(inode), PIDTYPE_PID); if (!task) { rcu_read_unlock(); return -ESRCH; } /* A task may only write its own attributes. */ if (current != task) { rcu_read_unlock(); return -EACCES; } /* Prevent changes to overridden credentials. */ if (current_cred() != current_real_cred()) { rcu_read_unlock(); return -EBUSY; } rcu_read_unlock(); if (count > PAGE_SIZE) count = PAGE_SIZE; /* No partial writes. */ if (*ppos != 0) return -EINVAL; page = memdup_user(buf, count); if (IS_ERR(page)) { rv = PTR_ERR(page); goto out; } /* Guard against adverse ptrace interaction */ rv = mutex_lock_interruptible(¤t->signal->cred_guard_mutex); if (rv < 0) goto out_free; rv = security_setprocattr(PROC_I(inode)->op.lsm, file->f_path.dentry->d_name.name, page, count); mutex_unlock(¤t->signal->cred_guard_mutex); out_free: kfree(page); out: return rv; } static const struct file_operations proc_pid_attr_operations = { .read = proc_pid_attr_read, .write = proc_pid_attr_write, .llseek = generic_file_llseek, }; #define LSM_DIR_OPS(LSM) \ static int proc_##LSM##_attr_dir_iterate(struct file *filp, \ struct dir_context *ctx) \ { \ return proc_pident_readdir(filp, ctx, \ LSM##_attr_dir_stuff, \ ARRAY_SIZE(LSM##_attr_dir_stuff)); \ } \ \ static const struct file_operations proc_##LSM##_attr_dir_ops = { \ .read = generic_read_dir, \ .iterate = proc_##LSM##_attr_dir_iterate, \ .llseek = default_llseek, \ }; \ \ static struct dentry *proc_##LSM##_attr_dir_lookup(struct inode *dir, \ struct dentry *dentry, unsigned int flags) \ { \ return proc_pident_lookup(dir, dentry, \ LSM##_attr_dir_stuff, \ LSM##_attr_dir_stuff + ARRAY_SIZE(LSM##_attr_dir_stuff)); \ } \ \ static const struct inode_operations proc_##LSM##_attr_dir_inode_ops = { \ .lookup = proc_##LSM##_attr_dir_lookup, \ .getattr = pid_getattr, \ .setattr = proc_setattr, \ } #ifdef CONFIG_SECURITY_SMACK static const struct pid_entry smack_attr_dir_stuff[] = { ATTR("smack", "current", 0666), }; LSM_DIR_OPS(smack); #endif static const struct pid_entry attr_dir_stuff[] = { ATTR(NULL, "current", 0666), ATTR(NULL, "prev", 0444), ATTR(NULL, "exec", 0666), ATTR(NULL, "fscreate", 0666), ATTR(NULL, "keycreate", 0666), ATTR(NULL, "sockcreate", 0666), #ifdef CONFIG_SECURITY_SMACK DIR("smack", 0555, proc_smack_attr_dir_inode_ops, proc_smack_attr_dir_ops), #endif }; static int proc_attr_dir_readdir(struct file *file, struct dir_context *ctx) { return proc_pident_readdir(file, ctx, attr_dir_stuff, ARRAY_SIZE(attr_dir_stuff)); } static const struct file_operations proc_attr_dir_operations = { .read = generic_read_dir, .iterate_shared = proc_attr_dir_readdir, .llseek = generic_file_llseek, }; static struct dentry *proc_attr_dir_lookup(struct inode *dir, struct dentry *dentry, unsigned int flags) { return proc_pident_lookup(dir, dentry, attr_dir_stuff, attr_dir_stuff + ARRAY_SIZE(attr_dir_stuff)); } static const struct inode_operations proc_attr_dir_inode_operations = { .lookup = proc_attr_dir_lookup, .getattr = pid_getattr, .setattr = proc_setattr, }; #endif #ifdef CONFIG_ELF_CORE static ssize_t proc_coredump_filter_read(struct file *file, char __user *buf, size_t count, loff_t *ppos) { struct task_struct *task = get_proc_task(file_inode(file)); struct mm_struct *mm; char buffer[PROC_NUMBUF]; size_t len; int ret; if (!task) return -ESRCH; ret = 0; mm = get_task_mm(task); if (mm) { len = snprintf(buffer, sizeof(buffer), "%08lx\n", ((mm->flags & MMF_DUMP_FILTER_MASK) >> MMF_DUMP_FILTER_SHIFT)); mmput(mm); ret = simple_read_from_buffer(buf, count, ppos, buffer, len); } put_task_struct(task); return ret; } static ssize_t proc_coredump_filter_write(struct file *file, const char __user *buf, size_t count, loff_t *ppos) { struct task_struct *task; struct mm_struct *mm; unsigned int val; int ret; int i; unsigned long mask; ret = kstrtouint_from_user(buf, count, 0, &val); if (ret < 0) return ret; ret = -ESRCH; task = get_proc_task(file_inode(file)); if (!task) goto out_no_task; mm = get_task_mm(task); if (!mm) goto out_no_mm; ret = 0; for (i = 0, mask = 1; i < MMF_DUMP_FILTER_BITS; i++, mask <<= 1) { if (val & mask) set_bit(i + MMF_DUMP_FILTER_SHIFT, &mm->flags); else clear_bit(i + MMF_DUMP_FILTER_SHIFT, &mm->flags); } mmput(mm); out_no_mm: put_task_struct(task); out_no_task: if (ret < 0) return ret; return count; } static const struct file_operations proc_coredump_filter_operations = { .read = proc_coredump_filter_read, .write = proc_coredump_filter_write, .llseek = generic_file_llseek, }; #endif #ifdef CONFIG_TASK_IO_ACCOUNTING static int do_io_accounting(struct task_struct *task, struct seq_file *m, int whole) { struct task_io_accounting acct = task->ioac; unsigned long flags; int result; result = mutex_lock_killable(&task->signal->exec_update_mutex); if (result) return result; if (!ptrace_may_access(task, PTRACE_MODE_READ_FSCREDS)) { result = -EACCES; goto out_unlock; } if (whole && lock_task_sighand(task, &flags)) { struct task_struct *t = task; task_io_accounting_add(&acct, &task->signal->ioac); while_each_thread(task, t) task_io_accounting_add(&acct, &t->ioac); unlock_task_sighand(task, &flags); } seq_printf(m, "rchar: %llu\n" "wchar: %llu\n" "syscr: %llu\n" "syscw: %llu\n" "read_bytes: %llu\n" "write_bytes: %llu\n" "cancelled_write_bytes: %llu\n", (unsigned long long)acct.rchar, (unsigned long long)acct.wchar, (unsigned long long)acct.syscr, (unsigned long long)acct.syscw, (unsigned long long)acct.read_bytes, (unsigned long long)acct.write_bytes, (unsigned long long)acct.cancelled_write_bytes); result = 0; out_unlock: mutex_unlock(&task->signal->exec_update_mutex); return result; } static int proc_tid_io_accounting(struct seq_file *m, struct pid_namespace *ns, struct pid *pid, struct task_struct *task) { return do_io_accounting(task, m, 0); } static int proc_tgid_io_accounting(struct seq_file *m, struct pid_namespace *ns, struct pid *pid, struct task_struct *task) { return do_io_accounting(task, m, 1); } #endif /* CONFIG_TASK_IO_ACCOUNTING */ #ifdef CONFIG_USER_NS static int proc_id_map_open(struct inode *inode, struct file *file, const struct seq_operations *seq_ops) { struct user_namespace *ns = NULL; struct task_struct *task; struct seq_file *seq; int ret = -EINVAL; task = get_proc_task(inode); if (task) { rcu_read_lock(); ns = get_user_ns(task_cred_xxx(task, user_ns)); rcu_read_unlock(); put_task_struct(task); } if (!ns) goto err; ret = seq_open(file, seq_ops); if (ret) goto err_put_ns; seq = file->private_data; seq->private = ns; return 0; err_put_ns: put_user_ns(ns); err: return ret; } static int proc_id_map_release(struct inode *inode, struct file *file) { struct seq_file *seq = file->private_data; struct user_namespace *ns = seq->private; put_user_ns(ns); return seq_release(inode, file); } static int proc_uid_map_open(struct inode *inode, struct file *file) { return proc_id_map_open(inode, file, &proc_uid_seq_operations); } static int proc_gid_map_open(struct inode *inode, struct file *file) { return proc_id_map_open(inode, file, &proc_gid_seq_operations); } static int proc_projid_map_open(struct inode *inode, struct file *file) { return proc_id_map_open(inode, file, &proc_projid_seq_operations); } static const struct file_operations proc_uid_map_operations = { .open = proc_uid_map_open, .write = proc_uid_map_write, .read = seq_read, .llseek = seq_lseek, .release = proc_id_map_release, }; static const struct file_operations proc_gid_map_operations = { .open = proc_gid_map_open, .write = proc_gid_map_write, .read = seq_read, .llseek = seq_lseek, .release = proc_id_map_release, }; static const struct file_operations proc_projid_map_operations = { .open = proc_projid_map_open, .write = proc_projid_map_write, .read = seq_read, .llseek = seq_lseek, .release = proc_id_map_release, }; static int proc_setgroups_open(struct inode *inode, struct file *file) { struct user_namespace *ns = NULL; struct task_struct *task; int ret; ret = -ESRCH; task = get_proc_task(inode); if (task) { rcu_read_lock(); ns = get_user_ns(task_cred_xxx(task, user_ns)); rcu_read_unlock(); put_task_struct(task); } if (!ns) goto err; if (file->f_mode & FMODE_WRITE) { ret = -EACCES; if (!ns_capable(ns, CAP_SYS_ADMIN)) goto err_put_ns; } ret = single_open(file, &proc_setgroups_show, ns); if (ret) goto err_put_ns; return 0; err_put_ns: put_user_ns(ns); err: return ret; } static int proc_setgroups_release(struct inode *inode, struct file *file) { struct seq_file *seq = file->private_data; struct user_namespace *ns = seq->private; int ret = single_release(inode, file); put_user_ns(ns); return ret; } static const struct file_operations proc_setgroups_operations = { .open = proc_setgroups_open, .write = proc_setgroups_write, .read = seq_read, .llseek = seq_lseek, .release = proc_setgroups_release, }; #endif /* CONFIG_USER_NS */ static int proc_pid_personality(struct seq_file *m, struct pid_namespace *ns, struct pid *pid, struct task_struct *task) { int err = lock_trace(task); if (!err) { seq_printf(m, "%08x\n", task->personality); unlock_trace(task); } return err; } #ifdef CONFIG_LIVEPATCH static int proc_pid_patch_state(struct seq_file *m, struct pid_namespace *ns, struct pid *pid, struct task_struct *task) { seq_printf(m, "%d\n", task->patch_state); return 0; } #endif /* CONFIG_LIVEPATCH */ #ifdef CONFIG_STACKLEAK_METRICS static int proc_stack_depth(struct seq_file *m, struct pid_namespace *ns, struct pid *pid, struct task_struct *task) { unsigned long prev_depth = THREAD_SIZE - (task->prev_lowest_stack & (THREAD_SIZE - 1)); unsigned long depth = THREAD_SIZE - (task->lowest_stack & (THREAD_SIZE - 1)); seq_printf(m, "previous stack depth: %lu\nstack depth: %lu\n", prev_depth, depth); return 0; } #endif /* CONFIG_STACKLEAK_METRICS */ /* * Thread groups */ static const struct file_operations proc_task_operations; static const struct inode_operations proc_task_inode_operations; static const struct pid_entry tgid_base_stuff[] = { DIR("task", S_IRUGO|S_IXUGO, proc_task_inode_operations, proc_task_operations), DIR("fd", S_IRUSR|S_IXUSR, proc_fd_inode_operations, proc_fd_operations), DIR("map_files", S_IRUSR|S_IXUSR, proc_map_files_inode_operations, proc_map_files_operations), DIR("fdinfo", S_IRUSR|S_IXUSR, proc_fdinfo_inode_operations, proc_fdinfo_operations), DIR("ns", S_IRUSR|S_IXUGO, proc_ns_dir_inode_operations, proc_ns_dir_operations), #ifdef CONFIG_NET DIR("net", S_IRUGO|S_IXUGO, proc_net_inode_operations, proc_net_operations), #endif REG("environ", S_IRUSR, proc_environ_operations), REG("auxv", S_IRUSR, proc_auxv_operations), ONE("status", S_IRUGO, proc_pid_status), ONE("personality", S_IRUSR, proc_pid_personality), ONE("limits", S_IRUGO, proc_pid_limits), #ifdef CONFIG_SCHED_DEBUG REG("sched", S_IRUGO|S_IWUSR, proc_pid_sched_operations), #endif #ifdef CONFIG_SCHED_AUTOGROUP REG("autogroup", S_IRUGO|S_IWUSR, proc_pid_sched_autogroup_operations), #endif #ifdef CONFIG_TIME_NS REG("timens_offsets", S_IRUGO|S_IWUSR, proc_timens_offsets_operations), #endif