// SPDX-License-Identifier: GPL-2.0-only // // nau8821.c -- Nuvoton NAU88L21 audio codec driver // // Copyright 2021 Nuvoton Technology Corp. // Author: John Hsu // Co-author: Seven Lee // #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "nau8821.h" #define NAU_FREF_MAX 13500000 #define NAU_FVCO_MAX 100000000 #define NAU_FVCO_MIN 90000000 /* the maximum frequency of CLK_ADC and CLK_DAC */ #define CLK_DA_AD_MAX 6144000 static int nau8821_configure_sysclk(struct nau8821 *nau8821, int clk_id, unsigned int freq); struct nau8821_fll { int mclk_src; int ratio; int fll_frac; int fll_int; int clk_ref_div; }; struct nau8821_fll_attr { unsigned int param; unsigned int val; }; /* scaling for mclk from sysclk_src output */ static const struct nau8821_fll_attr mclk_src_scaling[] = { { 1, 0x0 }, { 2, 0x2 }, { 4, 0x3 }, { 8, 0x4 }, { 16, 0x5 }, { 32, 0x6 }, { 3, 0x7 }, { 6, 0xa }, { 12, 0xb }, { 24, 0xc }, { 48, 0xd }, { 96, 0xe }, { 5, 0xf }, }; /* ratio for input clk freq */ static const struct nau8821_fll_attr fll_ratio[] = { { 512000, 0x01 }, { 256000, 0x02 }, { 128000, 0x04 }, { 64000, 0x08 }, { 32000, 0x10 }, { 8000, 0x20 }, { 4000, 0x40 }, }; static const struct nau8821_fll_attr fll_pre_scalar[] = { { 0, 0x0 }, { 1, 0x1 }, { 2, 0x2 }, { 3, 0x3 }, }; /* over sampling rate */ struct nau8821_osr_attr { unsigned int osr; unsigned int clk_src; }; static const struct nau8821_osr_attr osr_dac_sel[] = { { 64, 2 }, /* OSR 64, SRC 1/4 */ { 256, 0 }, /* OSR 256, SRC 1 */ { 128, 1 }, /* OSR 128, SRC 1/2 */ { 0, 0 }, { 32, 3 }, /* OSR 32, SRC 1/8 */ }; static const struct nau8821_osr_attr osr_adc_sel[] = { { 32, 3 }, /* OSR 32, SRC 1/8 */ { 64, 2 }, /* OSR 64, SRC 1/4 */ { 128, 1 }, /* OSR 128, SRC 1/2 */ { 256, 0 }, /* OSR 256, SRC 1 */ }; struct nau8821_dmic_speed { unsigned int param; unsigned int val; }; static const struct nau8821_dmic_speed dmic_speed_sel[] = { { 0, 0x0 }, /*SPEED 1, SRC 1 */ { 1, 0x1 }, /*SPEED 2, SRC 1/2 */ { 2, 0x2 }, /*SPEED 4, SRC 1/4 */ { 3, 0x3 }, /*SPEED 8, SRC 1/8 */ }; static const struct reg_default nau8821_reg_defaults[] = { { NAU8821_R01_ENA_CTRL, 0x00ff }, { NAU8821_R03_CLK_DIVIDER, 0x0050 }, { NAU8821_R04_FLL1, 0x0 }, { NAU8821_R05_FLL2, 0x00bc }, { NAU8821_R06_FLL3, 0x0008 }, { NAU8821_R07_FLL4, 0x0010 }, { NAU8821_R08_FLL5, 0x4000 }, { NAU8821_R09_FLL6, 0x6900 }, { NAU8821_R0A_FLL7, 0x0031 }, { NAU8821_R0B_FLL8, 0x26e9 }, { NAU8821_R0D_JACK_DET_CTRL, 0x0 }, { NAU8821_R0F_INTERRUPT_MASK, 0x0 }, { NAU8821_R12_INTERRUPT_DIS_CTRL, 0xffff }, { NAU8821_R13_DMIC_CTRL, 0x0 }, { NAU8821_R1A_GPIO12_CTRL, 0x0 }, { NAU8821_R1B_TDM_CTRL, 0x0 }, { NAU8821_R1C_I2S_PCM_CTRL1, 0x000a }, { NAU8821_R1D_I2S_PCM_CTRL2, 0x8010 }, { NAU8821_R1E_LEFT_TIME_SLOT, 0x0 }, { NAU8821_R1F_RIGHT_TIME_SLOT, 0x0 }, { NAU8821_R21_BIQ0_COF1, 0x0 }, { NAU8821_R22_BIQ0_COF2, 0x0 }, { NAU8821_R23_BIQ0_COF3, 0x0 }, { NAU8821_R24_BIQ0_COF4, 0x0 }, { NAU8821_R25_BIQ0_COF5, 0x0 }, { NAU8821_R26_BIQ0_COF6, 0x0 }, { NAU8821_R27_BIQ0_COF7, 0x0 }, { NAU8821_R28_BIQ0_COF8, 0x0 }, { NAU8821_R29_BIQ0_COF9, 0x0 }, { NAU8821_R2A_BIQ0_COF10, 0x0 }, { NAU8821_R2B_ADC_RATE, 0x0002 }, { NAU8821_R2C_DAC_CTRL1, 0x0082 }, { NAU8821_R2D_DAC_CTRL2, 0x0 }, { NAU8821_R2F_DAC_DGAIN_CTRL, 0x0 }, { NAU8821_R30_ADC_DGAIN_CTRL, 0x0 }, { NAU8821_R31_MUTE_CTRL, 0x0 }, { NAU8821_R32_HSVOL_CTRL, 0x0 }, { NAU8821_R34_DACR_CTRL, 0xcfcf }, { NAU8821_R35_ADC_DGAIN_CTRL1, 0xcfcf }, { NAU8821_R36_ADC_DRC_KNEE_IP12, 0x1486 }, { NAU8821_R37_ADC_DRC_KNEE_IP34, 0x0f12 }, { NAU8821_R38_ADC_DRC_SLOPES, 0x25ff }, { NAU8821_R39_ADC_DRC_ATKDCY, 0x3457 }, { NAU8821_R3A_DAC_DRC_KNEE_IP12, 0x1486 }, { NAU8821_R3B_DAC_DRC_KNEE_IP34, 0x0f12 }, { NAU8821_R3C_DAC_DRC_SLOPES, 0x25f9 }, { NAU8821_R3D_DAC_DRC_ATKDCY, 0x3457 }, { NAU8821_R41_BIQ1_COF1, 0x0 }, { NAU8821_R42_BIQ1_COF2, 0x0 }, { NAU8821_R43_BIQ1_COF3, 0x0 }, { NAU8821_R44_BIQ1_COF4, 0x0 }, { NAU8821_R45_BIQ1_COF5, 0x0 }, { NAU8821_R46_BIQ1_COF6, 0x0 }, { NAU8821_R47_BIQ1_COF7, 0x0 }, { NAU8821_R48_BIQ1_COF8, 0x0 }, { NAU8821_R49_BIQ1_COF9, 0x0 }, { NAU8821_R4A_BIQ1_COF10, 0x0 }, { NAU8821_R4B_CLASSG_CTRL, 0x0 }, { NAU8821_R4C_IMM_MODE_CTRL, 0x0 }, { NAU8821_R4D_IMM_RMS_L, 0x0 }, { NAU8821_R53_OTPDOUT_1, 0xaad8 }, { NAU8821_R54_OTPDOUT_2, 0x0002 }, { NAU8821_R55_MISC_CTRL, 0x0 }, { NAU8821_R66_BIAS_ADJ, 0x0 }, { NAU8821_R68_TRIM_SETTINGS, 0x0 }, { NAU8821_R69_ANALOG_CONTROL_1, 0x0 }, { NAU8821_R6A_ANALOG_CONTROL_2, 0x0 }, { NAU8821_R6B_PGA_MUTE, 0x0 }, { NAU8821_R71_ANALOG_ADC_1, 0x0011 }, { NAU8821_R72_ANALOG_ADC_2, 0x0020 }, { NAU8821_R73_RDAC, 0x0008 }, { NAU8821_R74_MIC_BIAS, 0x0006 }, { NAU8821_R76_BOOST, 0x0 }, { NAU8821_R77_FEPGA, 0x0 }, { NAU8821_R7E_PGA_GAIN, 0x0 }, { NAU8821_R7F_POWER_UP_CONTROL, 0x0 }, { NAU8821_R80_CHARGE_PUMP, 0x0 }, }; static bool nau8821_readable_reg(struct device *dev, unsigned int reg) { switch (reg) { case NAU8821_R00_RESET ... NAU8821_R01_ENA_CTRL: case NAU8821_R03_CLK_DIVIDER ... NAU8821_R0B_FLL8: case NAU8821_R0D_JACK_DET_CTRL: case NAU8821_R0F_INTERRUPT_MASK ... NAU8821_R13_DMIC_CTRL: case NAU8821_R1A_GPIO12_CTRL ... NAU8821_R1F_RIGHT_TIME_SLOT: case NAU8821_R21_BIQ0_COF1 ... NAU8821_R2D_DAC_CTRL2: case NAU8821_R2F_DAC_DGAIN_CTRL ... NAU8821_R32_HSVOL_CTRL: case NAU8821_R34_DACR_CTRL ... NAU8821_R3D_DAC_DRC_ATKDCY: case NAU8821_R41_BIQ1_COF1 ... NAU8821_R4F_FUSE_CTRL3: case NAU8821_R51_FUSE_CTRL1: case NAU8821_R53_OTPDOUT_1 ... NAU8821_R55_MISC_CTRL: case NAU8821_R58_I2C_DEVICE_ID ... NAU8821_R5A_SOFTWARE_RST: case NAU8821_R66_BIAS_ADJ: case NAU8821_R68_TRIM_SETTINGS ... NAU8821_R6B_PGA_MUTE: case NAU8821_R71_ANALOG_ADC_1 ... NAU8821_R74_MIC_BIAS: case NAU8821_R76_BOOST ... NAU8821_R77_FEPGA: case NAU8821_R7E_PGA_GAIN ... NAU8821_R82_GENERAL_STATUS: return true; default: return false; } } static bool nau8821_writeable_reg(struct device *dev, unsigned int reg) { switch (reg) { case NAU8821_R00_RESET ... NAU8821_R01_ENA_CTRL: case NAU8821_R03_CLK_DIVIDER ... NAU8821_R0B_FLL8: case NAU8821_R0D_JACK_DET_CTRL: case NAU8821_R0F_INTERRUPT_MASK: case NAU8821_R11_INT_CLR_KEY_STATUS ... NAU8821_R13_DMIC_CTRL: case NAU8821_R1A_GPIO12_CTRL ... NAU8821_R1F_RIGHT_TIME_SLOT: case NAU8821_R21_BIQ0_COF1 ... NAU8821_R2D_DAC_CTRL2: case NAU8821_R2F_DAC_DGAIN_CTRL ... NAU8821_R32_HSVOL_CTRL: case NAU8821_R34_DACR_CTRL ... NAU8821_R3D_DAC_DRC_ATKDCY: case NAU8821_R41_BIQ1_COF1 ... NAU8821_R4C_IMM_MODE_CTRL: case NAU8821_R4E_FUSE_CTRL2 ... NAU8821_R4F_FUSE_CTRL3: case NAU8821_R51_FUSE_CTRL1: case NAU8821_R55_MISC_CTRL: