// SPDX-License-Identifier: GPL-2.0 /* * Copyright (C) 2007 Oracle. All rights reserved. */ #include #include "ctree.h" #include "disk-io.h" #include "transaction.h" #include "locking.h" #include "accessors.h" #include "messages.h" #include "delalloc-space.h" #include "subpage.h" #include "defrag.h" #include "file-item.h" #include "super.h" static struct kmem_cache *btrfs_inode_defrag_cachep; /* * When auto defrag is enabled we queue up these defrag structs to remember * which inodes need defragging passes. */ struct inode_defrag { struct rb_node rb_node; /* Inode number */ u64 ino; /* * Transid where the defrag was added, we search for extents newer than * this. */ u64 transid; /* Root objectid */ u64 root; /* * The extent size threshold for autodefrag. * * This value is different for compressed/non-compressed extents, thus * needs to be passed from higher layer. * (aka, inode_should_defrag()) */ u32 extent_thresh; }; static int __compare_inode_defrag(struct inode_defrag *defrag1, struct inode_defrag *defrag2) { if (defrag1->root > defrag2->root) return 1; else if (defrag1->root < defrag2->root) return -1; else if (defrag1->ino > defrag2->ino) return 1; else if (defrag1->ino < defrag2->ino) return -1; else return 0; } /* * Pop a record for an inode into the defrag tree. The lock must be held * already. * * If you're inserting a record for an older transid than an existing record, * the transid already in the tree is lowered. * * If an existing record is found the defrag item you pass in is freed. */ static int __btrfs_add_inode_defrag(struct btrfs_inode *inode, struct inode_defrag *defrag) { struct btrfs_fs_info *fs_info = inode->root->fs_info; struct inode_defrag *entry; struct rb_node **p; struct rb_node *parent = NULL; int ret; p = &fs_info->defrag_inodes.rb_node; while (*p) { parent = *p; entry = rb_entry(parent, struct inode_defrag, rb_node); ret = __compare_inode_defrag(defrag, entry); if (ret < 0) p = &parent->rb_left; else if (ret > 0) p = &parent->rb_right; else { /* * If we're reinserting an entry for an old defrag run, * make sure to lower the transid of our existing * record. */ if (defrag->transid < entry->transid) entry->transid = defrag->transid; entry->extent_thresh = min(defrag->extent_thresh, entry->extent_thresh); return -EEXIST; } } set_bit(BTRFS_INODE_IN_DEFRAG, &inode->runtime_flags); rb_link_node(&defrag->rb_node, parent, p); rb_insert_color(&defrag->rb_node, &fs_info->defrag_inodes); return 0; } static inline int __need_auto_defrag(struct btrfs_fs_info *fs_info) { if (!btrfs_test_opt(fs_info, AUTO_DEFRAG)) return 0; if (btrfs_fs_closing(fs_info)) return 0; return 1; } /* * Insert a defrag record for this inode if auto defrag is enabled. */ int btrfs_add_inode_defrag(struct btrfs_trans_handle *trans, struct btrfs_inode *inode, u32 extent_thresh) { struct btrfs_root *root = inode->root; struct btrfs_fs_info *fs_info = root->fs_info; struct inode_defrag *defrag; u64 transid; int ret; if (!__need_auto_defrag(fs_info)) return 0; if (test_bit(BTRFS_INODE_IN_DEFRAG, &inode->runtime_flags)) return 0; if (trans) transid = trans->transid; else transid = inode->root->last_trans; defrag = kmem_cache_zalloc(btrfs_inode_defrag_cachep, GFP_NOFS); if (!defrag) return -ENOMEM; defrag->ino = btrfs_ino(inode); defrag->transid = transid; defrag->root = root->root_key.objectid; defrag->extent_thresh = extent_thresh; spin_lock(&fs_info->defrag_inodes_lock); if (!test_bit(BTRFS_INODE_IN_DEFRAG, &inode->runtime_flags)) { /* * If we set IN_DEFRAG flag and evict the inode from memory, * and then re-read this inode, this new inode doesn't have * IN_DEFRAG flag. At the case, we may find the existed defrag. */ ret = __btrfs_add_inode_defrag(inode, defrag); if (ret) kmem_cache_free(btrfs_inode_defrag_cachep, defrag); } else { kmem_cache_free(btrfs_inode_defrag_cachep, defrag); } spin_unlock(&fs_info->defrag_inodes_lock); return 0; } /* * Pick the defragable inode that we want, if it doesn't exist, we will get the * next one. */ static struct inode_defrag *btrfs_pick_defrag_inode( struct btrfs_fs_info *fs_info, u64 root, u64 ino) { struct inode_defrag *entry = NULL; struct inode_defrag tmp; struct rb_node *p; struct rb_node *parent = NULL; int ret; tmp.ino = ino; tmp.root = root; spin_lock(&fs_info->defrag_inodes_lock); p = fs_info->defrag_inodes.rb_node; while (p) { parent = p; entry = rb_entry(parent, struct inode_defrag, rb_node); ret = __compare_inode_defrag(&tmp, entry); if (ret < 0) p = parent->rb_left; else if (ret > 0) p = parent->rb_right; else goto out; } if (parent && __compare_inode_defrag(&tmp, entry) > 0) { parent = rb_next(parent); if (parent) entry = rb_entry(parent, struct inode_defrag, rb_node); else entry = NULL; } out: if (entry) rb_erase(parent, &fs_info->defrag_inodes); spin_unlock(&fs_info->defrag_inodes_lock); return entry; } void btrfs_cleanup_defrag_inodes(struct btrfs_fs_info *fs_info) { struct inode_defrag *defrag; struct rb_node *node; spin_lock(&fs_info->defrag_inodes_lock); node = rb_first(&fs_info->defrag_inodes); while (node) { rb_erase(node, &fs_info->defrag_inodes); defrag = rb_entry(node, struct inode_defrag, rb_node); kmem_cache_free(btrfs_inode_defrag_cachep, defrag); cond_resched_lock(&fs_info->defrag_inodes_lock); node = rb_first(&fs_info->defrag_inodes); } spin_unlock(&fs_info->defrag_inodes_lock); } #define BTRFS_DEFRAG_BATCH 1024 static int __btrfs_run_defrag_inode(struct btrfs_fs_info *fs_info, struct inode_defrag *defrag) { struct btrfs_root *inode_root; struct inode *inode; struct btrfs_ioctl_defrag_range_args range; int ret = 0; u64 cur = 0; again: if (test_bit(BTRFS_FS_STATE_REMOUNTING, &fs_info->fs_state)) goto cleanup; if (!__need_auto_defrag(fs_info)) goto cleanup; /* Get the inode */ inode_root = btrfs_get_fs_root(fs_info, defrag->root, true); if (IS_ERR(inode_root)) { ret = PTR_ERR(inode_root); goto cleanup; } inode = btrfs_iget(fs_info->sb, defrag->ino, inode_root); btrfs_put_root(inode_root); if (IS_ERR(inode)) { ret = PTR_ERR(inode); goto cleanup; } if (cur >= i_size_read(inode)) { iput(inode); goto cleanup; } /* Do a chunk of defrag */ clear_bit(BTRFS_INODE_IN_DEFRAG, &BTRFS_I(inode)->runtime_flags); memset(&range, 0, sizeof(range)); range.len = (u64)-1; range.start = cur; range.extent_thresh = defrag->extent_thresh; sb_start_write(fs_info->sb); ret = btrfs_defrag_file(inode, NULL, &range, defrag->transid, BTRFS_DEFRAG_BATCH); sb_end_write(fs_info->sb); iput(inode); if (ret < 0) goto cleanup; cur = max(cur + fs_info->sectorsize, range.start); goto again; cleanup: kmem_cache_free(btrfs_inode_defrag_cachep, defrag); return ret; } /* * Run through the list of inodes in the FS that need defragging. */ int btrfs_run_defrag_inodes(struct btrfs_fs_info *fs_info) { struct inode_defrag *defrag; u64 first_ino = 0; u64 root_objectid = 0; atomic_inc(&fs_info->defrag_running); while (1) { /* Pause the auto defragger. */ if (test_bit(BTRFS_FS_STATE_REMOUNTING, &fs_info->fs_state)) break; if (!__need_auto_defrag(fs_info)) break; /* find an inode to defrag */ defrag = btrfs_pick_defrag_inode(fs_info, root_objectid, first_ino); if (!defrag) { if (root_objectid || first_ino) { root_objectid = 0; first_ino = 0; continue; } else { break; } } first_ino = defrag->ino + 1; root_objectid = defrag->root; __btrfs_run_defrag_inode(fs_info, defrag); } atomic_dec(&fs_info->defrag_running); /* * During unmount, we use the transaction_wait queue to wait for the * defragger to stop. */ wake_up(&fs_info->transaction_wait); return 0; } /* * Check if two blocks addresses are close, used by defrag. */ static bool close_blocks(u64 blocknr, u64 other, u32 blocksize) { if (blocknr < other && other - (blocknr + blocksize) < SZ_32K) return true; if (blocknr > other && blocknr - (other + blocksize) < SZ_32K) return true; return false; } /* * Go through all the leaves pointed to by a node and reallocate them so that * disk order is close to key order. */ static int btrfs_realloc_node(struct btrfs_trans_handle *trans, struct btrfs_root *root, struct extent_buffer *parent, int start_slot, u64 *last_ret, struct btrfs_key *progress) { struct btrfs_fs_info *fs_info = root->fs_info; const u32 blocksize = fs_info->nodesize; const int end_slot = btrfs_header_nritems(parent) - 1; u64 search_start = *last_ret; u64 last_block = 0; int ret = 0; bool progress_passed = false; /* * COWing must happen through a running transaction, which always * matches the current fs generation (it's a transaction with a state * less than TRANS_STATE_UNBLOCKED). If it doesn't, then turn the fs * into error state to prevent the commit of any transaction. */ if (unlikely(trans->transaction != fs_info->running_transaction || trans->transid != fs_info->generation)) { btrfs_abort_transaction(trans, -EUCLEAN); btrfs_crit(fs_info, "unexpected transaction when attempting to reallocate parent %llu for root %llu, transaction %llu running transaction %llu fs generation %llu", parent->start, btrfs_root_id(root), trans->transid, fs_info->running_transaction->transid, fs_info->generation); return -EUCLEAN; } if (btrfs_header_nritems(parent) <= 1) return 0; for (int i = start_slot; i <= end_slot; i++) { struct extent_buffer *cur; struct btrfs_disk_key disk_key; u64 blocknr; u64 other; bool close = true; btrfs_node_key(parent, &disk_key, i); if (!progress_passed && btrfs_comp_keys(&disk_key, progress) < 0) continue; progress_passed = true; blocknr = btrfs_node_blockptr(parent, i); if (last_block == 0) last_block = blocknr; if (i > 0) { other = btrfs_node_blockptr(parent, i - 1); close = close_blocks(blocknr, other, blocksize); } if (!close && i < end_slot) { other = btrfs_node_blockptr(parent, i + 1); close = close_blocks(blocknr, other, blocksize); } if (close) { last_block = blocknr; continue; } cur = btrfs_read_node_slot(parent, i); if (IS_ERR(cur)) return PTR_ERR(cur); if (search_start == 0) search_start = last_block; btrfs_tree_lock(cur); ret = btrfs_force_cow_block(trans, root, cur, parent, i, &cur, search_start, min(16 * blocksize, (end_slot - i) * blocksize), BTRFS_NESTING_COW); if (ret) { btrfs_tree_unlock(cur); free_extent_buffer(cur); break; } search_start = cur->start; last_block = cur->start; *last_ret = search_start; btrfs_tree_unlock(cur); free_extent_buffer(cur); } return ret; } /* * Defrag all the leaves in a given btree. * Read all the leaves and try to get key order to * better reflect disk order */ static int btrfs_defrag_leaves(struct btrfs_trans_handle *trans, struct btrfs_root *root) { struct btrfs_path *path = NULL; struct btrfs_key key; int ret = 0; int wret; int level; int next_key_ret = 0; u64 last_ret = 0; if (!test_bit(BTRFS_ROOT_SHAREABLE, &root->state)) goto out; path = btrfs_alloc_path(); if (!path) { ret = -ENOMEM; goto out; } level = btrfs_header_level(root->node); if (level == 0) goto out; if (root->defrag_progress.objectid == 0) { struct extent_buffer *root_node; u32 nritems; root_node = btrfs_lock_root_node(root); nritems = btrfs_header_nritems(root_node); root->defrag_max.objectid = 0; /* from above we know this is not a leaf */ btrfs_node_key_to_cpu(root_node, &root->defrag_max, nritems - 1); btrfs_tree_unlock(root_node); free_extent_buffer(root_node); memset(&key, 0, sizeof(key)); } else { memcpy(&key, &root->defrag_progress, sizeof(key)); } path->keep_locks = 1; ret = btrfs_search_forward(root, &key, path, BTRFS_OLDEST_GENERATION); if (ret < 0) goto out; if (ret > 0) { ret = 0; goto out; } btrfs_release_path(path); /* * We don't need a lock on a leaf. btrfs_realloc_node() will lock all * leafs from path->nodes[1], so set lowest_level to 1 to avoid later * a deadlock (attempting to write lock an already write locked leaf). */ path->lowest_level = 1; wret = btrfs_search_slot(trans, root, &key, path, 0, 1); if (wret < 0) { ret = wret; goto out; } if (!path->nodes[1]) { ret = 0; goto out; } /* * The node at level 1 must always be locked when our path has * keep_locks set and lowest_level is 1, regardless of the value of * path->slots[1]. */ BUG_ON(path->locks[1] == 0); ret = btrfs_realloc_node(trans, root, path->nodes[1], 0, &last_ret, &root->defrag_progress); if (ret) { WARN_ON(ret == -EAGAIN); goto out; } /* * Now that we reallocated the node we can find the next key. Note that * btrfs_find_next_key() can release our path and do another search * without COWing, this is because even with path->keep_locks = 1, * btrfs_search_slot() / ctree.c:unlock_up() does not keeps a lock on a * node when path->slots[node_level - 1] does not point to the last * item or a slot beyond the last item (ctree.c:unlock_up()). Therefore * we search for the next key after reallocating our node. */ path->slots[1] = btrfs_header_nritems(path->nodes[1]); next_key_ret = btrfs_find_next_key(root, path, &key, 1, BTRFS_OLDEST_GENERATION); if (next_key_ret == 0) { memcpy(&root->defrag_progress, &key, sizeof(key)); ret = -EAGAIN; } out: btrfs_free_path(path); if (ret == -EAGAIN) { if (root->defrag_max.objectid > root->defrag_progress.objectid) goto done; if (root->defrag_max.type > root->defrag_progress.type) goto done; if (root->defrag_max.offset > root->defrag_progress.offset) goto done; ret = 0; } done: if (ret != -EAGAIN) memset(&root->defrag_progress, 0, sizeof(root->defrag_progress)); return ret; } /* * Defrag a given btree. Every leaf in the btree is read and defragmented. */ int btrfs_defrag_root(struct btrfs_root *root) { struct btrfs_fs_info *fs_info = root->fs_info; int ret; if (test_and_set_bit(BTRFS_ROOT_DEFRAG_RUNNING, &root->state)) return 0; while (1) { struct btrfs_trans_handle *trans; trans = btrfs_start_transaction(root, 0); if (IS_ERR(trans)) { ret = PTR_ERR(trans); break; } ret = btrfs_defrag_leaves(trans, root); btrfs_end_transaction(trans); btrfs_btree_balance_dirty(fs_info); cond_resched(); if (btrfs_fs_closing(fs_info) || ret != -EAGAIN) break; if (btrfs_defrag_cancelled(fs_info)) { btrfs_debug(fs_info, "defrag_root cancelled"); ret = -EAGAIN; break; } } clear_bit(BTRFS_ROOT_DEFRAG_RUNNING, &root->state); return ret; } /* * Defrag specific helper to get an extent map. * * Differences between this and btrfs_get_extent() are: * * - No extent_map will be added to inode->extent_tree * To reduce memory usage in the long run. * * - Extra optimization to skip file extents older than @newer_than * By using btrfs_search_forward() we can skip entire file ranges