// SPDX-License-Identifier: GPL-2.0 #include "bcachefs.h" #include "checksum.h" #include "disk_groups.h" #include "error.h" #include "io.h" #include "journal.h" #include "replicas.h" #include "quota.h" #include "super-io.h" #include "super.h" #include "vstructs.h" #include #include static const struct blk_holder_ops bch2_sb_handle_bdev_ops = { }; const char * const bch2_sb_fields[] = { #define x(name, nr) #name, BCH_SB_FIELDS() #undef x NULL }; static const char *bch2_sb_field_validate(struct bch_sb *, struct bch_sb_field *); struct bch_sb_field *bch2_sb_field_get(struct bch_sb *sb, enum bch_sb_field_type type) { struct bch_sb_field *f; /* XXX: need locking around superblock to access optional fields */ vstruct_for_each(sb, f) if (le32_to_cpu(f->type) == type) return f; return NULL; } static struct bch_sb_field *__bch2_sb_field_resize(struct bch_sb_handle *sb, struct bch_sb_field *f, unsigned u64s) { unsigned old_u64s = f ? le32_to_cpu(f->u64s) : 0; unsigned sb_u64s = le32_to_cpu(sb->sb->u64s) + u64s - old_u64s; BUG_ON(get_order(__vstruct_bytes(struct bch_sb, sb_u64s)) > sb->page_order); if (!f) { f = vstruct_last(sb->sb); memset(f, 0, sizeof(u64) * u64s); f->u64s = cpu_to_le32(u64s); f->type = 0; } else { void *src, *dst; src = vstruct_end(f); f->u64s = cpu_to_le32(u64s); dst = vstruct_end(f); memmove(dst, src, vstruct_end(sb->sb) - src); if (dst > src) memset(src, 0, dst - src); } sb->sb->u64s = cpu_to_le32(sb_u64s); return f; } /* Superblock realloc/free: */ void bch2_free_super(struct bch_sb_handle *sb) { if (sb->bio) kfree(sb->bio); if (!IS_ERR_OR_NULL(sb->bdev)) blkdev_put(sb->bdev, sb->holder); kfree(sb->holder); free_pages((unsigned long) sb->sb, sb->page_order); memset(sb, 0, sizeof(*sb)); } int bch2_sb_realloc(struct bch_sb_handle *sb, unsigned u64s) { size_t new_bytes = __vstruct_bytes(struct bch_sb, u64s); unsigned order = get_order(new_bytes); struct bch_sb *new_sb; struct bio *bio; if (sb->sb && sb->page_order >= order) return 0; if (sb->have_layout) { u64 max_bytes = 512 << sb->sb->layout.sb_max_size_bits; if (new_bytes > max_bytes) { pr_err("%pg: superblock too big: want %zu but have %llu", sb->bdev, new_bytes, max_bytes); return -ENOSPC; } } if (sb->page_order >= order && sb->sb) return 0; if (dynamic_fault("bcachefs:add:super_realloc")) return -ENOMEM; if (sb->have_bio) { unsigned nr_bvecs = 1 << order; bio = bio_kmalloc(nr_bvecs, GFP_KERNEL); if (!bio) return -ENOMEM; bio_init(bio, NULL, bio->bi_inline_vecs, nr_bvecs, 0); if (sb->bio) kfree(sb->bio); sb->bio = bio; } new_sb = (void *) __get_free_pages(GFP_KERNEL|__GFP_ZERO, order); if (!new_sb) return -ENOMEM; if (sb->sb) memcpy(new_sb, sb->sb, PAGE_SIZE << sb->page_order); free_pages((unsigned long) sb->sb, sb->page_order); sb->sb = new_sb; sb->page_order = order; return 0; } struct bch_sb_field *bch2_sb_field_resize(struct bch_sb_handle *sb, enum bch_sb_field_type type, unsigned u64s) { struct bch_sb_field *f = bch2_sb_field_get(sb->sb, type); ssize_t old_u64s = f ? le32_to_cpu(f->u64s) : 0; ssize_t d = -old_u64s + u64s; if (bch2_sb_realloc(sb, le32_to_cpu(sb->sb->u64s) + d)) return NULL; if (sb->fs_sb) { struct bch_fs *c = container_of(sb, struct bch_fs, disk_sb); struct bch_dev *ca; unsigned i; lockdep_assert_held(&c->sb_lock); /* XXX: we're not checking that offline device have enough space */ for_each_online_member(ca, c, i) { struct bch_sb_handle *sb = &ca->disk_sb; if (bch2_sb_realloc(sb, le32_to_cpu(sb->sb->u64s) + d)) { percpu_ref_put(&ca->ref); return NULL; } } } f = __bch2_sb_field_resize(sb, f, u64s); f->type = cpu_to_le32(type); return f; } /* Superblock validate: */ static inline void __bch2_sb_layout_size_assert(void) { BUILD_BUG_ON(sizeof(struct bch_sb_layout) != 512); } static const char *validate_sb_layout(struct bch_sb_layout *layout) { u64 offset, prev_offset, max_sectors; unsigned i; if (!uuid_equal(&layout->magic, &BCACHE_MAGIC) && !uuid_equal(&layout->magic, &BCHFS_MAGIC)) return "Not a bcachefs superblock layout"; if (layout->layout_type != 0) return "Invalid superblock layout type"; if (!layout->nr_superblocks) return "Invalid superblock layout: no superblocks"; if (layout->nr_superblocks > ARRAY_SIZE(layout->sb_offset)) return "Invalid superblock layout: too many superblocks"; max_sectors = 1 << layout->sb_max_size_bits; prev_offset = le64_to_cpu(layout->sb_offset[0]); for (i = 1; i < layout->nr_superblocks; i++) { offset = le64_to_cpu(layout->sb_offset[i]); if (offset < prev_offset + max_sectors) return "Invalid superblock layout: superblocks overlap"; prev_offset = offset; } return NULL; } const char *bch2_sb_validate(struct bch_sb_handle *disk_sb) { struct bch_sb *sb = disk_sb->sb; struct bch_sb_field *f; struct bch_sb_field_members *mi; const char *err; u16 block_size; if (le16_to_cpu(sb->version) < BCH_SB_VERSION_MIN || le16_to_cpu(sb->version) > BCH_SB_VERSION_MAX) return "Unsupported superblock version"; if (le16_to_cpu(sb->version) < BCH_SB_VERSION_EXTENT_MAX) { SET_BCH_SB_ENCODED_EXTENT_MAX_BITS(sb, 7); SET_BCH_SB_POSIX_ACL(sb, 1); } block_size = le16_to_cpu(sb->block_size); if (!is_power_of_2(block_size) || block_size > PAGE_SECTORS) return "Bad block size"; if (bch2_is_zero(sb->user_uuid.b, sizeof(sb->user_uuid))) return "Bad user UUID"; if (bch2_is_zero(sb->uuid.b, sizeof(sb->uuid))) return "Bad internal UUID"; if (!sb->nr_devices || sb->nr_devices <= sb->dev_idx || sb->nr_devices > BCH_SB_MEMBERS_MAX) return "Bad number of member devices"; if (!BCH_SB_META_REPLICAS_WANT(sb) || BCH_SB_META_REPLICAS_WANT(sb) >= BCH_REPLICAS_MAX) return "Invalid number of metadata replicas"; if (!BCH_SB_META_REPLICAS_REQ(sb) || BCH_SB_META_REPLICAS_REQ(sb) >= BCH_REPLICAS_MAX) return "Invalid number of metadata replicas"; if (!BCH_SB_DATA_REPLICAS_WANT(sb) || BCH_SB_DATA_REPLICAS_WANT(sb) >= BCH_REPLICAS_MAX) return "Invalid number of data replicas"; if (!BCH_SB_DATA_REPLICAS_REQ(sb) || BCH_SB_DATA_REPLICAS_REQ(sb) >= BCH_REPLICAS_MAX) return "Invalid number of data replicas"; if (BCH_SB_META_CSUM_TYPE(sb) >= BCH_CSUM_OPT_NR) return "Invalid metadata checksum type"; if (BCH_SB_DATA_CSUM_TYPE(sb) >= BCH_CSUM_OPT_NR) return "Invalid metadata checksum type"; if (BCH_SB_COMPRESSION_TYPE(sb) >= BCH_COMPRESSION_OPT_NR) return "Invalid compression type"; if (!BCH_SB_BTREE_NODE_SIZE(sb)) return "Btree node size not set"; if (!is_power_of_2(BCH_SB_BTREE_NODE_SIZE(sb))) return "Btree node size not a power of two"; if (BCH_SB_GC_RESERVE(sb) < 5) return "gc reserve percentage too small"; if (!sb->time_precision || le32_to_cpu(sb->time_precision) > NSEC_PER_SEC) return "invalid time precision"; /* validate layout */ err = validate_sb_layout(&sb->layout); if (err) return err; vstruct_for_each(sb, f) { if (!f->u64s) return "Invalid superblock: invalid optional field"; if (vstruct_next(f) > vstruct_last(sb)) return "Invalid superblock: invalid optional field"; } /* members must be validated first: */ mi = bch2_sb_get_members(sb); if (!mi) return "Invalid superblock: member info area missing"; err = bch2_sb_field_validate(sb, &mi->field); if (err) return err; vstruct_for_each(sb, f) { if (le32_to_cpu(f->type) == BCH_SB_FIELD_members) continue; err = bch2_sb_field_validate(sb, f); if (err) return err; } if (le16_to_cpu(sb->version) < BCH_SB_VERSION_EXTENT_NONCE_V1 && bch2_sb_get_crypt(sb) && BCH_SB_INITIALIZED(sb)) return "Incompatible extent nonces"; sb->version = cpu_to_le16(BCH_SB_VERSION_MAX); return NULL; } /* device open: */ static void bch2_sb_update(struct bch_fs *c) { struct bch_sb *src = c->disk_sb.sb; struct bch_sb_field_members *mi = bch2_sb_get_members(src); struct bch_dev *ca; unsigned i; lockdep_assert_held(&c->sb_lock); c->sb.uuid = src->uuid; c->sb.user_uuid = src->user_uuid; c->sb.nr_devices = src->nr_devices; c->sb.clean = BCH_SB_CLEAN(src); c->sb.encryption_type = BCH_SB_ENCRYPTION_TYPE(src); c->sb.encoded_extent_max= 1 << BCH_SB_ENCODED_EXTENT_MAX_BITS(src); c->sb.time_base_lo = le64_to_cpu(src->time_base_lo); c->sb.time_base_hi = le32_to_cpu(src->time_base_hi); c->sb.time_precision = le32_to_cpu(src->time_precision); c->sb.features = le64_to_cpu(src->features[0]); for_each_member_device(ca, c, i) ca->mi = bch2_mi_to_cpu(mi->members + i); } /* doesn't copy member info */ static void __copy_super(struct bch_sb_handle *dst_handle, struct bch_sb *src) { struct bch_sb_field *src_f, *dst_f; struct bch_sb *dst = dst_handle->sb; dst->version = src->version; dst->seq = src->seq; dst->uuid = src->uuid; dst->user_uuid = src->user_uuid; memcpy(dst->label, src->label, sizeof(dst->label)); dst->block_size = src->block_size; dst->nr_devices = src->nr_devices; dst->time_base_lo = src->time_base_lo; dst->time_base_hi = src->time_base_hi; dst->time_precision = src->time_precision; memcpy(dst->flags, src->flags, sizeof(dst->flags)); memcpy(dst->features, src->features, sizeof(dst->features)); memcpy(dst->compat, src->compat, sizeof(dst->compat)); vstruct_for_each(src, src_f) { if (src_f->type == BCH_SB_FIELD_journal) continue; dst_f = bch2_sb_field_get(dst, le32_to_cpu(src_f->type)); dst_f = __bch2_sb_field_resize(dst_handle, dst_f, le32_to_cpu(src_f->u64s)); memcpy(dst_f, src_f, vstruct_bytes(src_f)); } } int bch2_sb_to_fs(struct bch_fs *c, struct bch_sb *src) { struct bch_sb_field_journal *journal_buckets = bch2_sb_get_journal(src); unsigned journal_u64s = journal_buckets ? le32_to_cpu(journal_buckets->field.u64s) : 0; int ret; lockdep_assert_held(&c->sb_lock); ret = bch2_sb_realloc(&c->disk_sb, le32_to_cpu(src->u64s) - journal_u64s); if (ret) return ret; __copy_super(&c->disk_sb, src); ret = bch2_sb_replicas_to_cpu_replicas(c); if (ret) return ret; ret = bch2_sb_disk_groups_to_cpu(c); if (ret) return ret; bch2_sb_update(c); return 0; } int bch2_sb_from_fs(struct bch_fs *c, struct bch_dev *ca) { struct bch_sb *src = c->disk_sb.sb, *dst = ca->disk_sb.sb; struct bch_sb_field_journal *journal_buckets = bch2_sb_get_journal(dst); unsigned journal_u64s = journal_buckets ? le32_to_cpu(journal_buckets->field.u64s) : 0; unsigned u64s = le32_to_cpu(src->u64s) + journal_u64s; int ret; ret = bch2_sb_realloc(&ca->disk_sb, u64s); if (ret) return ret; __copy_super(&ca->disk_sb, src); return 0; } /* read superblock: */ static const char *read_one_super(struct bch_sb_handle *sb, u64 offset) { struct bch_csum csum; size_t bytes; reread: bio_reset(sb->bio, sb->bdev, REQ_OP_READ|REQ_SYNC|REQ_META); sb->bio->bi_iter.bi_sector = offset; sb->bio->bi_iter.bi_size = PAGE_SIZE << sb->page_order; bch2_bio_map(sb->bio, sb->sb); if (submit_bio_wait(sb->bio)) return "IO error"; if (!uuid_equal(&sb->sb->magic, &BCACHE_MAGIC) && !uuid_equal(&sb->sb->magic, &BCHFS_MAGIC)) return "Not a bcachefs superblock"; if (le16_to_cpu(sb->sb->version) < BCH_SB_VERSION_MIN || le16_to_cpu(sb->sb->version) > BCH_SB_VERSION_MAX) return "Unsupported superblock version"; bytes = vstruct_bytes(sb->sb); if (bytes > 512 << sb->sb->layout.sb_max_size_bits) return "Bad superblock: too big"; if (get_order(bytes) > sb->page_order) { if (bch2_sb_realloc(sb, le32_to_cpu(sb->sb->u64s))) return "cannot allocate memory"; goto reread; } if (BCH_SB_CSUM_TYPE(sb->sb) >= BCH_CSUM_NR) return "unknown csum type"; /* XXX: verify MACs */ csum = csum_vstruct(NULL, BCH_SB_CSUM_TYPE(sb->sb), null_nonce(), sb->sb); if (bch2_crc_cmp(csum, sb->sb->csum)) return "bad checksum reading superblock"; return NULL; } int bch2_read_super(const char *path, struct bch_opts *opts, struct bch_sb_handle *sb) { u64 offset = opt_get(*opts, sb); struct bch_sb_layout layout; const char *err; __le64 *i; int ret; pr_verbose_init(*opts, ""); memset(sb, 0, sizeof(*sb)); sb->mode = BLK_OPEN_READ; sb->have_bio = true; sb->holder = kmalloc(1, GFP_KERNEL); if (!sb->holder) return -ENOMEM; if (!opt_get(*opts, noexcl)) sb->mode |= BLK_OPEN_EXCL; if (!opt_get(*opts, nochanges)) sb->mode |= BLK_OPEN_WRITE; sb->bdev = blkdev_get_by_path(path, sb->mode, sb->holder, &bch2_sb_handle_bdev_ops); if (IS_ERR(sb->bdev) && PTR_ERR(sb->bdev) == -EACCES && opt_get(*opts, read_only)) { sb->mode &= ~BLK_OPEN_WRITE; sb->bdev = blkdev_get_by_path(path, sb->mode, sb->holder, &bch2_sb_handle_bdev_ops); if (!IS_ERR(sb->bdev)) opt_set(*opts, nochanges, true); } if (IS_ERR(sb->bdev)) { ret = PTR_ERR(sb->bdev); goto out; } err = "cannot allocate memory"; ret = bch2_sb_realloc(sb, 0); if (ret) goto err; ret = -EFAULT; err = "dynamic fault"; if (bch2_fs_init_fault("read_super")) goto err; ret = -EINVAL; err = read_one_super(sb, offset); if (!err) goto got_super; if (opt_defined(*opts, sb)) goto err; pr_err("error reading default superblock: %s", err); /* * Error reading primary superblock - read