case NAU8821_R5A_SOFTWARE_RST: case NAU8821_R66_BIAS_ADJ: case NAU8821_R68_TRIM_SETTINGS ... NAU8821_R6B_PGA_MUTE: case NAU8821_R71_ANALOG_ADC_1 ... NAU8821_R74_MIC_BIAS: case NAU8821_R76_BOOST ... NAU8821_R77_FEPGA: case NAU8821_R7E_PGA_GAIN ... NAU8821_R80_CHARGE_PUMP: return true; default: return false; } } static bool nau8821_volatile_reg(struct device *dev, unsigned int reg) { switch (reg) { case NAU8821_R00_RESET: case NAU8821_R10_IRQ_STATUS ... NAU8821_R11_INT_CLR_KEY_STATUS: case NAU8821_R21_BIQ0_COF1 ... NAU8821_R2A_BIQ0_COF10: case NAU8821_R41_BIQ1_COF1 ... NAU8821_R4A_BIQ1_COF10: case NAU8821_R4D_IMM_RMS_L: case NAU8821_R53_OTPDOUT_1 ... NAU8821_R54_OTPDOUT_2: case NAU8821_R58_I2C_DEVICE_ID ... NAU8821_R5A_SOFTWARE_RST: case NAU8821_R81_CHARGE_PUMP_INPUT_READ ... NAU8821_R82_GENERAL_STATUS: return true; default: return false; } } static int nau8821_biq_coeff_get(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) { struct snd_soc_component *component = snd_kcontrol_chip(kcontrol); struct soc_bytes_ext *params = (void *)kcontrol->private_value; if (!component->regmap) return -EINVAL; regmap_raw_read(component->regmap, NAU8821_R21_BIQ0_COF1, ucontrol->value.bytes.data, params->max); return 0; } static int nau8821_biq_coeff_put(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) { struct snd_soc_component *component = snd_kcontrol_chip(kcontrol); struct soc_bytes_ext *params = (void *)kcontrol->private_value; void *data; if (!component->regmap) return -EINVAL; data = kmemdup(ucontrol->value.bytes.data, params->max, GFP_KERNEL | GFP_DMA); if (!data) return -ENOMEM; regmap_raw_write(component->regmap, NAU8821_R21_BIQ0_COF1, data, params->max); kfree(data); return 0; } static const char * const nau8821_adc_decimation[] = { "32", "64", "128", "256" }; static const struct soc_enum nau8821_adc_decimation_enum = SOC_ENUM_SINGLE(NAU8821_R2B_ADC_RATE, NAU8821_ADC_SYNC_DOWN_SFT, ARRAY_SIZE(nau8821_adc_decimation), nau8821_adc_decimation); static const char * const nau8821_dac_oversampl[] = { "64", "256", "128", "", "32" }; static const struct soc_enum nau8821_dac_oversampl_enum = SOC_ENUM_SINGLE(NAU8821_R2C_DAC_CTRL1, NAU8821_DAC_OVERSAMPLE_SFT, ARRAY_SIZE(nau8821_dac_oversampl), nau8821_dac_oversampl); static const DECLARE_TLV_DB_MINMAX_MUTE(adc_vol_tlv, -6600, 2400); static const DECLARE_TLV_DB_MINMAX_MUTE(sidetone_vol_tlv, -4200, 0); static const DECLARE_TLV_DB_MINMAX(hp_vol_tlv, -900, 0); static const DECLARE_TLV_DB_SCALE(playback_vol_tlv, -6600, 50, 1); static const DECLARE_TLV_DB_MINMAX(fepga_gain_tlv, -100, 3600); static const DECLARE_TLV_DB_MINMAX_MUTE(crosstalk_vol_tlv, -7000, 2400); static const struct snd_kcontrol_new nau8821_controls[] = { SOC_DOUBLE_TLV("Mic Volume", NAU8821_R35_ADC_DGAIN_CTRL1, NAU8821_ADCL_CH_VOL_SFT, NAU8821_ADCR_CH_VOL_SFT, 0xff, 0, adc_vol_tlv), SOC_DOUBLE_TLV("Headphone Bypass Volume", NAU8821_R30_ADC_DGAIN_CTRL, 12, 8, 0x0f, 0, sidetone_vol_tlv), SOC_DOUBLE_TLV("Headphone Volume", NAU8821_R32_HSVOL_CTRL, NAU8821_HPL_VOL_SFT, NAU8821_HPR_VOL_SFT, 0x3, 1, hp_vol_tlv), SOC_DOUBLE_TLV("Digital Playback Volume", NAU8821_R34_DACR_CTRL, NAU8821_DACL_CH_VOL_SFT, NAU8821_DACR_CH_VOL_SFT, 0xcf, 0, playback_vol_tlv), SOC_DOUBLE_TLV("Frontend PGA Volume", NAU8821_R7E_PGA_GAIN, NAU8821_PGA_GAIN_L_SFT, NAU8821_PGA_GAIN_R_SFT, 37, 0, fepga_gain_tlv), SOC_DOUBLE_TLV("Headphone Crosstalk Volume", NAU8821_R2F_DAC_DGAIN_CTRL, 0, 8, 0xff, 0, crosstalk_vol_tlv), SOC_ENUM("ADC Decimation Rate", nau8821_adc_decimation_enum), SOC_ENUM("DAC Oversampling Rate", nau8821_dac_oversampl_enum), SND_SOC_BYTES_EXT("BIQ Coefficients", 20, nau8821_biq_coeff_get, nau8821_biq_coeff_put), SOC_SINGLE("ADC Phase Switch", NAU8821_R1B_TDM_CTRL, NAU8821_ADCPHS_SFT, 1, 0), }; static const struct snd_kcontrol_new nau8821_dmic_mode_switch = SOC_DAPM_SINGLE("Switch", NAU8821_R13_DMIC_CTRL, NAU8821_DMIC_EN_SFT, 1, 0); static int dmic_clock_control(struct snd_soc_dapm_widget *w, struct snd_kcontrol *k, int event) { struct snd_soc_component *component = snd_soc_dapm_to_component(w->dapm); struct nau8821 *nau8821 = snd_soc_component_get_drvdata(component); int i, speed_selection = -1, clk_adc_src, clk_adc; unsigned int clk_divider_r03; /* The DMIC clock is gotten from adc clock divided by * CLK_DMIC_SRC (1, 2, 4, 8). The clock has to be equal or * less than nau8821->dmic_clk_threshold. */ regmap_read(nau8821->regmap, NAU8821_R03_CLK_DIVIDER, &clk_divider_r03); clk_adc_src = (clk_divider_r03 & NAU8821_CLK_ADC_SRC_MASK) >> NAU8821_CLK_ADC_SRC_SFT; clk_adc = (nau8821->fs * 256) >> clk_adc_src; for (i = 0 ; i < 4 ; i++) if ((clk_adc >> dmic_speed_sel[i].param) <= nau8821->dmic_clk_threshold) { speed_selection = dmic_speed_sel[i].val; break; } if (speed_selection < 0) return -EINVAL; dev_dbg(nau8821->dev, "clk_adc=%d, dmic_clk_threshold = %d, param=%d, val = %d\n", clk_adc, nau8821->dmic_clk_threshold, dmic_speed_sel[i].param, dmic_speed_sel[i].val); regmap_update_bits(nau8821->regmap, NAU8821_R13_DMIC_CTRL, NAU8821_DMIC_SRC_MASK, (speed_selection << NAU8821_DMIC_SRC_SFT)); return 0; } static int nau8821_left_adc_event(struct snd_soc_dapm_widget *w, struct snd_kcontrol *kcontrol, int event) { struct snd_soc_component *component = snd_soc_dapm_to_component(w->dapm); struct nau8821 *nau8821 = snd_soc_component_get_drvdata(component); switch (event) { case SND_SOC_DAPM_POST_PMU: msleep(125); regmap_update_bits(nau8821->regmap, NAU8821_R01_ENA_CTRL, NAU8821_EN_ADCL, NAU8821_EN_ADCL); break; case SND_SOC_DAPM_POST_PMD: regmap_update_bits(nau8821->regmap, NAU8821_R01_ENA_CTRL, NAU8821_EN_ADCL, 0); break; default: return -EINVAL; } return 0; } static int nau8821_right_adc_event(struct snd_soc_dapm_widget *w, struct snd_kcontrol *kcontrol, int event) { struct snd_soc_component *component = snd_soc_dapm_to_component(w->dapm); struct nau8821 *nau8821 = snd_soc_component_get_drvdata(component); switch (event) { case SND_SOC_DAPM_POST_PMU: msleep(125); regmap_update_bits(nau8821->regmap, NAU8821_R01_ENA_CTRL, NAU8821_EN_ADCR, NAU8821_EN_ADCR); break; case SND_SOC_DAPM_POST_PMD: regmap_update_bits(nau8821->regmap, NAU8821_R01_ENA_CTRL, NAU8821_EN_ADCR, 0); break; default: return -EINVAL; } return 0; } static int nau8821_pump_event(struct snd_soc_dapm_widget *w, struct snd_kcontrol *kcontrol, int event) { struct snd_soc_component *component = snd_soc_dapm_to_component(w->dapm); struct nau8821 *nau8821 = snd_soc_component_get_drvdata(component); switch (event) { case SND_SOC_DAPM_POST_PMU: /* Prevent startup click by letting charge pump to ramp up */ msleep(20); regmap_update_bits(nau8821->regmap, NAU8821_R80_CHARGE_PUMP, NAU8821_JAMNODCLOW, NAU8821_JAMNODCLOW); break; case SND_SOC_DAPM_PRE_PMD: regmap_update_bits(nau8821->regmap, NAU8821_R80_CHARGE_PUMP, NAU8821_JAMNODCLOW, 0); break; default: return -EINVAL; } return 0; } static int nau8821_output_dac_event(struct snd_soc_dapm_widget *w, struct snd_kcontrol *kcontrol, int event) { struct snd_soc_component *component = snd_soc_dapm_to_component(w->dapm); struct nau8821 *nau8821 = snd_soc_component_get_drvdata(component); switch (event) { case SND_SOC_DAPM_PRE_PMU: /* Disables the TESTDAC to let DAC signal pass through. */ regmap_update_bits(nau8821->regmap, NAU8821_R66_BIAS_ADJ, NAU8821_BIAS_TESTDAC_EN, 0); break; case SND_SOC_DAPM_POST_PMD: regmap_update_bits(nau8821->regmap, NAU8821_R66_BIAS_ADJ, NAU8821_BIAS_TESTDAC_EN, NAU8821_BIAS_TESTDAC_EN); break; default: return -EINVAL; } return 0; } static const struct snd_soc_dapm_widget nau8821_dapm_widgets[] = { SND_SOC_DAPM_SUPPLY("MICBIAS", NAU8821_R74_MIC_BIAS, NAU8821_MICBIAS_POWERUP_SFT, 0, NULL, 0), SND_SOC_DAPM_SUPPLY("DMIC Clock", SND_SOC_NOPM, 0, 0, dmic_clock_control, SND_SOC_DAPM_POST_PMU), SND_SOC_DAPM_ADC("ADCL Power", NULL, NAU8821_R72_ANALOG_ADC_2, NAU8821_POWERUP_ADCL_SFT, 0), SND_SOC_DAPM_ADC("ADCR Power", NULL, NAU8821_R72_ANALOG_ADC_2, NAU8821_POWERUP_ADCR_SFT, 0), SND_SOC_DAPM_PGA_S("Frontend PGA L", 1, NAU8821_R7F_POWER_UP_CONTROL, NAU8821_PUP_PGA_L_SFT, 0, NULL, 0), SND_SOC_DAPM_PGA_S("Frontend PGA R", 1, NAU8821_R7F_POWER_UP_CONTROL, NAU8821_PUP_PGA_R_SFT, 0, NULL, 0), SND_SOC_DAPM_PGA_S("ADCL Digital path", 0, NAU8821_R01_ENA_CTRL, NAU8821_EN_ADCL_SFT, 0, nau8821_left_adc_event, SND_SOC_DAPM_POST_PMU | SND_SOC_DAPM_POST_PMD), SND_SOC_DAPM_PGA_S("ADCR Digital path", 0, NAU8821_R01_ENA_CTRL, NAU8821_EN_ADCR_SFT, 0, nau8821_right_adc_event, SND_SOC_DAPM_POST_PMU | SND_SOC_DAPM_POST_PMD), SND_SOC_DAPM_SWITCH("DMIC Enable", SND_SOC_NOPM, 0, 0, &nau8821_dmic_mode_switch), SND_SOC_DAPM_AIF_OUT("AIFTX", "Capture", 0, NAU8821_R1D_I2S_PCM_CTRL2, NAU8821_I2S_TRISTATE_SFT, 1), SND_SOC_DAPM_AIF_IN("AIFRX", "Playback", 0, SND_SOC_NOPM, 0, 0), SND_SOC_DAPM_PGA_S("ADACL", 2, NAU8821_R73_RDAC, NAU8821_DACL_EN_SFT, 0, NULL, 0), SND_SOC_DAPM_PGA_S("ADACR", 2, NAU8821_R73_RDAC, NAU8821_DACR_EN_SFT, 0, NULL, 0), SND_SOC_DAPM_PGA_S("ADACL Clock", 3, NAU8821_R73_RDAC, NAU8821_DACL_CLK_EN_SFT, 0, NULL, 0), SND_SOC_DAPM_PGA_S("ADACR Clock", 3, NAU8821_R73_RDAC, NAU8821_DACR_CLK_EN_SFT, 0, NULL, 0), SND_SOC_DAPM_DAC("DDACR", NULL, NAU8821_R01_ENA_CTRL, NAU8821_EN_DACR_SFT, 0), SND_SOC_DAPM_DAC("DDACL", NULL, NAU8821_R01_ENA_CTRL, NAU8821_EN_DACL_SFT, 0), SND_SOC_DAPM_PGA_S("HP amp L", 0, NAU8821_R4B_CLASSG_CTRL, NAU8821_CLASSG_LDAC_EN_SFT, 0, NULL, 0), SND_SOC_DAPM_PGA_S("HP amp R", 0, NAU8821_R4B_CLASSG_CTRL, NAU8821_CLASSG_RDAC_EN_SFT, 0, NULL, 0), SND_SOC_DAPM_PGA_S("Charge Pump", 1, NAU8821_R80_CHARGE_PUMP, NAU8821_CHANRGE_PUMP_EN_SFT, 0, nau8821_pump_event, SND_SOC_DAPM_POST_PMU | SND_SOC_DAPM_PRE_PMD), SND_SOC_DAPM_PGA_S("Output Driver R Stage 1", 4, NAU8821_R7F_POWER_UP_CONTROL, NAU8821_PUP_INTEG_R_SFT, 0, NULL, 0), SND_SOC_DAPM_PGA_S("Output Driver L Stage 1", 4, NAU8821_R7F_POWER_UP_CONTROL, NAU8821_PUP_INTEG_L_SFT, 0, NULL, 0), SND_SOC_DAPM_PGA_S("Output Driver R Stage 2", 5, NAU8821_R7F_POWER_UP_CONTROL, NAU8821_PUP_DRV_INSTG_R_SFT, 0, NULL, 0), SND_SOC_DAPM_PGA_S("Output Driver L Stage 2", 5, NAU8821_R7F_POWER_UP_CONTROL, NAU8821_PUP_DRV_INSTG_L_SFT, 0, NULL, 0), SND_SOC_DAPM_PGA_S("Output Driver R Stage 3", 6, NAU8821_R7F_POWER_UP_CONTROL, NAU8821_PUP_MAIN_DRV_R_SFT, 0, NULL, 0), SND_SOC_DAPM_PGA_S("Output Driver L Stage 3", 6, NAU8821_R7F_POWER_UP_CONTROL, NAU8821_PUP_MAIN_DRV_L_SFT, 0, NULL, 0), SND_SOC_DAPM_PGA_S("Output DACL", 7, NAU8821_R80_CHARGE_PUMP, NAU8821_POWER_DOWN_DACL_SFT, 0, nau8821_output_dac_event, SND_SOC_DAPM_PRE_PMU | SND_SOC_DAPM_POST_PMD), SND_SOC_DAPM_PGA_S("Output DACR", 7, NAU8821_R80_CHARGE_PUMP, NAU8821_POWER_DOWN_DACR_SFT, 0, nau8821_output_dac_event, SND_SOC_DAPM_PRE_PMU | SND_SOC_DAPM_POST_PMD), /* HPOL/R are ungrounded by disabling 16 Ohm pull-downs on playback */ SND_SOC_DAPM_PGA_S("HPOL Pulldown", 8, NAU8821_R0D_JACK_DET_CTRL, NAU8821_SPKR_DWN1L_SFT, 0, NULL, 0), SND_SOC_DAPM_PGA_S("HPOR Pulldown", 8, NAU8821_R0D_JACK_DET_CTRL, NAU8821_SPKR_DWN1R_SFT, 0, NULL, 0), /* High current HPOL/R boost driver */ SND_SOC_DAPM_PGA_S("HP Boost Driver", 9, NAU8821_R76_BOOST, NAU8821_HP_BOOST_DIS_SFT, 1, NULL, 0), SND_SOC_DAPM_PGA("Class G", NAU8821_R4B_CLASSG_CTRL, NAU8821_CLASSG_EN_SFT, 0, NULL, 0), SND_SOC_DAPM_INPUT("MICL"), SND_SOC_DAPM_INPUT("MICR"), SND_SOC_DAPM_INPUT("DMIC"), SND_SOC_DAPM_OUTPUT("HPOL"), SND_SOC_DAPM_OUTPUT("HPOR"), }; static const struct snd_soc_dapm_route nau8821_dapm_routes[] = { {"DMIC Enable", "Switch", "DMIC"}, {"DMIC Enable", NULL, "DMIC Clock"}, {"Frontend PGA L", NULL, "MICL"}, {"Frontend PGA R", NULL, "MICR"}, {"Frontend PGA L", NULL, "MICBIAS"}, {"Frontend PGA R", NULL, "MICBIAS"}, {"ADCL Power", NULL, "Frontend PGA L"}, {"ADCR Power", NULL, "Frontend PGA R"}, {"ADCL Digital path", NULL, "ADCL Power"}, {"ADCR Digital path", NULL, "ADCR Power"}, {"ADCL Digital path", NULL, "DMIC Enable"}, {"ADCR Digital path", NULL, "DMIC Enable"}, {"AIFTX", NULL, "ADCL Digital path"}, {"AIFTX", NULL, "ADCR Digital path"}, {"DDACL", NULL, "AIFRX"}, {"DDACR", NULL, "AIFRX"}, {"HP amp L", NULL, "DDACL"}, {"HP amp R", NULL, "DDACR"}, {"Charge Pump", NULL, "HP amp L"}, {"Charge Pump", NULL, "HP amp R"}, {"ADACL", NULL, "Charge Pump"}, {"ADACR", NULL, "Charge Pump"}, {"ADACL Clock", NULL, "ADACL"}, {"ADACR Clock", NULL, "ADACR"}, {"Output Driver L Stage 1", NULL, "ADACL Clock"}, {"Output Driver R Stage 1", NULL, "ADACR Clock"}, {"Output Driver L Stage 2", NULL, "Output Driver L Stage 1"}, {"Output Driver R Stage 2", NULL, "Output Driver R Stage 1"}, {"Output Driver L Stage 3", NULL, "Output Driver L Stage 2"}, {"Output Driver R Stage 3", NULL, "Output Driver R Stage 2"}, {"Output DACL", NULL, "Output Driver L Stage 3"}, {"Output DACR", NULL, "Output Driver R Stage 3"}, {"HPOL Pulldown", NULL, "Output DACL"}, {"HPOR Pulldown", NULL, "Output DACR"}, {"HP Boost Driver", NULL, "HPOL Pulldown"}, {"HP Boost Driver", NULL, "HPOR Pulldown"}, {"Class G", NULL, "HP Boost Driver"}, {"HPOL", NULL, "Class G"}, {"HPOR", NULL, "Class