that * have extents created in past transactions, because btrfs_search_forward() * will not visit leaves and nodes with a generation smaller than given * minimal generation threshold (@newer_than). * * Return valid em if we find a file extent matching the requirement. * Return NULL if we can not find a file extent matching the requirement. * * Return ERR_PTR() for error. */ static struct extent_map *defrag_get_extent(struct btrfs_inode *inode, u64 start, u64 newer_than) { struct btrfs_root *root = inode->root; struct btrfs_file_extent_item *fi; struct btrfs_path path = { 0 }; struct extent_map *em; struct btrfs_key key; u64 ino = btrfs_ino(inode); int ret; em = alloc_extent_map(); if (!em) { ret = -ENOMEM; goto err; } key.objectid = ino; key.type = BTRFS_EXTENT_DATA_KEY; key.offset = start; if (newer_than) { ret = btrfs_search_forward(root, &key, &path, newer_than); if (ret < 0) goto err; /* Can't find anything newer */ if (ret > 0) goto not_found; } else { ret = btrfs_search_slot(NULL, root, &key, &path, 0, 0); if (ret < 0) goto err; } if (path.slots[0] >= btrfs_header_nritems(path.nodes[0])) { /* * If btrfs_search_slot() makes path to point beyond nritems, * we should not have an empty leaf, as this inode must at * least have its INODE_ITEM. */ ASSERT(btrfs_header_nritems(path.nodes[0])); path.slots[0] = btrfs_header_nritems(path.nodes[0]) - 1; } btrfs_item_key_to_cpu(path.nodes[0], &key, path.slots[0]); /* Perfect match, no need to go one slot back */ if (key.objectid == ino && key.type == BTRFS_EXTENT_DATA_KEY && key.offset == start) goto iterate; /* We didn't find a perfect match, needs to go one slot back */ if (path.slots[0] > 0) { btrfs_item_key_to_cpu(path.nodes[0], &key, path.slots[0]); if (key.objectid == ino && key.type == BTRFS_EXTENT_DATA_KEY) path.slots[0]--; } iterate: /* Iterate through the path to find a file extent covering @start */ while (true) { u64 extent_end; if (path.slots[0] >= btrfs_header_nritems(path.nodes[0])) goto next; btrfs_item_key_to_cpu(path.nodes[0], &key, path.slots[0]); /* * We may go one slot back to INODE_REF/XATTR item, then * need to go forward until we reach an EXTENT_DATA. * But we should still has the correct ino as key.objectid. */ if (WARN_ON(key.objectid < ino) || key.type < BTRFS_EXTENT_DATA_KEY) goto next; /* It's beyond our target range, definitely not extent found */ if (key.objectid > ino || key.type > BTRFS_EXTENT_DATA_KEY) goto not_found; /* * | |<- File extent ->| * \- start * * This means there is a hole between start and key.offset. */ if (key.offset > start) { em->start = start; em->orig_start = start; em->block_start = EXTENT_MAP_HOLE; em->len = key.offset - start; break; } fi = btrfs_item_ptr(path.nodes[0], path.slots[0], struct btrfs_file_extent_item); extent_end = btrfs_file_extent_end(&path); /* * |<- file extent ->| | * \- start * * We haven't reached start, search next slot. */ if (extent_end <= start) goto next; /* Now this extent covers @start, convert it to em */ btrfs_extent_item_to_extent_map(inode, &path, fi, em); break; next: ret = btrfs_next_item(root, &path); if (ret < 0) goto err; if (ret > 0) goto not_found; } btrfs_release_path(&path); return em; not_found: btrfs_release_path(&path); free_extent_map(em); return NULL; err: btrfs_release_path(&path); free_extent_map(em); return ERR_PTR(ret); } static struct extent_map *defrag_lookup_extent(struct inode *inode, u64 start, u64 newer_than, bool locked) { struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree; struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; struct extent_map *em; const u32 sectorsize = BTRFS_I(inode)->root->fs_info->sectorsize; /* * Hopefully we have this extent in the tree already, try without the * full extent lock. */ read_lock(&em_tree->lock); em = lookup_extent_mapping(em_tree, start, sectorsize); read_unlock(&em_tree->lock); /* * We can get a merged extent, in that case, we need to re-search * tree to get the original em for defrag. * * If @newer_than is 0 or em::generation < newer_than, we can trust * this em, as either we don't care about the generation, or the * merged extent map will be rejected anyway. */ if (em && (em->flags & EXTENT_FLAG_MERGED) && newer_than && em->generation >= newer_than) { free_extent_map(em); em = NULL; } if (!em) { struct extent_state *cached = NULL; u64 end = start + sectorsize - 1; /* Get the big lock and read metadata off disk. */ if (!locked) lock_extent(io_tree, start, end, &cached); em = defrag_get_extent(BTRFS_I(inode), start, newer_than); if (!locked) unlock_extent(io_tree, start, end, &cached); if (IS_ERR(em)) return NULL; } return em; } static u32 get_extent_max_capacity(const struct btrfs_fs_info *fs_info, const struct extent_map *em) { if (extent_map_is_compressed(em)) return