location of backup * superblocks: */ bio_reset(sb->bio, sb->bdev, REQ_OP_READ|REQ_SYNC|REQ_META); sb->bio->bi_iter.bi_sector = BCH_SB_LAYOUT_SECTOR; sb->bio->bi_iter.bi_size = sizeof(struct bch_sb_layout); /* * use sb buffer to read layout, since sb buffer is page aligned but * layout won't be: */ bch2_bio_map(sb->bio, sb->sb); err = "IO error"; if (submit_bio_wait(sb->bio)) goto err; memcpy(&layout, sb->sb, sizeof(layout)); err = validate_sb_layout(&layout); if (err) goto err; for (i = layout.sb_offset; i < layout.sb_offset + layout.nr_superblocks; i++) { offset = le64_to_cpu(*i); if (offset == opt_get(*opts, sb)) continue; err = read_one_super(sb, offset); if (!err) goto got_super; } ret = -EINVAL; goto err; got_super: err = "Superblock block size smaller than device block size"; ret = -EINVAL; if (le16_to_cpu(sb->sb->block_size) << 9 < bdev_logical_block_size(sb->bdev)) goto err; ret = 0; sb->have_layout = true; out: pr_verbose_init(*opts, "ret %i", ret); return ret; err: bch2_free_super(sb); pr_err("error reading superblock: %s", err); goto out; } /* write superblock: */ static void write_super_endio(struct bio *bio) { struct bch_dev *ca = bio->bi_private; /* XXX: return errors directly */ if (bch2_dev_io_err_on(bio->bi_status, ca, "superblock write")) ca->sb_write_error = 1; closure_put(&ca->fs->sb_write); percpu_ref_put(&ca->io_ref); } static void write_one_super(struct bch_fs *c, struct bch_dev *ca, unsigned idx) { struct bch_sb *sb = ca->disk_sb.sb; struct bio *bio = ca->disk_sb.bio; sb->offset = sb->layout.sb_offset[idx]; SET_BCH_SB_CSUM_TYPE(sb, c->opts.metadata_checksum); sb->csum = csum_vstruct(c, BCH_SB_CSUM_TYPE(sb), null_nonce(), sb); bio_reset(bio, ca->disk_sb.bdev, REQ_OP_WRITE|REQ_SYNC|REQ_META); bio->bi_iter.bi_sector = le64_to_cpu(sb->offset); bio->bi_iter.bi_size = roundup((size_t) vstruct_bytes(sb), bdev_logical_block_size(ca->disk_sb.bdev)); bio->bi_end_io = write_super_endio; bio->bi_private = ca; bch2_bio_map(bio, sb); this_cpu_add(ca->io_done->sectors[WRITE][BCH_DATA_SB], bio_sectors(bio)); percpu_ref_get(&ca->io_ref); closure_bio_submit(bio, &c->sb_write); } void bch2_write_super(struct bch_fs *c) { struct closure *cl = &c->sb_write; struct bch_dev *ca; unsigned i, sb = 0, nr_wrote; const char *err; struct bch_devs_mask sb_written; bool wrote, can_mount_without_written, can_mount_with_written; lockdep_assert_held(&c->sb_lock); closure_init_stack(cl); memset(&sb_written, 0, sizeof(sb_written)); le64_add_cpu(&c->disk_sb.sb->seq, 1); for_each_online_member(ca, c, i) bch2_sb_from_fs(c, ca); for_each_online_member(ca, c, i) { err = bch2_sb_validate(&ca->disk_sb); if (err) { bch2_fs_inconsistent(c, "sb invalid before write: %s", err); goto out; } } if (c->opts.nochanges || test_bit(BCH_FS_ERROR, &c->flags)) goto out; for_each_online_member(ca, c, i) { __set_bit(ca->dev_idx, sb_written.d); ca->sb_write_error = 0; } do { wrote = false; for_each_online_member(ca, c, i) if (sb < ca->disk_sb.sb->layout.nr_superblocks) { write_one_super(c, ca, sb); wrote = true; } closure_sync(cl); sb++; } while (wrote); for_each_online_member(ca, c, i) if (ca->sb_write_error) __clear_bit(ca->dev_idx, sb_written.d); nr_wrote = dev_mask_nr(&sb_written); can_mount_with_written = bch2_have_enough_devs(__bch2_replicas_status(c, sb_written), BCH_FORCE_IF_DEGRADED); for (i = 0; i < ARRAY_SIZE(sb_written.d); i++) sb_written.d[i] = ~sb_written.d[i]; can_mount_without_written = bch2_have_enough_devs(__bch2_replicas_status(c, sb_written), BCH_FORCE_IF_DEGRADED); /* * If we would be able to mount _without_ the devices we successfully * wrote superblocks to, we weren't able to write to enough devices: * * Exception: if we can mount without the successes because we haven't * written anything (new filesystem), we continue if we'd be able to * mount with the devices we did successfully write to: */ bch2_fs_fatal_err_on(!nr_wrote || (can_mount_without_written && !can_mount_with_written), c, "Unable to write superblock to sufficient devices"); out: /* Make new options visible after they're persistent: */ bch2_sb_update(c); } /* BCH_SB_FIELD_journal: */ static int u64_cmp(const void *_l, const void *_r) { u64 l = *((const u64 *) _l), r = *((const u64 *) _r); return l < r ? -1 : l > r ? 1 : 0; } static const char *bch2_sb_validate_journal(struct bch_sb *sb, struct bch_sb_field *f) { struct bch_sb_field_journal *journal = field_to_type(f, journal); struct bch_member *m = bch2_sb_get_members(sb)->members + sb->dev_idx; const char *err; unsigned nr; unsigned i; u64 *b; journal = bch2_sb_get_journal(sb); if (!journal) return NULL; nr = bch2_nr_journal_buckets(journal); if (!nr) return NULL; b = kmalloc_array(sizeof(u64), nr, GFP_KERNEL); if (!b) return "cannot allocate memory"; for (i = 0; i < nr; i++) b[i] = le64_to_cpu(journal->buckets[i]); sort(b, nr, sizeof(u64), u64_cmp, NULL); err = "journal bucket at sector 0"; if (!b[0]) goto err; err = "journal bucket before first bucket"; if (m && b[0] < le16_to_cpu(m->first_bucket)) goto err; err = "journal bucket past end of device"; if (m && b[nr - 1] >= le64_to_cpu(m->nbuckets)) goto err; err = "duplicate journal buckets"; for (i = 0; i + 1 < nr; i++) if (b[i] == b[i + 1]) goto err; err = NULL; err: kfree(b); return err; } static const struct bch_sb_field_ops bch_sb_field_ops_journal = { .validate = bch2_sb_validate_journal, }; /* BCH_SB_FIELD_members: */ static const char *bch2_sb_validate_members(struct bch_sb *sb, struct bch_sb_field *f) { struct bch_sb_field_members *mi = field_to_type(f, members); struct bch_member *m; if ((void *) (mi->members + sb->nr_devices) > vstruct_end(&mi->field)) return "Invalid superblock: bad member info"; for (m = mi->members; m < mi->members + sb->nr_devices; m++) { if (!bch2_member_exists(m)) continue; if (le64_to_cpu(m->nbuckets) > LONG_MAX) return "Too many buckets"; if (le64_to_cpu(m->nbuckets) - le16_to_cpu(m->first_bucket) < BCH_MIN_NR_NBUCKETS) return "Not enough buckets"; if (le16_to_cpu(m->bucket_size) < le16_to_cpu(sb->block_size)) return "bucket size smaller than block size"; if (le16_to_cpu(m->bucket_size) < BCH_SB_BTREE_NODE_SIZE(sb)) return "bucket size smaller than btree node size"; } if (le16_to_cpu(sb->version) < BCH_SB_VERSION_EXTENT_MAX) for (m = mi->members; m < mi->members + sb->nr_devices; m++) SET_BCH_MEMBER_DATA_ALLOWED(m, ~0); return NULL; } static const struct bch_sb_field_ops bch_sb_field_ops_members = { .validate = bch2_sb_validate_members, }; /* BCH_SB_FIELD_crypt: */ static const char *bch2_sb_validate_crypt(struct bch_sb *sb, struct bch_sb_field *f) { struct bch_sb_field_crypt *crypt = field_to_type(f, crypt); if (vstruct_bytes(&crypt->field) != sizeof(*crypt)) return "invalid field crypt: wrong size"; if (BCH_CRYPT_KDF_TYPE(crypt)) return "invalid field crypt: bad kdf type"; return NULL; } static const struct bch_sb_field_ops bch_sb_field_ops_crypt = { .validate = bch2_sb_validate_crypt, }; /* BCH_SB_FIELD_clean: */ void bch2_fs_mark_clean(struct bch_fs *c, bool clean) { struct bch_sb_field_clean *sb_clean; unsigned u64s = sizeof(*sb_clean) / sizeof(u64); struct jset_entry *entry; struct btree_root *r; mutex_lock(&c->sb_lock); if (clean == BCH_SB_CLEAN(c->disk_sb.sb)) goto out; SET_BCH_SB_CLEAN(c->disk_sb.sb, clean); if (!clean) goto write_super; mutex_lock(&c->btree_root_lock); for (r = c->btree_roots; r < c->btree_roots + BTREE_ID_NR; r++) if (r->alive) u64s += jset_u64s(r->key.u64s); sb_clean = bch2_sb_resize_clean(&c->disk_sb, u64s); if (!sb_clean) { bch_err(c, "error resizing superblock while setting filesystem clean"); goto out; } sb_clean->flags = 0; sb_clean->read_clock = cpu_to_le16(c->bucket_clock[READ].hand); sb_clean->write_clock = cpu_to_le16(c->bucket_clock[WRITE].hand); sb_clean->journal_seq = journal_cur_seq(&c->journal) - 1; entry = sb_clean->start; memset(entry, 0, vstruct_end(&sb_clean->field) - (void *) entry); for (r = c->btree_roots; r < c->btree_roots + BTREE_ID_NR; r++) if (r->alive) { entry->u64s = r->key.u64s; entry->btree_id = r - c->btree_roots; entry->level = r->level; entry->type = BCH_JSET_ENTRY_btree_root; bkey_copy(&entry->start[0], &r->key); entry = vstruct_next(entry); BUG_ON((void *) entry > vstruct_end(&sb_clean->field)); } BUG_ON(entry != vstruct_end(&sb_clean->field)); mutex_unlock(&c->btree_root_lock); write_super: bch2_write_super(c); out: mutex_unlock(&c->sb_lock); } static const char *bch2_sb_validate_clean(struct bch_sb *sb, struct bch_sb_field *f) { struct bch_sb_field_clean *clean = field_to_type(f, clean); if (vstruct_bytes(&clean->field) < sizeof(*clean)) return "invalid field crypt: wrong size"; return NULL; } static const struct bch_sb_field_ops bch_sb_field_ops_clean = { .validate = bch2_sb_validate_clean, }; static const struct bch_sb_field_ops *bch2_sb_field_ops[] = { #define x(f, nr) \ [BCH_SB_FIELD_##f] = &bch_sb_field_ops_##f, BCH_SB_FIELDS() #undef x }; static const char *bch2_sb_field_validate(struct bch_sb *sb, struct bch_sb_field *f) { unsigned type = le32_to_cpu(f->type); return type < BCH_SB_FIELD_NR ? bch2_sb_field_ops[type]->validate(sb, f) : NULL; } size_t bch2_sb_field_to_text(char *buf, size_t size, struct bch_sb *sb, struct bch_sb_field *f) { unsigned type = le32_to_cpu(f->type); size_t (*to_text)(char *, size_t, struct bch_sb *, struct bch_sb_field *) = type < BCH_SB_FIELD_NR ? bch2_sb_field_ops[type]->to_text : NULL; if (!to_text) { if (size) buf[0] = '\0'; return 0; } return to_text(buf, size, sb, f); }