G"}, }; static int nau8821_clock_check(struct nau8821 *nau8821, int stream, int rate, int osr) { int osrate = 0; if (stream == SNDRV_PCM_STREAM_PLAYBACK) { if (osr >= ARRAY_SIZE(osr_dac_sel)) return -EINVAL; osrate = osr_dac_sel[osr].osr; } else { if (osr >= ARRAY_SIZE(osr_adc_sel)) return -EINVAL; osrate = osr_adc_sel[osr].osr; } if (!osrate || rate * osrate > CLK_DA_AD_MAX) { dev_err(nau8821->dev, "exceed the maximum frequency of CLK_ADC or CLK_DAC"); return -EINVAL; } return 0; } static int nau8821_hw_params(struct snd_pcm_substream *substream, struct snd_pcm_hw_params *params, struct snd_soc_dai *dai) { struct snd_soc_component *component = dai->component; struct nau8821 *nau8821 = snd_soc_component_get_drvdata(component); unsigned int val_len = 0, osr, ctrl_val, bclk_fs, clk_div; nau8821->fs = params_rate(params); /* CLK_DAC or CLK_ADC = OSR * FS * DAC or ADC clock frequency is defined as Over Sampling Rate (OSR) * multiplied by the audio sample rate (Fs). Note that the OSR and Fs * values must be selected such that the maximum frequency is less * than 6.144 MHz. */ if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) { regmap_read(nau8821->regmap, NAU8821_R2C_DAC_CTRL1, &osr); osr &= NAU8821_DAC_OVERSAMPLE_MASK; if (nau8821_clock_check(nau8821, substream->stream, nau8821->fs, osr)) { return -EINVAL; } regmap_update_bits(nau8821->regmap, NAU8821_R03_CLK_DIVIDER, NAU8821_CLK_DAC_SRC_MASK, osr_dac_sel[osr].clk_src << NAU8821_CLK_DAC_SRC_SFT); } else { regmap_read(nau8821->regmap, NAU8821_R2B_ADC_RATE, &osr); osr &= NAU8821_ADC_SYNC_DOWN_MASK; if (nau8821_clock_check(nau8821, substream->stream, nau8821->fs, osr)) { return -EINVAL; } regmap_update_bits(nau8821->regmap, NAU8821_R03_CLK_DIVIDER, NAU8821_CLK_ADC_SRC_MASK, osr_adc_sel[osr].clk_src << NAU8821_CLK_ADC_SRC_SFT); } /* make BCLK and LRC divde configuration if the codec as master. */ regmap_read(nau8821->regmap, NAU8821_R1D_I2S_PCM_CTRL2, &ctrl_val); if (ctrl_val & NAU8821_I2S_MS_MASTER) { /* get the bclk and fs ratio */ bclk_fs = snd_soc_params_to_bclk(params) / nau8821->fs; if (bclk_fs <= 32) clk_div = 3; else if (bclk_fs <= 64) clk_div = 2; else if (bclk_fs <= 128) clk_div = 1; else { return -EINVAL; } regmap_update_bits(nau8821->regmap, NAU8821_R1D_I2S_PCM_CTRL2, NAU8821_I2S_LRC_DIV_MASK | NAU8821_I2S_BLK_DIV_MASK, (clk_div << NAU8821_I2S_LRC_DIV_SFT) | clk_div); } switch (params_width(params)) { case 16: val_len |= NAU8821_I2S_DL_16; break; case 20: val_len |= NAU8821_I2S_DL_20; break; case 24: val_len |= NAU8821_I2S_DL_24; break; case 32: val_len |= NAU8821_I2S_DL_32; break; default: return -EINVAL; } regmap_update_bits(nau8821->regmap, NAU8821_R1C_I2S_PCM_CTRL1, NAU8821_I2S_DL_MASK, val_len); return 0; } static int nau8821_set_dai_fmt(struct snd_soc_dai *codec_dai, unsigned int fmt) { struct snd_soc_component *component = codec_dai->component; struct nau8821 *nau8821 = snd_soc_component_get_drvdata(component); unsigned int ctrl1_val = 0, ctrl2_val = 0; switch (fmt & SND_SOC_DAIFMT_MASTER_MASK) { case SND_SOC_DAIFMT_CBP_CFP: ctrl2_val |= NAU8821_I2S_MS_MASTER; break; case SND_SOC_DAIFMT_CBC_CFC: break; default: return -EINVAL; } switch (fmt & SND_SOC_DAIFMT_INV_MASK) { case SND_SOC_DAIFMT_NB_NF: break; case SND_SOC_DAIFMT_IB_NF: ctrl1_val |= NAU8821_I2S_BP_INV; break; default: return -EINVAL; } switch (fmt & SND_SOC_DAIFMT_FORMAT_MASK) { case SND_SOC_DAIFMT_I2S: ctrl1_val |= NAU8821_I2S_DF_I2S; break; case SND_SOC_DAIFMT_LEFT_J: ctrl1_val |= NAU8821_I2S_DF_LEFT; break; case SND_SOC_DAIFMT_RIGHT_J: ctrl1_val |= NAU8821_I2S_DF_RIGTH; break; case SND_SOC_DAIFMT_DSP_A: ctrl1_val |= NAU8821_I2S_DF_PCM_AB; break; case SND_SOC_DAIFMT_DSP_B: ctrl1_val |= NAU8821_I2S_DF_PCM_AB; ctrl1_val |= NAU8821_I2S_PCMB_EN; break; default: return -EINVAL; } regmap_update_bits(nau8821->regmap, NAU8821_R1C_I2S_PCM_CTRL1, NAU8821_I2S_DL_MASK | NAU8821_I2S_DF_MASK | NAU8821_I2S_BP_MASK | NAU8821_I2S_PCMB_MASK, ctrl1_val); regmap_update_bits(nau8821->regmap, NAU8821_R1D_I2S_PCM_CTRL2, NAU8821_I2S_MS_MASK, ctrl2_val); return 0; } static int nau8821_digital_mute(struct snd_soc_dai *dai, int mute, int direction) { struct snd_soc_component *component = dai->component; struct nau8821 *nau8821 = snd_soc_component_get_drvdata(component); unsigned int val = 0; if (mute) val = NAU8821_DAC_SOFT_MUTE; return regmap_update_bits(nau8821->regmap, NAU8821_R31_MUTE_CTRL, NAU8821_DAC_SOFT_MUTE, val); } static const struct snd_soc_dai_ops nau8821_dai_ops = { .hw_params = nau8821_hw_params, .set_fmt = nau8821_set_dai_fmt, .mute_stream = nau8821_digital_mute, }; #define NAU8821_RATES SNDRV_PCM_RATE_8000_192000 #define NAU8821_FORMATS (SNDRV_PCM_FMTBIT_S16_LE | SNDRV_PCM_FMTBIT_S20_3LE \ | SNDRV_PCM_FMTBIT_S24_3LE | SNDRV_PCM_FMTBIT_S32_LE) static struct snd_soc_dai_driver nau8821_dai = { .name = NUVOTON_CODEC_DAI, .playback = { .stream_name = "Playback", .channels_min = 1, .channels_max = 2, .rates = NAU8821_RATES, .formats = NAU8821_FORMATS, }, .capture = { .stream_name = "Capture", .channels_min = 1, .channels_max = 2, .rates = NAU8821_RATES, .formats = NAU8821_FORMATS, }, .ops = &nau8821_dai_ops, }; static bool nau8821_is_jack_inserted(struct regmap *regmap) { bool active_high, is_high; int status, jkdet; regmap_read(regmap, NAU8821_R0D_JACK_DET_CTRL, &jkdet); active_high = jkdet & NAU8821_JACK_POLARITY; regmap_read(regmap, NAU8821_R82_GENERAL_STATUS, &status); is_high = status & NAU8821_GPIO2_IN; /* return jack connection status according to jack insertion logic * active high or active low. */ return active_high == is_high; } static void nau8821_int_status_clear_all(struct regmap *regmap) { int active_irq, clear_irq, i; /* Reset the intrruption status from rightmost bit if the corres- * ponding irq event occurs. */ regmap_read(regmap, NAU8821_R10_IRQ_STATUS, &active_irq); for (i = 0; i < NAU8821_REG_DATA_LEN; i++) { clear_irq = (0x1 << i); if (active_irq & clear_irq) regmap_write(regmap, NAU8821_R11_INT_CLR_KEY_STATUS, clear_irq); } } static void nau8821_eject_jack(struct nau8821 *nau8821) { struct snd_soc_dapm_context *dapm = nau8821->dapm; struct regmap *regmap = nau8821->regmap; struct snd_soc_component *component = snd_soc_dapm_to_component(dapm); /* Detach 2kOhm Resistors from MICBIAS to MICGND */ regmap_update_bits(regmap, NAU8821_R74_MIC_BIAS, NAU8821_MICBIAS_JKR2, 0); /* HPL/HPR short to ground */ regmap_update_bits(regmap, NAU8821_R0D_JACK_DET_CTRL, NAU8821_SPKR_DWN1R | NAU8821_SPKR_DWN1L, 