BTRFS_MAX_COMPRESSED; return fs_info->max_extent_size; } static bool defrag_check_next_extent(struct inode *inode, struct extent_map *em, u32 extent_thresh, u64 newer_than, bool locked) { struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); struct extent_map *next; bool ret = false; /* This is the last extent */ if (em->start + em->len >= i_size_read(inode)) return false; /* * Here we need to pass @newer_then when checking the next extent, or * we will hit a case we mark current extent for defrag, but the next * one will not be a target. * This will just cause extra IO without really reducing the fragments. */ next = defrag_lookup_extent(inode, em->start + em->len, newer_than, locked); /* No more em or hole */ if (!next || next->block_start >= EXTENT_MAP_LAST_BYTE) goto out; if (next->flags & EXTENT_FLAG_PREALLOC) goto out; /* * If the next extent is at its max capacity, defragging current extent * makes no sense, as the total number of extents won't change. */ if (next->len >= get_extent_max_capacity(fs_info, em)) goto out; /* Skip older extent */ if (next->generation < newer_than) goto out; /* Also check extent size */ if (next->len >= extent_thresh) goto out; ret = true; out: free_extent_map(next); return ret; } /* * Prepare one page to be defragged. * * This will ensure: * * - Returned page is locked and has been set up properly. * - No ordered extent exists in the page. * - The page is uptodate. * * NOTE: Caller should also wait for page writeback after the cluster is * prepared, here we don't do writeback wait for each page. */ static struct folio *defrag_prepare_one_folio(struct btrfs_inode *inode, pgoff_t index) { struct address_space *mapping = inode->vfs_inode.i_mapping; gfp_t mask = btrfs_alloc_write_mask(mapping); u64 page_start = (u64)index << PAGE_SHIFT; u64 page_end = page_start + PAGE_SIZE - 1; struct extent_state *cached_state = NULL; struct folio *folio; int ret; again: folio = __filemap_get_folio(mapping, index, FGP_LOCK | FGP_ACCESSED | FGP_CREAT, mask); if (IS_ERR(folio)) return folio; /* * Since we can defragment files opened read-only, we can encounter * transparent huge pages here (see CONFIG_READ_ONLY_THP_FOR_FS). We * can't do I/O using huge pages yet, so return an error for now. * Filesystem transparent huge pages are typically only used for * executables that explicitly enable them, so this isn't very * restrictive. */ if (folio_test_large(folio)) { folio_unlock(folio); folio_put(folio); return ERR_PTR(-ETXTBSY); } ret = set_folio_extent_mapped(folio); if (ret < 0) { folio_unlock(folio); folio_put(folio); return ERR_PTR(ret); } /* Wait for any existing ordered extent in the range */ while (1) { struct btrfs_ordered_extent *ordered; lock_extent(&inode->io_tree, page_start, page_end, &cached_state); ordered = btrfs_lookup_ordered_range(inode, page_start, PAGE_SIZE); unlock_extent(&inode->io_tree, page_start, page_end, &cached_state); if (!ordered) break; folio_unlock(folio); btrfs_start_ordered_extent(ordered); btrfs_put_ordered_extent(ordered); folio_lock(folio); /* * We unlocked the folio above, so we need check if it was * released or not. */ if (folio->mapping != mapping || !folio->private) { folio_unlock(folio); folio_put(folio); goto again; } } /* * Now the page range has no ordered extent any more. Read the page to * make it uptodate. */ if (!folio_test_uptodate(folio)) { btrfs_read_folio(NULL, folio); folio_lock(folio); if (folio->mapping != mapping || !folio->private) { folio_unlock(folio); folio_put(folio); goto again; } if (!folio_test_uptodate(folio)) { folio_unlock(folio); folio_put(folio); return ERR_PTR(-EIO); } } return folio; } struct defrag_target_range { struct list_head list; u64 start; u64 len; }; /* * Collect all valid target extents. * * @start: file offset to lookup * @len: length to lookup * @extent_thresh: file extent size threshold, any extent size >= this value * will be ignored * @newer_than: only defrag extents newer than this value * @do_compress: whether the defrag is doing compression * if true, @extent_thresh will be ignored and all regular * file extents meeting @newer_than will be targets. * @locked: if the range has already held extent lock * @target_list: list of targets file extents */ static int defrag_collect_targets(struct btrfs_inode *inode, u64 start, u64 len, u32 extent_thresh, u64 newer_than, bool do_compress, bool locked, struct list_head *target_list, u64 *last_scanned_ret) { struct btrfs_fs_info *fs_info = inode->root->fs_info; bool last_is_target = false; u64 cur = start; int ret = 0; while (cur < start + len) { struct extent_map *em; struct defrag_target_range *new; bool next_mergeable = true; u64 range_len; last_is_target = false; em = defrag_lookup_extent(&inode->vfs_inode, cur, newer_than, locked); if (!em) break; /* * If the file extent is an inlined one, we may still want to * defrag it (fallthrough) if it will cause a regular extent. * This is for users who want to convert inline extents to * regular ones through max_inline= mount option. */ if (em->block_start == EXTENT_MAP_INLINE && em->len <= inode->root->fs_info->max_inline) goto next; /* Skip holes and preallocated extents. */ if (em->block_start == EXTENT_MAP_HOLE || (em->flags & EXTENT_FLAG_PREALLOC)) goto next; /* Skip older extent */ if (em->generation < newer_than) goto next; /* This em is under writeback, no need to defrag */ if (em->generation == (u64)-1) goto next; /* * Our start offset might be in the middle of an existing extent * map, so take that into account. */ range_len = em->len - (cur - em->start); /* * If this range of the extent map is already flagged for delalloc, * skip it, because: * * 1) We could deadlock later, when trying to reserve space for * delalloc, because in case we can't immediately reserve space * the flusher can start delalloc and wait for the respective * ordered extents to complete. The deadlock would happen * because we do the space reservation while holding the range * locked, and starting writeback, or finishing an ordered * extent, requires locking the range; * * 2) If there's delalloc there, it means there's dirty pages for * which writeback has not started yet (we clean the delalloc * flag when starting writeback and after creating an ordered * extent). If we mark pages in an adjacent range for defrag, * then we will have a larger contiguous range for delalloc, * very likely resulting in a larger extent after writeback is * triggered (except in a case of free space fragmentation). */ if (test_range_bit_exists(&inode->io_tree, cur, cur + range_len - 1, EXTENT_DELALLOC)) goto next; /* * For do_compress case, we want to compress all valid file * extents, thus no @extent_thresh or mergeable check. */ if (do_compress) goto add; /* Skip too large extent */ if (em->len >= extent_thresh) goto next; /* * Skip extents already at its max capacity, this is mostly for * compressed extents, which max cap is only 128K. */ if (em->len >= get_extent_max_capacity(fs_info, em)) goto next; /* * Normally there are no more extents after an inline one, thus * @next_mergeable will normally be false and not defragged. * So if an inline extent passed all above checks, just add it * for defrag, and be converted to regular extents. */ if (em->block_start == EXTENT_MAP_INLINE) goto add; next_mergeable = defrag_check_next_extent(&inode->vfs_inode, em, extent_thresh, newer_than, locked); if (!next_mergeable) { struct defrag_target_range *last; /* Empty target list, no way to merge with last entry */ if (list_empty(target_list)) goto next; last = list_entry(target_list->prev, struct defrag_target_range, list); /* Not mergeable with last entry */ if (last->start + last->len != cur) goto next; /* Mergeable, fall through to add it to @target_list. */ } add: last_is_target = true; range_len = min(extent_map_end(em), start + len) - cur; /* * This one is a good target, check if it can be merged into * last range of the target list. */ if (!list_empty(target_list)) { struct defrag_target_range *last; last = list_entry(target_list->prev, struct defrag_target_range, list); ASSERT(last->start + last->len <= cur); if (last->start + last->len == cur) { /* Mergeable, enlarge the last entry */ last->len += range_len; goto next; } /* Fall through to allocate a new entry */ } /* Allocate new defrag_target_range */ new = kmalloc(sizeof(*new), GFP_NOFS); if (!new) { free_extent_map(em); ret = -ENOMEM; break; } new->start = cur; new->len = range_len; list_add_tail(&new->list, target_list); next: cur = extent_map_end(em); free_extent_map(em); } if (ret < 0) { struct defrag_target_range *entry; struct defrag_target_range *tmp; list_for_each_entry_safe(entry, tmp, target_list, list) { list_del_init(&entry->list); kfree(entry); } } if (!ret && last_scanned_ret) { /* * If the last extent is not a target, the caller can skip to * the end of that extent. * Otherwise, we can only go the end of the specified range. */ if (!last_is_target) *last_scanned_ret = max(cur, *last_scanned_ret); else *last_scanned_ret = max(start + len, *last_scanned_ret); } return ret; } #define CLUSTER_SIZE (SZ_256K) static_assert(PAGE_ALIGNED(CLUSTER_SIZE)); /* * Defrag one contiguous target range. * * @inode: target inode * @target: target range to defrag * @pages: locked pages covering the defrag range * @nr_pages: number of locked pages * * Caller should ensure: * * - Pages are prepared * Pages should be locked, no ordered extent in the pages range, * no writeback. * * - Extent bits are locked */ static int defrag_one_locked_target(struct btrfs_inode *inode, struct