REG("comm", S_IRUGO|S_IWUSR, proc_pid_set_comm_operations), #ifdef CONFIG_HAVE_ARCH_TRACEHOOK ONE("syscall", S_IRUSR, proc_pid_syscall), #endif REG("cmdline", S_IRUGO, proc_pid_cmdline_ops), ONE("stat", S_IRUGO, proc_tgid_stat), ONE("statm", S_IRUGO, proc_pid_statm), REG("maps", S_IRUGO, proc_pid_maps_operations), #ifdef CONFIG_NUMA REG("numa_maps", S_IRUGO, proc_pid_numa_maps_operations), #endif REG("mem", S_IRUSR|S_IWUSR, proc_mem_operations), LNK("cwd", proc_cwd_link), LNK("root", proc_root_link), LNK("exe", proc_exe_link), REG("mounts", S_IRUGO, proc_mounts_operations), REG("mountinfo", S_IRUGO, proc_mountinfo_operations), REG("mountstats", S_IRUSR, proc_mountstats_operations), #ifdef CONFIG_PROC_PAGE_MONITOR REG("clear_refs", S_IWUSR, proc_clear_refs_operations), REG("smaps", S_IRUGO, proc_pid_smaps_operations), REG("smaps_rollup", S_IRUGO, proc_pid_smaps_rollup_operations), REG("pagemap", S_IRUSR, proc_pagemap_operations), #endif #ifdef CONFIG_SECURITY DIR("attr", S_IRUGO|S_IXUGO, proc_attr_dir_inode_operations, proc_attr_dir_operations), #endif #ifdef CONFIG_KALLSYMS ONE("wchan", S_IRUGO, proc_pid_wchan), #endif #ifdef CONFIG_STACKTRACE ONE("stack", S_IRUSR, proc_pid_stack), #endif #ifdef CONFIG_SCHED_INFO ONE("schedstat", S_IRUGO, proc_pid_schedstat), #endif #ifdef CONFIG_LATENCYTOP REG("latency", S_IRUGO, proc_lstats_operations), #endif #ifdef CONFIG_PROC_PID_CPUSET ONE("cpuset", S_IRUGO, proc_cpuset_show), #endif #ifdef CONFIG_CGROUPS ONE("cgroup", S_IRUGO, proc_cgroup_show), #endif #ifdef CONFIG_PROC_CPU_RESCTRL ONE("cpu_resctrl_groups", S_IRUGO, proc_resctrl_show), #endif ONE("oom_score", S_IRUGO, proc_oom_score), REG("oom_adj", S_IRUGO|S_IWUSR, proc_oom_adj_operations), REG("oom_score_adj", S_IRUGO|S_IWUSR, proc_oom_score_adj_operations), #ifdef CONFIG_AUDIT REG("loginuid", S_IWUSR|S_IRUGO, proc_loginuid_operations), REG("sessionid", S_IRUGO, proc_sessionid_operations), #endif #ifdef CONFIG_FAULT_INJECTION REG("make-it-fail", S_IRUGO|S_IWUSR, proc_fault_inject_operations), REG("fail-nth", 0644, proc_fail_nth_operations), #endif #ifdef CONFIG_ELF_CORE REG("coredump_filter", S_IRUGO|S_IWUSR, proc_coredump_filter_operations), #endif #ifdef CONFIG_TASK_IO_ACCOUNTING ONE("io", S_IRUSR, proc_tgid_io_accounting), #endif #ifdef CONFIG_USER_NS REG("uid_map", S_IRUGO|S_IWUSR, proc_uid_map_operations), REG("gid_map", S_IRUGO|S_IWUSR, proc_gid_map_operations), REG("projid_map", S_IRUGO|S_IWUSR, proc_projid_map_operations), REG("setgroups", S_IRUGO|S_IWUSR, proc_setgroups_operations), #endif #if defined(CONFIG_CHECKPOINT_RESTORE) && defined(CONFIG_POSIX_TIMERS) REG("timers", S_IRUGO, proc_timers_operations), #endif REG("timerslack_ns", S_IRUGO|S_IWUGO, proc_pid_set_timerslack_ns_operations), #ifdef CONFIG_LIVEPATCH ONE("patch_state", S_IRUSR, proc_pid_patch_state), #endif #ifdef CONFIG_STACKLEAK_METRICS ONE("stack_depth", S_IRUGO, proc_stack_depth), #endif #ifdef CONFIG_PROC_PID_ARCH_STATUS ONE("arch_status", S_IRUGO, proc_pid_arch_status), #endif }; static int proc_tgid_base_readdir(struct file *file, struct dir_context *ctx) { return proc_pident_readdir(file, ctx, tgid_base_stuff, ARRAY_SIZE(tgid_base_stuff)); } static const struct file_operations proc_tgid_base_operations = { .read = generic_read_dir, .iterate_shared = proc_tgid_base_readdir, .llseek = generic_file_llseek, }; struct pid *tgid_pidfd_to_pid(const struct file *file) { if (file->f_op != &proc_tgid_base_operations) return ERR_PTR(-EBADF); return proc_pid(file_inode(file)); } static struct dentry *proc_tgid_base_lookup(struct inode *dir, struct dentry *dentry, unsigned int