0); snd_soc_component_disable_pin(component, "MICBIAS"); snd_soc_dapm_sync(dapm); /* Clear all interruption status */ nau8821_int_status_clear_all(regmap); /* Enable the insertion interruption, disable the ejection inter- * ruption, and then bypass de-bounce circuit. */ regmap_update_bits(regmap, NAU8821_R12_INTERRUPT_DIS_CTRL, NAU8821_IRQ_EJECT_DIS | NAU8821_IRQ_INSERT_DIS, NAU8821_IRQ_EJECT_DIS); /* Mask unneeded IRQs: 1 - disable, 0 - enable */ regmap_update_bits(regmap, NAU8821_R0F_INTERRUPT_MASK, NAU8821_IRQ_EJECT_EN | NAU8821_IRQ_INSERT_EN, NAU8821_IRQ_EJECT_EN); regmap_update_bits(regmap, NAU8821_R0D_JACK_DET_CTRL, NAU8821_JACK_DET_DB_BYPASS, NAU8821_JACK_DET_DB_BYPASS); /* Close clock for jack type detection at manual mode */ if (dapm->bias_level < SND_SOC_BIAS_PREPARE) nau8821_configure_sysclk(nau8821, NAU8821_CLK_DIS, 0); /* Recover to normal channel input */ regmap_update_bits(regmap, NAU8821_R2B_ADC_RATE, NAU8821_ADC_R_SRC_EN, 0); } static void nau8821_jdet_work(struct work_struct *work) { struct nau8821 *nau8821 = container_of(work, struct nau8821, jdet_work); struct snd_soc_dapm_context *dapm = nau8821->dapm; struct snd_soc_component *component = snd_soc_dapm_to_component(dapm); struct regmap *regmap = nau8821->regmap; int jack_status_reg, mic_detected, event = 0, event_mask = 0; snd_soc_component_force_enable_pin(component, "MICBIAS"); snd_soc_dapm_sync(dapm); msleep(20); regmap_read(regmap, NAU8821_R58_I2C_DEVICE_ID, &jack_status_reg); mic_detected = !(jack_status_reg & NAU8821_KEYDET); if (mic_detected) { dev_dbg(nau8821->dev, "Headset connected\n"); event |= SND_JACK_HEADSET; /* 2kOhm Resistor from MICBIAS to MICGND1 */ regmap_update_bits(regmap, NAU8821_R74_MIC_BIAS, NAU8821_MICBIAS_JKR2, NAU8821_MICBIAS_JKR2); /* Latch Right Channel Analog data * input into the Right Channel Filter */ regmap_update_bits(regmap, NAU8821_R2B_ADC_RATE, NAU8821_ADC_R_SRC_EN, NAU8821_ADC_R_SRC_EN); } else { dev_dbg(nau8821->dev, "Headphone connected\n"); event |= SND_JACK_HEADPHONE; snd_soc_component_disable_pin(component, "MICBIAS"); snd_soc_dapm_sync(dapm); } event_mask |= SND_JACK_HEADSET; snd_soc_jack_report(nau8821->jack, event, event_mask); } /* Enable interruptions with internal clock. */ static void nau8821_setup_inserted_irq(struct nau8821 *nau8821) { struct regmap *regmap = nau8821->regmap; /* Enable internal VCO needed for interruptions */ if (nau8821->dapm->bias_level < SND_SOC_BIAS_PREPARE) nau8821_configure_sysclk(nau8821, NAU8821_CLK_INTERNAL, 0); /* Chip needs one FSCLK cycle in order to generate interruptions, * as we cannot guarantee one will be provided by the system. Turning * master mode on then off enables us to generate that FSCLK cycle * with a minimum of contention on the clock bus. */ regmap_update_bits(regmap, NAU8821_R1D_I2S_PCM_CTRL2, NAU8821_I2S_MS_MASK, NAU8821_I2S_MS_MASTER); regmap_update_bits(regmap, NAU8821_R1D_I2S_PCM_CTRL2, NAU8821_I2S_MS_MASK, NAU8821_I2S_MS_SLAVE); /* Not bypass de-bounce circuit */ regmap_update_bits(regmap, NAU8821_R0D_JACK_DET_CTRL, NAU8821_JACK_DET_DB_BYPASS, 0); regmap_update_bits(regmap, NAU8821_R0F_INTERRUPT_MASK, NAU8821_IRQ_EJECT_EN, 0); regmap_update_bits(regmap, NAU8821_R12_INTERRUPT_DIS_CTRL, NAU8821_IRQ_EJECT_DIS, 0); } static irqreturn_t nau8821_interrupt(int irq, void *data) { struct nau8821 *nau8821 = (struct nau8821 *)data; struct regmap *regmap = nau8821->regmap; int active_irq, clear_irq = 0, event = 0, event_mask = 0; if (regmap_read(regmap, NAU8821_R10_IRQ_STATUS, &active_irq)) { dev_err(nau8821->dev, "failed to read irq status\n"); return IRQ_NONE; } dev_dbg(nau8821->dev, "IRQ %d\n", active_irq); if ((active_irq & NAU8821_JACK_EJECT_IRQ_MASK) == NAU8821_JACK_EJECT_DETECTED) { regmap_update_bits(regmap, NAU8821_R71_ANALOG_ADC_1, NAU8821_MICDET_MASK, NAU8821_MICDET_DIS); nau8821_eject_jack(nau8821); event_mask |= SND_JACK_HEADSET; clear_irq = NAU8821_JACK_EJECT_IRQ_MASK; } else if ((active_irq & NAU8821_JACK_INSERT_IRQ_MASK) == NAU8821_JACK_INSERT_DETECTED) { regmap_update_bits(regmap, NAU8821_R71_ANALOG_ADC_1, NAU8821_MICDET_MASK, NAU8821_MICDET_EN); if (nau8821_is_jack_inserted(regmap)) { /* detect microphone and jack type */ cancel_work_sync(&nau8821->jdet_work); schedule_work(&nau8821->jdet_work); /* Turn off insertion interruption at manual mode */ regmap_update_bits(regmap, NAU8821_R12_INTERRUPT_DIS_CTRL, NAU8821_IRQ_INSERT_DIS, NAU8821_IRQ_INSERT_DIS); regmap_update_bits(regmap, NAU8821_R0F_INTERRUPT_MASK, NAU8821_IRQ_INSERT_EN, NAU8821_IRQ_INSERT_EN); nau8821_setup_inserted_irq(nau8821); } else { dev_warn(nau8821->dev, "Inserted IRQ fired but not connected\n"); nau8821_eject_jack(nau8821); } } if (!clear_irq) clear_irq = active_irq; /* clears the rightmost interruption */ regmap_write(regmap, NAU8821_R11_INT_CLR_KEY_STATUS, clear_irq); if (event_mask) snd_soc_jack_report(nau8821->jack, event, event_mask); return IRQ_HANDLED; } static const struct regmap_config nau8821_regmap_config = { .val_bits = NAU8821_REG_DATA_LEN, .reg_bits = NAU8821_REG_ADDR_LEN, .max_register = NAU8821_REG_MAX, .readable_reg = nau8821_readable_reg, .writeable_reg = nau8821_writeable_reg, .volatile_reg = nau8821_volatile_reg, .cache_type = REGCACHE_RBTREE, .reg_defaults = nau8821_reg_defaults, .num_reg_defaults = ARRAY_SIZE(nau8821_reg_defaults), }; static int nau8821_component_probe(struct snd_soc_component *component) { struct nau8821 *nau8821 = snd_soc_component_get_drvdata(component); struct snd_soc_dapm_context *dapm = snd_soc_component_get_dapm(component); nau8821->dapm = dapm; return 0; } /** * nau8821_calc_fll_param - Calculate FLL parameters. * @fll_in: external clock provided to codec. * @fs: sampling rate. * @fll_param: Pointer to structure of FLL parameters. * * Calculate FLL parameters to configure codec. * * Returns 0 for success or negative error code. */ static int nau8821_calc_fll_param(unsigned int fll_in, unsigned int fs, struct nau8821_fll *fll_param) { u64 fvco, fvco_max; unsigned int fref, i, fvco_sel; /* Ensure the reference clock frequency (FREF) is <= 13.5MHz by * dividing freq_in by 1, 2, 4, or 8 using FLL pre-scalar. * FREF = freq_in / NAU8821_FLL_REF_DIV_MASK */ for (i = 0; i < ARRAY_SIZE(fll_pre_scalar); i++) { fref = fll_in >> fll_pre_scalar[i].param; if (fref <= NAU_FREF_MAX) break; } if (i == ARRAY_SIZE(fll_pre_scalar)) return -EINVAL; fll_param->clk_ref_div = fll_pre_scalar[i].val; /* Choose the FLL ratio based on FREF */ for (i = 0; i < ARRAY_SIZE(fll_ratio); i++) { if (fref >= fll_ratio[i].param) break; } if (i == ARRAY_SIZE(fll_ratio)) return -EINVAL; fll_param->ratio = fll_ratio[i].val; /* Calculate the frequency of DCO (FDCO) given freq_out = 256 * Fs. * FDCO must be within the 90MHz - 100MHz or the FFL cannot be * guaranteed across the full range of operation. * FDCO = freq_out * 2 * mclk_src_scaling */ fvco_max = 0; fvco_sel = ARRAY_SIZE(mclk_src_scaling); for (i = 0; i < ARRAY_SIZE(mclk_src_scaling); i++) { fvco = 256ULL * fs * 2 * mclk_src_scaling[i].param; if (fvco > NAU_FVCO_MIN && fvco < NAU_FVCO_MAX && fvco_max < fvco) { fvco_max = fvco; fvco_sel = i; } } if (ARRAY_SIZE(mclk_src_scaling) == fvco_sel) return -EINVAL; fll_param->mclk_src = mclk_src_scaling[fvco_sel].val; /* Calculate the FLL 10-bit integer input and the FLL 24-bit fractional * input based on FDCO, FREF and FLL ratio. */ fvco = div_u64(fvco_max << 24, fref * fll_param->ratio); fll_param->fll_int = (fvco >> 24) & 0x3ff; fll_param->fll_frac = fvco & 0xffffff; return 0; } static void nau8821_fll_apply(struct nau8821 *nau8821, struct nau8821_fll *fll_param) { struct regmap *regmap = nau8821->regmap; regmap_update_bits(regmap, NAU8821_R03_CLK_DIVIDER, NAU8821_CLK_SRC_MASK | NAU8821_CLK_MCLK_SRC_MASK, NAU8821_CLK_SRC_MCLK | fll_param->mclk_src); /* Make DSP operate at high speed for better performance. */ regmap_update_bits(regmap, NAU8821_R04_FLL1, NAU8821_FLL_RATIO_MASK | NAU8821_ICTRL_LATCH_MASK, fll_param->ratio | (0x6 << NAU8821_ICTRL_LATCH_SFT)); /* FLL 24-bit fractional input */ regmap_write(regmap, NAU8821_R0A_FLL7, (fll_param->fll_frac >> 16) & 0xff); regmap_write(regmap, NAU8821_R0B_FLL8, fll_param->fll_frac & 0xffff); /* FLL 10-bit integer input */ regmap_update_bits(regmap, NAU8821_R06_FLL3, NAU8821_FLL_INTEGER_MASK, fll_param->fll_int); /* FLL pre-scaler */ regmap_update_bits(regmap, NAU8821_R07_FLL4, NAU8821_HIGHBW_EN | NAU8821_FLL_REF_DIV_MASK, NAU8821_HIGHBW_EN | (fll_param->clk_ref_div << NAU8821_FLL_REF_DIV_SFT)); /* select divided VCO input */ regmap_update_bits(regmap, NAU8821_R08_FLL5, NAU8821_FLL_CLK_SW_MASK, NAU8821_FLL_CLK_SW_REF); /* Disable free-running mode */ regmap_update_bits(regmap, NAU8821_R09_FLL6, NAU8821_DCO_EN, 0); if (fll_param->fll_frac) { /* set FLL loop filter enable and cutoff frequency at 500Khz */ regmap_update_bits(regmap, NAU8821_R08_FLL5, NAU8821_FLL_PDB_DAC_EN | NAU8821_FLL_LOOP_FTR_EN | NAU8821_FLL_FTR_SW_MASK, NAU8821_FLL_PDB_DAC_EN | NAU8821_FLL_LOOP_FTR_EN | NAU8821_FLL_FTR_SW_FILTER); regmap_update_bits(regmap, NAU8821_R09_FLL6, NAU8821_SDM_EN | NAU8821_CUTOFF500, NAU8821_SDM_EN | NAU8821_CUTOFF500); } else { /* disable FLL loop filter and cutoff frequency */ regmap_update_bits(regmap, NAU8821_R08_FLL5, NAU8821_FLL_PDB_DAC_EN | NAU8821_FLL_LOOP_FTR_EN | NAU8821_FLL_FTR_SW_MASK, NAU8821_FLL_FTR_SW_ACCU); regmap_update_bits(regmap, NAU8821_R09_FLL6, NAU8821_SDM_EN | NAU8821_CUTOFF500, 0); } } /** * nau8821_set_fll - FLL configuration of nau8821 * @component: codec component * @pll_id: PLL requested * @source: clock source * @freq_in: frequency of input clock source * @freq_out: must be 256*Fs in order to achieve the best performance * * The FLL function can select BCLK or MCLK as the input clock source. * * Returns 0 if the parameters have been applied successfully * or negative error code. */ static int nau8821_set_fll(struct snd_soc_component *component, int pll_id, int source, unsigned int freq_in, unsigned int freq_out) { struct nau8821 *nau8821 = snd_soc_component_get_drvdata(component); struct nau8821_fll fll_set_param, *fll_param = &fll_set_param; int ret, fs; fs = freq_out >> 8; ret = nau8821_calc_fll_param(freq_in, fs, fll_param); if (ret) { dev_err(nau8821->dev, "Unsupported input clock %d to output clock %d\n", freq_in, freq_out); return ret; } dev_dbg(nau8821->dev, "mclk_src=%x ratio=%x fll_frac=%x fll_int=%x clk_ref_div=%x\n", fll_param->mclk_src, fll_param->ratio, fll_param->fll_frac, fll_param->fll_int, fll_param->clk_ref_div); nau8821_fll_apply(nau8821, fll_param); mdelay(2); regmap_update_bits(nau8821->regmap, NAU8821_R03_CLK_DIVIDER, NAU8821_CLK_SRC_MASK, NAU8821_CLK_SRC_VCO); return 0; } static void nau8821_configure_mclk_as_sysclk(struct regmap *regmap) { regmap_update_bits(regmap, NAU8821_R03_CLK_DIVIDER, NAU8821_CLK_SRC_MASK, NAU8821_CLK_SRC_MCLK); regmap_update_bits(regmap, NAU8821_R09_FLL6, NAU8821_DCO_EN, 0); /* Make DSP operate as default setting for power saving. */ regmap_update_bits(regmap, NAU8821_R04_FLL1, NAU8821_ICTRL_LATCH_MASK, 0); } static int nau8821_configure_sysclk(struct nau8821 *nau8821, int clk_id, unsigned int freq) { struct regmap *regmap = nau8821->regmap; switch (clk_id) { case NAU8821_CLK_DIS: /* Clock provided externally and disable internal VCO clock */ nau8821_configure_mclk_as_sysclk(regmap); break; case NAU8821_CLK_MCLK: nau8821_configure_mclk_as_sysclk(regmap); /* MCLK not changed by clock tree */ regmap_update_bits(regmap, NAU8821_R03_CLK_DIVIDER, NAU8821_CLK_MCLK_SRC_MASK, 0); break; case NAU8821_CLK_INTERNAL: if (nau8821_is_jack_inserted(regmap)) { regmap_update_bits(regmap, NAU8821_R09_FLL6, NAU8821_DCO_EN, NAU8821_DCO_EN); regmap_update_bits(regmap, NAU8821_R03_CLK_DIVIDER, NAU8821_CLK_SRC_MASK, NAU8821_CLK_SRC_VCO); /* Decrease the VCO frequency and make DSP operate * as default setting for power saving. */ regmap_update_bits(regmap, NAU8821_R03_CLK_DIVIDER, NAU8821_CLK_MCLK_SRC_MASK, 0xf); regmap_update_bits(regmap, NAU8821_R04_FLL1, NAU8821_ICTRL_LATCH_MASK | NAU8821_FLL_RATIO_MASK, 0x10); regmap_update_bits(regmap, NAU8821_R09_FLL6, NAU8821_SDM_EN, NAU8821_SDM_EN); } break; case NAU8821_CLK_FLL_MCLK: /* Higher FLL reference input frequency can only set lower * gain error, such as 0000 for input reference from MCLK * 12.288Mhz. */ regmap_update_bits(regmap, NAU8821_R06_FLL3, NAU8821_FLL_CLK_SRC_MASK | NAU8821_GAIN_ERR_MASK, NAU8821_FLL_CLK_SRC_MCLK | 0); break; case NAU8821_CLK_FLL_BLK: /* If FLL reference input is from low frequency source, * higher error gain can apply such as 0xf which has * the most sensitive gain error correction threshold, * Therefore, FLL has the most accurate DCO to * target frequency. */ regmap_update_bits(regmap, NAU8821_R06_FLL3, NAU8821_FLL_CLK_SRC_MASK | NAU8821_GAIN_ERR_MASK, NAU8821_FLL_CLK_SRC_BLK | (0xf << NAU8821_GAIN_ERR_SFT)); break; case NAU8821_CLK_FLL_FS: /* If FLL reference input is from low frequency source, * higher error