defrag_target_range *target, struct folio **folios, int nr_pages, struct extent_state **cached_state) { struct btrfs_fs_info *fs_info = inode->root->fs_info; struct extent_changeset *data_reserved = NULL; const u64 start = target->start; const u64 len = target->len; unsigned long last_index = (start + len - 1) >> PAGE_SHIFT; unsigned long start_index = start >> PAGE_SHIFT; unsigned long first_index = folios[0]->index; int ret = 0; int i; ASSERT(last_index - first_index + 1 <= nr_pages); ret = btrfs_delalloc_reserve_space(inode, &data_reserved, start, len); if (ret < 0) return ret; clear_extent_bit(&inode->io_tree, start, start + len - 1, EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG, cached_state); set_extent_bit(&inode->io_tree, start, start + len - 1, EXTENT_DELALLOC | EXTENT_DEFRAG, cached_state); /* Update the page status */ for (i = start_index - first_index; i <= last_index - first_index; i++) { folio_clear_checked(folios[i]); btrfs_folio_clamp_set_dirty(fs_info, folios[i], start, len); } btrfs_delalloc_release_extents(inode, len); extent_changeset_free(data_reserved); return ret; } static int defrag_one_range(struct btrfs_inode *inode, u64 start, u32 len, u32 extent_thresh, u64 newer_than, bool do_compress, u64 *last_scanned_ret) { struct extent_state *cached_state = NULL; struct defrag_target_range *entry; struct defrag_target_range *tmp; LIST_HEAD(target_list); struct folio **folios; const u32 sectorsize = inode->root->fs_info->sectorsize; u64 last_index = (start + len - 1) >> PAGE_SHIFT; u64 start_index = start >> PAGE_SHIFT; unsigned int nr_pages = last_index - start_index + 1; int ret = 0; int i; ASSERT(nr_pages <= CLUSTER_SIZE / PAGE_SIZE); ASSERT(IS_ALIGNED(start, sectorsize) && IS_ALIGNED(len, sectorsize)); folios = kcalloc(nr_pages, sizeof(struct folio *), GFP_NOFS); if (!folios) return -ENOMEM; /* Prepare all pages */ for (i = 0; i < nr_pages; i++) { folios[i] = defrag_prepare_one_folio(inode, start_index + i); if (IS_ERR(folios[i])) { ret = PTR_ERR(folios[i]); nr_pages = i; goto free_folios; } } for (i = 0; i < nr_pages; i++) folio_wait_writeback(folios[i]); /* Lock the pages range */ lock_extent(&inode->io_tree, start_index << PAGE_SHIFT, (last_index << PAGE_SHIFT) + PAGE_SIZE - 1, &cached_state); /* * Now we have a consistent view about the extent map, re-check * which range really needs to be defragged. * * And this time we have extent locked already, pass @locked = true * so that we won't relock the extent range and cause deadlock. */ ret = defrag_collect_targets(inode, start, len, extent_thresh, newer_than, do_compress, true, &target_list, last_scanned_ret); if (ret < 0) goto unlock_extent; list_for_each_entry(entry, &target_list, list) { ret = defrag_one_locked_target(inode, entry, folios, nr_pages, &cached_state); if (ret < 0) break; } list_for_each_entry_safe(entry, tmp, &target_list, list) { list_del_init(&entry->list); kfree(entry); } unlock_extent: unlock_extent(&inode->io_tree, start_index << PAGE_SHIFT, (last_index << PAGE_SHIFT) + PAGE_SIZE - 1, &cached_state); free_folios: for (i = 0; i < nr_pages; i++) { folio_unlock(folios[i]); folio_put(folios[i]); } kfree(folios); return ret; } static int defrag_one_cluster(struct btrfs_inode *inode, struct file_ra_state *ra, u64 start, u32 len, u32 extent_thresh, u64 newer_than, bool do_compress, unsigned long *sectors_defragged, unsigned long max_sectors, u64 *last_scanned_ret) { const u32 sectorsize = inode->root->fs_info->sectorsize; struct defrag_target_range *entry; struct defrag_target_range *tmp; LIST_HEAD(target_list); int ret; ret = defrag_collect_targets(inode, start, len, extent_thresh, newer_than, do_compress, false, &target_list, NULL); if (ret < 0) goto out; list_for_each_entry(entry, &target_list, list) { u32 range_len = entry->len; /* Reached or beyond the limit */ if (max_sectors && *sectors_defragged >= max_sectors) { ret = 1; break; } if (max_sectors) range_len = min_t(u32, range_len, (max_sectors - *sectors_defragged) * sectorsize); /* * If defrag_one_range() has updated last_scanned_ret, * our range may already be invalid (e.g. hole punched). * Skip if our range is before last_scanned_ret, as there is * no need to defrag the range anymore. */ if (entry->start + range_len <= *last_scanned_ret) continue; if (ra) page_cache_sync_readahead(inode->vfs_inode.i_mapping, ra, NULL, entry->start >> PAGE_SHIFT, ((entry->start + range_len - 1) >> PAGE_SHIFT) - (entry->start >> PAGE_SHIFT) + 1); /* * Here we may not defrag any range if holes are punched before * we locked the pages. * But that's fine, it only affects the @sectors_defragged * accounting. */ ret = defrag_one_range(inode, entry->start, range_len, extent_thresh, newer_than, do_compress, last_scanned_ret); if (ret < 