flags) { return proc_pident_lookup(dir, dentry, tgid_base_stuff, tgid_base_stuff + ARRAY_SIZE(tgid_base_stuff)); } static const struct inode_operations proc_tgid_base_inode_operations = { .lookup = proc_tgid_base_lookup, .getattr = pid_getattr, .setattr = proc_setattr, .permission = proc_pid_permission, }; /** * proc_flush_pid - Remove dcache entries for @pid from the /proc dcache. * @pid: pid that should be flushed. * * This function walks a list of inodes (that belong to any proc * filesystem) that are attached to the pid and flushes them from * the dentry cache. * * It is safe and reasonable to cache /proc entries for a task until * that task exits. After that they just clog up the dcache with * useless entries, possibly causing useful dcache entries to be * flushed instead. This routine is provided to flush those useless * dcache entries when a process is reaped. * * NOTE: This routine is just an optimization so it does not guarantee * that no dcache entries will exist after a process is reaped * it just makes it very unlikely that any will persist. */ void proc_flush_pid(struct pid *pid) { proc_invalidate_siblings_dcache(&pid->inodes, &pid->lock); } static struct dentry *proc_pid_instantiate(struct dentry * dentry, struct task_struct *task, const void *ptr) { struct inode *inode; inode = proc_pid_make_inode(dentry->d_sb, task, S_IFDIR | S_IRUGO | S_IXUGO); if (!inode) return ERR_PTR(-ENOENT); inode->i_op = &proc_tgid_base_inode_operations; inode->i_fop = &proc_tgid_base_operations; inode->i_flags|=S_IMMUTABLE; set_nlink(inode, nlink_tgid); pid_update_inode(task, inode); d_set_d_op(dentry, &pid_dentry_operations); return d_splice_alias(inode, dentry); } struct dentry *proc_pid_lookup(struct dentry *dentry, unsigned int flags) { struct task_struct *task; unsigned tgid; struct pid_namespace *ns; struct dentry *result = ERR_PTR(-ENOENT); tgid = name_to_int(&dentry->d_name); if (tgid == ~0U) goto out; ns = dentry->d_sb->s_fs_info; rcu_read_lock(); task = find_task_by_pid_ns(tgid, ns); if (task) get_task_struct(task); rcu_read_unlock(); if (!task) goto out; result = proc_pid_instantiate(dentry, task, NULL); put_task_struct(task); out: return result; } /* * Find the first task with tgid >= tgid * */ struct tgid_iter { unsigned int tgid; struct task_struct *task; }; static struct tgid_iter next_tgid(struct pid_namespace *ns, struct tgid_iter iter) { struct pid *pid; if (iter.task) put_task_struct(iter.task); rcu_read_lock(); retry: iter.task = NULL; pid = find_ge_pid(iter.tgid, ns); if (pid) { iter.tgid = pid_nr_ns(pid, ns); iter.task = pid_task(pid, PIDTYPE_PID); /* What we to know is if the pid we have find is the * pid of a thread_group_leader. Testing for task * being a thread_group_leader is the obvious thing * todo but there is a window when it fails, due to * the pid transfer logic in de_thread. * * So we perform the straight forward test of seeing * if the pid we have found is the pid of a thread * group leader, and don't worry if the task we have * found doesn't happen to be a thread group leader. * As we don't care in the case of readdir. */ if (!iter.task || !has_group_leader_pid(iter.task)) { iter.tgid += 1; goto retry; } get_task_struct(iter.task); } rcu_read_unlock(); return iter; } #define TGID_OFFSET (FIRST_PROCESS_ENTRY + 2) /* for the /proc/ directory itself, after non-process stuff has been done */ int proc_pid_readdir(struct file *file, struct dir_context *ctx) { struct tgid_iter iter; struct pid_namespace *ns = proc_pid_ns(file_inode(file)); loff_t pos = ctx->pos; if (pos >= PID_MAX_LIMIT + TGID_OFFSET) return 0; if (pos == TGID_OFFSET - 2) { struct inode *inode = d_inode(ns->proc_self); if (!dir_emit(ctx, "self", 4, inode->i_ino, DT_LNK)) return 0; ctx->pos = pos = pos + 1; } if (pos == TGID_OFFSET - 1) { struct inode *inode = d_inode(ns->proc_thread_self); if (!dir_emit(ctx, "thread-self", 11, inode->i_ino, DT_LNK)) return 0; ctx->pos = pos = pos + 1; } iter.tgid = pos - TGID_OFFSET; iter.task = NULL; for (iter = next_tgid(ns, iter); iter.task; iter.tgid += 1, iter = next_tgid(ns, iter)) { char name[10 + 1]; unsigned int len; cond_resched(); if (!has_pid_permissions(ns, iter.task, HIDEPID_INVISIBLE)) continue; len = snprintf(name, sizeof(name), "%u", iter.tgid); ctx->pos = iter.tgid + TGID_OFFSET; if (!proc_fill_cache(file, ctx, name, len, proc_pid_instantiate, iter.task, NULL)) { put_task_struct(iter.task); return 0; } } ctx->pos = PID_MAX_LIMIT + TGID_OFFSET; return 0; } /* * proc_tid_comm_permission is a special permission function exclusively * used for the node /proc//task//comm. * It bypasses generic permission checks in the case where a task of the same * task group attempts to access the node. * The rationale behind this is that glibc and bionic access this node for * cross thread naming (pthread_set/getname_np(!self)). However, if * PR_SET_DUMPABLE gets set to 0 this node among others becomes uid=0 gid=0, * which locks out the cross thread naming implementation. * This function makes sure that the node is always accessible for members of * same thread group. */ static int proc_tid_comm_permission(struct inode *inode, int mask) { bool is_same_tgroup; struct task_struct *task; task = get_proc_task(inode); if (!task) return -ESRCH; is_same_tgroup = same_thread_group(current, task); put_task_struct(task); if (likely(is_same_tgroup && !(mask & MAY_EXEC))) { /* This file (/proc//task//comm) can always be * read or written by the members of the corresponding * thread group. */ return 0; } return generic_permission(inode, mask); } static const struct inode_operations proc_tid_comm_inode_operations = { .permission = proc_tid_comm_permission, }; /* * Tasks */ static const struct pid_entry tid_base_stuff[] = { DIR("fd", S_IRUSR|S_IXUSR, proc_fd_inode_operations, proc_fd_operations), DIR("fdinfo", S_IRUSR|S_IXUSR, proc_fdinfo_inode_operations, proc_fdinfo_operations), DIR("ns", S_IRUSR|S_IXUGO, proc_ns_dir_inode_operations, proc_ns_dir_operations), #ifdef CONFIG_NET DIR("net", S_IRUGO|S_IXUGO, proc_net_inode_operations, proc_net_operations), #endif REG("environ", S_IRUSR, proc_environ_operations), REG("auxv", S_IRUSR, proc_auxv_operations), ONE("status", S_IRUGO, proc_pid_status), ONE("personality", S_IRUSR, proc_pid_personality), ONE("limits", S_IRUGO, proc_pid_limits), #ifdef CONFIG_SCHED_DEBUG REG("sched", S_IRUGO|S_IWUSR, proc_pid_sched_operations), #endif NOD("comm", S_IFREG|S_IRUGO|S_IWUSR, &proc_tid_comm_inode_operations, &proc_pid_set_comm_operations, {}), #ifdef CONFIG_HAVE_ARCH_TRACEHOOK ONE("syscall", S_IRUSR, proc_pid_syscall), #endif REG("cmdline", S_IRUGO, proc_pid_cmdline_ops), ONE("stat", S_IRUGO, proc_tid_stat), ONE("statm", S_IRUGO, proc_pid_statm), REG("maps", S_IRUGO, proc_pid_maps_operations), #ifdef CONFIG_PROC_CHILDREN REG("children", S_IRUGO, proc_tid_children_operations), #endif #ifdef CONFIG_NUMA REG("numa_maps", S_IRUGO, proc_pid_numa_maps_operations), #endif REG("mem", S_IRUSR|S_IWUSR, proc_mem_operations), LNK("cwd", proc_cwd_link), LNK("root", proc_root_link), LNK("exe", proc_exe_link), REG("mounts", S_IRUGO, proc_mounts_operations), REG("mountinfo", S_IRUGO, proc_mountinfo_operations), #ifdef CONFIG_PROC_PAGE_MONITOR