gain can apply such as 0xf which has * the most sensitive gain error correction threshold, * Therefore, FLL has the most accurate DCO to * target frequency. */ regmap_update_bits(regmap, NAU8821_R06_FLL3, NAU8821_FLL_CLK_SRC_MASK | NAU8821_GAIN_ERR_MASK, NAU8821_FLL_CLK_SRC_FS | (0xf << NAU8821_GAIN_ERR_SFT)); break; default: dev_err(nau8821->dev, "Invalid clock id (%d)\n", clk_id); return -EINVAL; } nau8821->clk_id = clk_id; dev_dbg(nau8821->dev, "Sysclk is %dHz and clock id is %d\n", freq, nau8821->clk_id); return 0; } static int nau8821_set_sysclk(struct snd_soc_component *component, int clk_id, int source, unsigned int freq, int dir) { struct nau8821 *nau8821 = snd_soc_component_get_drvdata(component); return nau8821_configure_sysclk(nau8821, clk_id, freq); } static int nau8821_resume_setup(struct nau8821 *nau8821) { struct regmap *regmap = nau8821->regmap; /* Close clock when jack type detection at manual mode */ nau8821_configure_sysclk(nau8821, NAU8821_CLK_DIS, 0); if (nau8821->irq) { /* Clear all interruption status */ nau8821_int_status_clear_all(regmap); /* Enable both insertion and ejection interruptions, and then * bypass de-bounce circuit. */ regmap_update_bits(regmap, NAU8821_R0F_INTERRUPT_MASK, NAU8821_IRQ_EJECT_EN | NAU8821_IRQ_INSERT_EN, 0); regmap_update_bits(regmap, NAU8821_R0D_JACK_DET_CTRL, NAU8821_JACK_DET_DB_BYPASS, NAU8821_JACK_DET_DB_BYPASS); regmap_update_bits(regmap, NAU8821_R12_INTERRUPT_DIS_CTRL, NAU8821_IRQ_INSERT_DIS | NAU8821_IRQ_EJECT_DIS, 0); } return 0; } static int nau8821_set_bias_level(struct snd_soc_component *component, enum snd_soc_bias_level level) { struct nau8821 *nau8821 = snd_soc_component_get_drvdata(component); struct regmap *regmap = nau8821->regmap; switch (level) { case SND_SOC_BIAS_ON: break; case SND_SOC_BIAS_PREPARE: break; case SND_SOC_BIAS_STANDBY: /* Setup codec configuration after resume */ if (snd_soc_component_get_bias_level(component) == SND_SOC_BIAS_OFF) nau8821_resume_setup(nau8821); break; case SND_SOC_BIAS_OFF: /* HPL/HPR short to ground */ regmap_update_bits(regmap, NAU8821_R0D_JACK_DET_CTRL, NAU8821_SPKR_DWN1R | NAU8821_SPKR_DWN1L, 0); if (nau8821->irq) { /* Reset the configuration of jack type for detection. * Detach 2kOhm Resistors from MICBIAS to MICGND1/2. */ regmap_update_bits(regmap, NAU8821_R74_MIC_BIAS, NAU8821_MICBIAS_JKR2, 0); /* Turn off all interruptions before system shutdown. * Keep theinterruption quiet before resume * setup completes. */ regmap_write(regmap, NAU8821_R12_INTERRUPT_DIS_CTRL, 0xffff); regmap_update_bits(regmap, NAU8821_R0F_INTERRUPT_MASK, NAU8821_IRQ_EJECT_EN | NAU8821_IRQ_INSERT_EN, NAU8821_IRQ_EJECT_EN | NAU8821_IRQ_INSERT_EN); } break; default: break; } return 0; } static int __maybe_unused nau8821_suspend(struct snd_soc_component *component) { struct nau8821 *nau8821 = snd_soc_component_get_drvdata(component); if (nau8821->irq) disable_irq(nau8821->irq); snd_soc_component_force_bias_level(component, SND_SOC_BIAS_OFF); /* Power down codec power; don't support button wakeup */ snd_soc_component_disable_pin(component, "MICBIAS"); snd_soc_dapm_sync(nau8821->dapm); regcache_cache_only(nau8821->regmap, true); regcache_mark_dirty(nau8821->regmap); return 0; } static int __maybe_unused nau8821_resume(struct snd_soc_component *component) { struct nau8821 *nau8821 = snd_soc_component_get_drvdata(component); regcache_cache_only(nau8821->regmap, false); regcache_sync(nau8821->regmap); if (nau8821->irq) enable_irq(nau8821->irq); return 0; } static const struct snd_soc_component_driver nau8821_component_driver = { .probe = nau8821_component_probe, .set_sysclk = nau8821_set_sysclk, .set_pll = nau8821_set_fll, .set_bias_level = nau8821_set_bias_level, .suspend = nau8821_suspend, .resume = nau8821_resume, .controls = nau8821_controls, .num_controls = ARRAY_SIZE(nau8821_controls), .dapm_widgets = nau8821_dapm_widgets, .num_dapm_widgets = ARRAY_SIZE(nau8821_dapm_widgets), .dapm_routes = nau8821_dapm_routes, .num_dapm_routes = ARRAY_SIZE(nau8821_dapm_routes), .suspend_bias_off = 1, .non_legacy_dai_naming = 1, .idle_bias_on = 1, .use_pmdown_time = 1, .endianness = 1, }; /** * nau8821_enable_jack_detect - Specify a jack for event reporting * * @component: component to register the jack with * @jack: jack to use to report headset and button events on * * After this function has been called the headset insert/remove and button * events will be routed to the given jack. Jack can be null to stop * reporting. */ int nau8821_enable_jack_detect(struct snd_soc_component *component, struct snd_soc_jack *jack) { struct nau8821 *nau8821 = snd_soc_component_get_drvdata(component); int ret; nau8821->jack = jack; /* Initiate jack detection work queue */ INIT_WORK(&nau8821->jdet_work, nau8821_jdet_work); ret = devm_request_threaded_irq(nau8821->dev, nau8821->irq, NULL, nau8821_interrupt, IRQF_TRIGGER_LOW | IRQF_ONESHOT, "nau8821", nau8821); if (ret) { dev_err(nau8821->dev, "Cannot request irq %d (%d)\n", nau8821->irq, ret); return ret; } return ret; } EXPORT_SYMBOL_GPL(nau8821_enable_jack_detect); static void nau8821_reset_chip(struct regmap *regmap) { regmap_write(regmap, NAU8821_R00_RESET, 0xffff); regmap_write(regmap, NAU8821_R00_RESET, 0xffff); } static void nau8821_print_device_properties(struct nau8821 *nau8821) { struct device *dev = nau8821->dev; dev_dbg(dev, "jkdet-enable: %d\n", nau8821->jkdet_enable); dev_dbg(dev, "jkdet-pull-enable: %d\n", nau8821->jkdet_pull_enable); dev_dbg(dev, "jkdet-pull-up: %d\n", nau8821->jkdet_pull_up); dev_dbg(dev, "jkdet-polarity: %d\n", nau8821->jkdet_polarity); dev_dbg(dev, "micbias-voltage: %d\n", nau8821->micbias_voltage); dev_dbg(dev, "vref-impedance: %d\n", nau8821->vref_impedance); dev_dbg(dev, "jack-insert-debounce: %d\n", nau8821->jack_insert_debounce); dev_dbg(dev, "jack-eject-debounce: %d\n", nau8821->jack_eject_debounce); dev_dbg(dev, "dmic-clk-threshold: %d\n", nau8821->dmic_clk_threshold); } static int nau8821_read_device_properties(struct device *dev, struct nau8821 *nau8821) { int ret; nau8821->jkdet_enable = device_property_read_bool(dev, "nuvoton,jkdet-enable"); nau8821->jkdet_pull_enable = device_property_read_bool(dev, "nuvoton,jkdet-pull-enable"); nau8821->jkdet_pull_up = device_property_read_bool(dev, "nuvoton,jkdet-pull-up"); ret = device_property_read_u32(dev, "nuvoton,jkdet-polarity", &nau8821->jkdet_polarity); if (ret) nau8821->jkdet_polarity = 1; ret = device_property_read_u32(dev, "nuvoton,micbias-voltage", &nau8821->micbias_voltage); if (ret) nau8821->micbias_voltage = 6; ret = device_property_read_u32(dev, "nuvoton,vref-impedance", &nau8821->vref_impedance); if (ret) nau8821->vref_impedance = 2; ret = device_property_read_u32(dev, "nuvoton,jack-insert-debounce", &nau8821->jack_insert_debounce); if (ret) nau8821->jack_insert_debounce = 7; ret = device_property_read_u32(dev, "nuvoton,jack-eject-debounce", &nau8821->jack_eject_debounce); if (ret) nau8821->jack_eject_debounce = 0; ret = device_property_read_u32(dev, "nuvoton,dmic-clk-threshold", &nau8821->dmic_clk_threshold); if (ret) nau8821->dmic_clk_threshold = 3072000; return 0; } static void nau8821_init_regs(struct nau8821 *nau8821) { struct regmap *regmap = nau8821->regmap; /* Enable Bias/Vmid */ regmap_update_bits(regmap, NAU8821_R66_BIAS_ADJ, NAU8821_BIAS_VMID, NAU8821_BIAS_VMID); regmap_update_bits(regmap, NAU8821_R76_BOOST, NAU8821_GLOBAL_BIAS_EN, NAU8821_GLOBAL_BIAS_EN); /* VMID Tieoff setting and enable TESTDAC. * This sets the analog DAC inputs to a '0' input signal to avoid * any glitches due to power up transients in both the analog and * digital DAC circuit. */ regmap_update_bits(regmap, NAU8821_R66_BIAS_ADJ, NAU8821_BIAS_VMID_SEL_MASK | NAU8821_BIAS_TESTDAC_EN, (nau8821->vref_impedance << NAU8821_BIAS_VMID_SEL_SFT) | NAU8821_BIAS_TESTDAC_EN); /* Disable short Frame Sync detection logic */ regmap_update_bits(regmap, NAU8821_R1E_LEFT_TIME_SLOT, NAU8821_DIS_FS_SHORT_DET, NAU8821_DIS_FS_SHORT_DET); /* Disable Boost Driver, Automatic Short circuit protection enable */ regmap_update_bits(regmap, NAU8821_R76_BOOST, NAU8821_PRECHARGE_DIS | NAU8821_HP_BOOST_DIS | NAU8821_HP_BOOST_G_DIS | NAU8821_SHORT_SHUTDOWN_EN, NAU8821_PRECHARGE_DIS | NAU8821_HP_BOOST_DIS | NAU8821_HP_BOOST_G_DIS | NAU8821_SHORT_SHUTDOWN_EN); /* Class G timer 64ms */ regmap_update_bits(regmap, NAU8821_R4B_CLASSG_CTRL, NAU8821_CLASSG_TIMER_MASK, 0x20 << NAU8821_CLASSG_TIMER_SFT); /* Class AB bias current to 2x, DAC Capacitor enable MSB/LSB */ regmap_update_bits(regmap, NAU8821_R6A_ANALOG_CONTROL_2, NAU8821_HP_NON_CLASSG_CURRENT_2xADJ | NAU8821_DAC_CAPACITOR_MSB | NAU8821_DAC_CAPACITOR_LSB, NAU8821_HP_NON_CLASSG_CURRENT_2xADJ | NAU8821_DAC_CAPACITOR_MSB | NAU8821_DAC_CAPACITOR_LSB); /* Disable DACR/L power */ regmap_update_bits(regmap, NAU8821_R80_CHARGE_PUMP, NAU8821_POWER_DOWN_DACR | NAU8821_POWER_DOWN_DACL, 0); /* DAC clock delay 2ns, VREF */ regmap_update_bits(regmap, NAU8821_R73_RDAC, NAU8821_DAC_CLK_DELAY_MASK | NAU8821_DAC_VREF_MASK, (0x2 << NAU8821_DAC_CLK_DELAY_SFT) | (0x3 << NAU8821_DAC_VREF_SFT)); regmap_update_bits(regmap, NAU8821_R74_MIC_BIAS, NAU8821_MICBIAS_VOLTAGE_MASK, nau8821->micbias_voltage); /* Default oversampling/decimations settings are unusable * (audible hiss). Set it to something better. */ regmap_update_bits(regmap, NAU8821_R2B_ADC_RATE, NAU8821_ADC_SYNC_DOWN_MASK, NAU8821_ADC_SYNC_DOWN_64); regmap_update_bits(regmap, NAU8821_R2C_DAC_CTRL1, NAU8821_DAC_OVERSAMPLE_MASK, NAU8821_DAC_OVERSAMPLE_64); } static int nau8821_setup_irq(struct nau8821 *nau8821) { struct regmap *regmap = nau8821->regmap; /* Jack detection */ regmap_update_bits(regmap, NAU8821_R1A_GPIO12_CTRL, NAU8821_JKDET_OUTPUT_EN, nau8821->jkdet_enable ? 0 : NAU8821_JKDET_OUTPUT_EN); regmap_update_bits(regmap, NAU8821_R1A_GPIO12_CTRL, NAU8821_JKDET_PULL_EN, nau8821->jkdet_pull_enable ? 0 : NAU8821_JKDET_PULL_EN); regmap_update_bits(regmap, NAU8821_R1A_GPIO12_CTRL, NAU8821_JKDET_PULL_UP, nau8821->jkdet_pull_up ? NAU8821_JKDET_PULL_UP : 0); regmap_update_bits(regmap, NAU8821_R0D_JACK_DET_CTRL, NAU8821_JACK_POLARITY, /* jkdet_polarity - 1 is for active-low */ nau8821->jkdet_polarity ? 0 : NAU8821_JACK_POLARITY); regmap_update_bits(regmap, NAU8821_R0D_JACK_DET_CTRL, NAU8821_JACK_INSERT_DEBOUNCE_MASK, nau8821->jack_insert_debounce << NAU8821_JACK_INSERT_DEBOUNCE_SFT); regmap_update_bits(regmap, NAU8821_R0D_JACK_DET_CTRL, NAU8821_JACK_EJECT_DEBOUNCE_MASK, nau8821->jack_eject_debounce << NAU8821_JACK_EJECT_DEBOUNCE_SFT); /* Pull up IRQ pin */ regmap_update_bits(regmap, NAU8821_R0F_INTERRUPT_MASK, NAU8821_IRQ_PIN_PULL_UP | NAU8821_IRQ_PIN_PULL_EN | NAU8821_IRQ_OUTPUT_EN, NAU8821_IRQ_PIN_PULL_UP | NAU8821_IRQ_PIN_PULL_EN | NAU8821_IRQ_OUTPUT_EN); /* Disable interruption before codec initiation done */ /* Mask unneeded IRQs: 1 - disable, 0 - enable */ regmap_update_bits(regmap, NAU8821_R0F_INTERRUPT_MASK, 0x3f5, 0x3f5); return 0; } static int nau8821_i2c_probe(struct i2c_client *i2c, const struct i2c_device_id *id) { struct device *dev = &i2c->dev; struct nau8821 *nau8821 = dev_get_platdata(&i2c->dev); int ret, value; if (!nau8821) { nau8821 = devm_kzalloc(dev, sizeof(*nau8821), GFP_KERNEL); if (!nau8821) return -ENOMEM; nau8821_read_device_properties(dev, nau8821); } i2c_set_clientdata(i2c, nau8821); nau8821->regmap = devm_regmap_init_i2c(i2c, &nau8821_regmap_config); if (IS_ERR(nau8821->regmap)) return PTR_ERR(nau8821->regmap); nau8821->dev = dev; nau8821->irq = i2c->irq; nau8821_print_device_properties(nau8821); nau8821_reset_chip(nau8821->regmap); ret = regmap_read(nau8821->regmap, NAU8821_R58_I2C_DEVICE_ID, &value); if (ret) { dev_err(dev, "Failed to read device id (%d)\n", ret); return ret; } nau8821_init_regs(nau8821); if (i2c->irq) nau8821_setup_irq(nau8821); ret = devm_snd_soc_register_component(&i2c->dev, &nau8821_component_driver, &nau8821_dai, 1); return ret; } static int nau8821_i2c_remove(struct i2c_client *i2c_client) { struct nau8821 *nau8821 = i2c_get_clientdata(i2c_client); devm_free_irq(nau8821->dev, nau8821->irq, nau8821); return 0; } static const struct i2c_device_id nau8821_i2c_ids[] = { { "nau8821", 0 }, { } }; MODULE_DEVICE_TABLE(i2c, nau8821_i2c_ids); #ifdef CONFIG_OF static const struct of_device_id nau8821_of_ids[] = { { .compatible = "nuvoton,nau8821", }, {} }; MODULE_DEVICE_TABLE(of, nau8821_of_ids); #endif #ifdef CONFIG_ACPI static const struct acpi_device_id nau8821_acpi_match[] = { { "NVTN2020", 0 }, {}, }; MODULE_DEVICE_TABLE(acpi, nau8821_acpi_match); #endif static struct i2c_driver nau8821_driver = { .driver = { .name = "nau8821", .of_match_table = of_match_ptr(nau8821_of_ids), .acpi_match_table = ACPI_PTR(nau8821_acpi_match), }, .probe = nau8821_i2c_probe, .remove = nau8821_i2c_remove, .id_table = nau8821_i2c_ids, }; module_i2c_driver(nau8821_driver); MODULE_DESCRIPTION("ASoC nau8821 driver"); MODULE_AUTHOR("John Hsu "); MODULE_AUTHOR("Seven Lee "); MODULE_LICENSE("GPL");