0) break; *sectors_defragged += range_len >> inode->root->fs_info->sectorsize_bits; } out: list_for_each_entry_safe(entry, tmp, &target_list, list) { list_del_init(&entry->list); kfree(entry); } if (ret >= 0) *last_scanned_ret = max(*last_scanned_ret, start + len); return ret; } /* * Entry point to file defragmentation. * * @inode: inode to be defragged * @ra: readahead state (can be NUL) * @range: defrag options including range and flags * @newer_than: minimum transid to defrag * @max_to_defrag: max number of sectors to be defragged, if 0, the whole inode * will be defragged. * * Return <0 for error. * Return >=0 for the number of sectors defragged, and range->start will be updated * to indicate the file offset where next defrag should be started at. * (Mostly for autodefrag, which sets @max_to_defrag thus we may exit early without * defragging all the range). */ int btrfs_defrag_file(struct inode *inode, struct file_ra_state *ra, struct btrfs_ioctl_defrag_range_args *range, u64 newer_than, unsigned long max_to_defrag) { struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); unsigned long sectors_defragged = 0; u64 isize = i_size_read(inode); u64 cur; u64 last_byte; bool do_compress = (range->flags & BTRFS_DEFRAG_RANGE_COMPRESS); bool ra_allocated = false; int compress_type = BTRFS_COMPRESS_ZLIB; int ret = 0; u32 extent_thresh = range->extent_thresh; pgoff_t start_index; if (isize == 0) return 0; if (range->start >= isize) return -EINVAL; if (do_compress) { if (range->compress_type >= BTRFS_NR_COMPRESS_TYPES) return -EINVAL; if (range->compress_type) compress_type = range->compress_type; } if (extent_thresh == 0) extent_thresh = SZ_256K; if (range->start + range->len > range->start) { /* Got a specific range */ last_byte = min(isize, range->start + range->len); } else { /* Defrag until file end */ last_byte = isize; } /* Align the range */ cur = round_down(range->start, fs_info->sectorsize); last_byte = round_up(last_byte, fs_info->sectorsize) - 1; /* * If we were not given a ra, allocate a readahead context. As * readahead is just an optimization, defrag will work without it so * we don't error out. */ if (!ra) { ra_allocated = true; ra = kzalloc(sizeof(*ra), GFP_KERNEL); if (ra) file_ra_state_init(ra, inode->i_mapping); } /* * Make writeback start from the beginning of the range, so that the * defrag range can be written sequentially. */ start_index = cur >> PAGE_SHIFT; if (start_index < inode->i_mapping->writeback_index) inode->i_mapping->writeback_index = start_index; while (cur < last_byte) { const unsigned long prev_sectors_defragged = sectors_defragged; u64 last_scanned = cur; u64 cluster_end; if (btrfs_defrag_cancelled(fs_info)) { ret = -EAGAIN; break; } /* We want the cluster end at page boundary when possible */ cluster_end = (((cur >> PAGE_SHIFT) + (SZ_256K >> PAGE_SHIFT)) << PAGE_SHIFT) - 1; cluster_end = min(cluster_end, last_byte); btrfs_inode_lock(BTRFS_I(inode), 0); if (IS_SWAPFILE(inode)) { ret = -ETXTBSY; btrfs_inode_unlock(BTRFS_I(inode), 0); break; } if (!(inode->i_sb->s_flags & SB_ACTIVE)) { btrfs_inode_unlock(BTRFS_I(inode), 0); break; } if (do_compress) BTRFS_I(inode)->defrag_compress = compress_type; ret = defrag_one_cluster(BTRFS_I(inode), ra, cur, cluster_end + 1 - cur, extent_thresh, newer_than, do_compress, §ors_defragged, max_to_defrag, &last_scanned); if (sectors_defragged > prev_sectors_defragged) balance_dirty_pages_ratelimited(inode->i_mapping); btrfs_inode_unlock(BTRFS_I(inode), 0); if (ret < 0) break; cur = max(cluster_end + 1, last_scanned); if (ret > 0) { ret = 0; break; } cond_resched(); } if (ra_allocated) kfree(ra); /* * Update range.start for autodefrag, this will indicate where to start * in next run. */ range->start = cur; if (sectors_defragged) { /* * We have defragged some sectors, for compression case they * need to be written back immediately. */ if (range->flags & BTRFS_DEFRAG_RANGE_START_IO) { filemap_flush(inode->i_mapping); if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT, &BTRFS_I(inode)->runtime_flags)) filemap_flush(inode->i_mapping); } if (range->compress_type == BTRFS_COMPRESS_LZO) btrfs_set_fs_incompat(fs_info, COMPRESS_LZO); else if (range->compress_type == BTRFS_COMPRESS_ZSTD) btrfs_set_fs_incompat(fs_info, COMPRESS_ZSTD); ret = sectors_defragged; } if (do_compress) { btrfs_inode_lock(BTRFS_I(inode), 0); BTRFS_I(inode)->defrag_compress = BTRFS_COMPRESS_NONE; btrfs_inode_unlock(BTRFS_I(inode), 0); } return ret; } void __cold btrfs_auto_defrag_exit(void) { kmem_cache_destroy(btrfs_inode_defrag_cachep); } int __init btrfs_auto_defrag_init(void) { btrfs_inode_defrag_cachep = kmem_cache_create("btrfs_inode_defrag", sizeof(struct inode_defrag), 0, SLAB_MEM_SPREAD, NULL); if (!btrfs_inode_defrag_cachep) return -ENOMEM; return 0; }