REG("clear_refs", S_IWUSR, proc_clear_refs_operations), REG("smaps", S_IRUGO, proc_pid_smaps_operations), REG("smaps_rollup", S_IRUGO, proc_pid_smaps_rollup_operations), REG("pagemap", S_IRUSR, proc_pagemap_operations), #endif #ifdef CONFIG_SECURITY DIR("attr", S_IRUGO|S_IXUGO, proc_attr_dir_inode_operations, proc_attr_dir_operations), #endif #ifdef CONFIG_KALLSYMS ONE("wchan", S_IRUGO, proc_pid_wchan), #endif #ifdef CONFIG_STACKTRACE ONE("stack", S_IRUSR, proc_pid_stack), #endif #ifdef CONFIG_SCHED_INFO ONE("schedstat", S_IRUGO, proc_pid_schedstat), #endif #ifdef CONFIG_LATENCYTOP REG("latency", S_IRUGO, proc_lstats_operations), #endif #ifdef CONFIG_PROC_PID_CPUSET ONE("cpuset", S_IRUGO, proc_cpuset_show), #endif #ifdef CONFIG_CGROUPS ONE("cgroup", S_IRUGO, proc_cgroup_show), #endif #ifdef CONFIG_PROC_CPU_RESCTRL ONE("cpu_resctrl_groups", S_IRUGO, proc_resctrl_show), #endif ONE("oom_score", S_IRUGO, proc_oom_score), REG("oom_adj", S_IRUGO|S_IWUSR, proc_oom_adj_operations), REG("oom_score_adj", S_IRUGO|S_IWUSR, proc_oom_score_adj_operations), #ifdef CONFIG_AUDIT REG("loginuid", S_IWUSR|S_IRUGO, proc_loginuid_operations), REG("sessionid", S_IRUGO, proc_sessionid_operations), #endif #ifdef CONFIG_FAULT_INJECTION REG("make-it-fail", S_IRUGO|S_IWUSR, proc_fault_inject_operations), REG("fail-nth", 0644, proc_fail_nth_operations), #endif #ifdef CONFIG_TASK_IO_ACCOUNTING ONE("io", S_IRUSR, proc_tid_io_accounting), #endif #ifdef CONFIG_USER_NS REG("uid_map", S_IRUGO|S_IWUSR, proc_uid_map_operations), REG("gid_map", S_IRUGO|S_IWUSR, proc_gid_map_operations), REG("projid_map", S_IRUGO|S_IWUSR, proc_projid_map_operations), REG("setgroups", S_IRUGO|S_IWUSR, proc_setgroups_operations), #endif #ifdef CONFIG_LIVEPATCH ONE("patch_state", S_IRUSR, proc_pid_patch_state), #endif #ifdef CONFIG_PROC_PID_ARCH_STATUS ONE("arch_status", S_IRUGO, proc_pid_arch_status), #endif }; static int proc_tid_base_readdir(struct file *file, struct dir_context *ctx) { return proc_pident_readdir(file, ctx, tid_base_stuff, ARRAY_SIZE(tid_base_stuff)); } static struct dentry *proc_tid_base_lookup(struct inode *dir, struct dentry *dentry, unsigned int flags) { return proc_pident_lookup(dir, dentry, tid_base_stuff, tid_base_stuff + ARRAY_SIZE(tid_base_stuff)); } static const struct file_operations proc_tid_base_operations = { .read = generic_read_dir, .iterate_shared = proc_tid_base_readdir, .llseek = generic_file_llseek, }; static const struct inode_operations proc_tid_base_inode_operations = { .lookup = proc_tid_base_lookup, .getattr = pid_getattr, .setattr = proc_setattr, }; static struct dentry *proc_task_instantiate(struct dentry *dentry, struct task_struct *task, const void *ptr) { struct inode *inode; inode = proc_pid_make_inode(dentry->d_sb, task, S_IFDIR | S_IRUGO | S_IXUGO); if (!inode) return ERR_PTR(-ENOENT); inode->i_op = &proc_tid_base_inode_operations; inode->i_fop = &proc_tid_base_operations; inode->i_flags |= S_IMMUTABLE; set_nlink(inode, nlink_tid); pid_update_inode(task, inode); d_set_d_op(dentry, &pid_dentry_operations); return d_splice_alias(inode, dentry); } static struct dentry *proc_task_lookup(struct inode *dir, struct dentry * dentry, unsigned int flags) { struct task_struct *task; struct task_struct *leader = get_proc_task(dir); unsigned tid; struct pid_namespace *ns; struct dentry *result = ERR_PTR(-ENOENT); if (!leader) goto out_no_task; tid = name_to_int(&dentry->d_name); if (tid == ~0U) goto out; ns = dentry->d_sb->s_fs_info; rcu_read_lock(); task = find_task_by_pid_ns(tid, ns); if (task) get_task_struct(task); rcu_read_unlock(); if (!task) goto out; if (!same_thread_group(leader, task)) goto out_drop_task; result = proc_task_instantiate(dentry, task, NULL); out_drop_task: put_task_struct(task); out: put_task_struct(leader); out_no_task: return result; } /* * Find the first tid of a thread group to return to user space. * * Usually this is just the thread group leader, but if the users * buffer was too small or there was a seek into the middle of the * directory we have more work todo. * * In the case of a short read we start with find_task_by_pid. * * In the case of a seek we start with the leader and walk nr * threads past it. */ static struct task_struct *first_tid(struct pid *pid, int tid, loff_t f_pos, struct pid_namespace *ns) { struct task_struct *pos, *task; unsigned long nr = f_pos; if (nr != f_pos) /* 32bit overflow? */ return NULL; rcu_read_lock(); task = pid_task(pid, PIDTYPE_PID); if (!task) goto fail; /* Attempt to start with the tid of a thread */ if (tid && nr) { pos = find_task_by_pid_ns(tid, ns); if (pos && same_thread_group(pos, task)) goto found; } /* If nr exceeds the number of threads there is nothing todo */ if (nr >= get_nr_threads(task)) goto fail; /* If we haven't found our starting place yet start * with the leader and walk nr threads forward. */ pos = task = task->group_leader; do { if (!nr--) goto found; } while_each_thread(task, pos); fail: pos = NULL; goto out; found: get_task_struct(pos); out: rcu_read_unlock(); return pos; } /* * Find the next thread in the thread list. * Return NULL if there is an error or no next thread. * * The reference to the input task_struct is released. */ static struct task_struct *next_tid(struct task_struct *start) { struct task_struct *pos = NULL; rcu_read_lock(); if (pid_alive(start)) { pos = next_thread(start); if (thread_group_leader(pos)) pos = NULL; else get_task_struct(pos); } rcu_read_unlock(); put_task_struct(start); return pos; } /* for the /proc/TGID/task/ directories */ static int proc_task_readdir(struct file *file, struct dir_context *ctx) { struct inode *inode = file_inode(file); struct task_struct *task; struct pid_namespace *ns; int tid; if (proc_inode_is_dead(inode)) return -ENOENT; if (!dir_emit_dots(file, ctx)) return 0; /* f_version caches the tgid value that the last readdir call couldn't * return. lseek aka telldir automagically resets f_version to 0. */ ns = proc_pid_ns(inode); tid = (int)file->f_version; file->f_version = 0; for (task = first_tid(proc_pid(inode), tid, ctx->pos - 2, ns); task; task = next_tid(task), ctx->pos++) { char name[10 + 1]; unsigned int len; tid = task_pid_nr_ns(task, ns); len = snprintf(name, sizeof(name), "%u", tid); if (!proc_fill_cache(file, ctx, name, len, proc_task_instantiate, task, NULL)) { /* returning this tgid failed, save it as the first * pid for the next readir call */ file->f_version = (u64)tid; put_task_struct(task); break; } } return 0; } static int proc_task_getattr(const struct path *path, struct kstat *stat, u32 request_mask, unsigned int query_flags) { struct inode *inode = d_inode(path->dentry); struct task_struct *p = get_proc_task(inode); generic_fillattr(inode, stat); if (p) { stat->nlink += get_nr_threads(p); put_task_struct(p); } return 0; } static const struct inode_operations proc_task_inode_operations = { .lookup = proc_task_lookup, .getattr = proc_task_getattr, .setattr = proc_setattr, .permission = proc_pid_permission, }; static const struct file_operations proc_task_operations = { .read = generic_read_dir, .iterate_shared = proc_task_readdir, .llseek = generic_file_llseek, }; void __init set_proc_pid_nlink(void) { nlink_tid = pid_entry_nlink(tid_base_stuff, ARRAY_SIZE(tid_base_stuff)); nlink_tgid = pid_entry_nlink(tgid_base_stuff, ARRAY_SIZE(tgid_base_stuff)); }