/* * DMA Engine test module * * Copyright (C) 2007 Atmel Corporation * Copyright (C) 2013 Intel Corporation * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License version 2 as * published by the Free Software Foundation. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include static unsigned int test_buf_size = 16384; module_param(test_buf_size, uint, S_IRUGO | S_IWUSR); MODULE_PARM_DESC(test_buf_size, "Size of the memcpy test buffer"); static char test_channel[20]; module_param_string(channel, test_channel, sizeof(test_channel), S_IRUGO | S_IWUSR); MODULE_PARM_DESC(channel, "Bus ID of the channel to test (default: any)"); static char test_device[20]; module_param_string(device, test_device, sizeof(test_device), S_IRUGO | S_IWUSR); MODULE_PARM_DESC(device, "Bus ID of the DMA Engine to test (default: any)"); static unsigned int threads_per_chan = 1; module_param(threads_per_chan, uint, S_IRUGO | S_IWUSR); MODULE_PARM_DESC(threads_per_chan, "Number of threads to start per channel (default: 1)"); static unsigned int max_channels; module_param(max_channels, uint, S_IRUGO | S_IWUSR); MODULE_PARM_DESC(max_channels, "Maximum number of channels to use (default: all)"); static unsigned int iterations; module_param(iterations, uint, S_IRUGO | S_IWUSR); MODULE_PARM_DESC(iterations, "Iterations before stopping test (default: infinite)"); static unsigned int xor_sources = 3; module_param(xor_sources, uint, S_IRUGO | S_IWUSR); MODULE_PARM_DESC(xor_sources, "Number of xor source buffers (default: 3)"); static unsigned int pq_sources = 3; module_param(pq_sources, uint, S_IRUGO | S_IWUSR); MODULE_PARM_DESC(pq_sources, "Number of p+q source buffers (default: 3)"); static int timeout = 3000; module_param(timeout, uint, S_IRUGO | S_IWUSR); MODULE_PARM_DESC(timeout, "Transfer Timeout in msec (default: 3000), " "Pass -1 for infinite timeout"); /* Maximum amount of mismatched bytes in buffer to print */ #define MAX_ERROR_COUNT 32 /* * Initialization patterns. All bytes in the source buffer has bit 7 * set, all bytes in the destination buffer has bit 7 cleared. * * Bit 6 is set for all bytes which are to be copied by the DMA * engine. Bit 5 is set for all bytes which are to be overwritten by * the DMA engine. * * The remaining bits are the inverse of a counter which increments by * one for each byte address. */ #define PATTERN_SRC 0x80 #define PATTERN_DST 0x00 #define PATTERN_COPY 0x40 #define PATTERN_OVERWRITE 0x20 #define PATTERN_COUNT_MASK 0x1f enum dmatest_error_type { DMATEST_ET_OK, DMATEST_ET_MAP_SRC, DMATEST_ET_MAP_DST, DMATEST_ET_PREP, DMATEST_ET_SUBMIT, DMATEST_ET_TIMEOUT, DMATEST_ET_DMA_ERROR, DMATEST_ET_DMA_IN_PROGRESS, DMATEST_ET_VERIFY, }; struct dmatest_thread_result { struct list_head node; unsigned int n; unsigned int src_off; unsigned int dst_off; unsigned int len; enum dmatest_error_type type; union { unsigned long data; dma_cookie_t cookie; enum dma_status status; int error; }; }; struct dmatest_result { struct list_head node; char *name; struct list_head results; }; struct dmatest_info; struct dmatest_thread { struct list_head node; struct dmatest_info *info; struct task_struct *task; struct dma_chan *chan; u8 **srcs; u8 **dsts; enum dma_transaction_type type; bool done; }; struct dmatest_chan { struct list_head node; struct dma_chan *chan; struct list_head threads; }; /** * struct dmatest_params - test parameters. * @buf_size: size of the memcpy test buffer * @channel: bus ID of the channel to test * @device: bus ID of the DMA Engine to test * @threads_per_chan: number of threads to start per channel * @max_channels: maximum number of channels to use * @iterations: iterations before stopping test * @xor_sources: number of xor source buffers * @pq_sources: number of p+q source buffers * @timeout: transfer timeout in msec, -1 for infinite timeout */ struct dmatest_params { unsigned int buf_size; char channel[20]; char device[20]; unsigned int threads_per_chan; unsigned int max_channels; unsigned int iterations; unsigned int xor_sources; unsigned int pq_sources; int timeout; }; /** * struct dmatest_info - test information. * @params: test parameters * @lock: access protection to the fields of this structure */ struct dmatest_info { /* Test parameters */ struct dmatest_params params; /* Internal state */ struct list_head channels; unsigned int nr_channels; struct mutex lock; /* debugfs related stuff */ struct dentry *root; /* Test results */ struct list_head results; struct mutex results_lock; }; static struct dmatest_info test_info; static bool dmatest_match_channel(struct dmatest_params *params, struct dma_chan *chan) { if (params->channel[0] == '\0') return true; return strcmp(dma_chan_name(chan), params->channel) == 0; } static bool dmatest_match_device(struct dmatest_params *params, struct dma_device *device) { if (params->device[0] == '\0') return true; return strcmp(dev_name(device->dev), params->device) == 0; } static unsigned long dmatest_random(void) { unsigned long buf; get_random_bytes(&buf, sizeof(buf)); return buf; } static void dmatest_init_srcs(u8 **bufs, unsigned int start, unsigned int len, unsigned int buf_size) { unsigned int i; u8 *buf; for (; (buf = *bufs); bufs++) { for (i = 0; i < start; i++) buf[i] = PATTERN_SRC | (~i & PATTERN_COUNT_MASK); for ( ; i < start + len; i++) buf[i] = PATTERN_SRC | PATTERN_COPY | (~i & PATTERN_COUNT_MASK); for ( ; i < buf_size; i++) buf[i] = PATTERN_SRC | (~i & PATTERN_COUNT_MASK); buf++; } } static void dmatest_init_dsts(u8 **bufs, unsigned int start, unsigned int len, unsigned int buf_size) { unsigned int i; u8 *buf; for (; (buf = *bufs); bufs++) { for (i = 0; i < start; i++) buf[i] = PATTERN_DST | (~i & PATTERN_COUNT_MASK); for ( ; i < start + len; i++) buf[i] = PATTERN_DST | PATTERN_OVERWRITE | (~i & PATTERN_COUNT_MASK); for ( ; i < buf_size; i++) buf[i] = PATTERN_DST | (~i & PATTERN_COUNT_MASK); } } static void dmatest_mismatch(u8 actual, u8 pattern, unsigned int index, unsigned int counter, bool is_srcbuf) { u8 diff = actual ^ pattern; u8 expected = pattern | (~counter & PATTERN_COUNT_MASK); const char *thread_name = current->comm; if (is_srcbuf) pr_warn("%s: srcbuf[0x%x] overwritten! Expected %02x, got %02x\n", thread_name, index, expected, actual); else if ((pattern & PATTERN_COPY) && (diff & (PATTERN_COPY | PATTERN_OVERWRITE))) pr_warn("%s: dstbuf[0x%x] not copied! Expected %02x, got %02x\n", thread_name, index, expected, actual); else if (diff & PATTERN_SRC) pr_warn("%s: dstbuf[0x%x] was copied! Expected %02x, got %02x\n", thread_name, index, expected, actual); else pr_warn("%s: dstbuf[0x%x] mismatch! Expected %02x, got %02x\n", thread_name, index, expected, actual); } static unsigned int dmatest_verify(u8 **bufs, unsigned int start, unsigned int end, unsigned int counter, u8 pattern, bool is_srcbuf) { unsigned int i; unsigned int error_count = 0; u8 actual; u8 expected; u8 *buf; unsigned int counter_orig = counter; for (; (buf = *bufs); bufs++) { counter = counter_orig; for (i = start; i < end; i++) { actual = buf[i]; expected = pattern | (~counter & PATTERN_COUNT_MASK); if (actual != expected) { if (error_count < MAX_ERROR_COUNT) dmatest_mismatch(actual, pattern, i, counter, is_srcbuf); error_count++; } counter++; } } if (error_count > MAX_ERROR_COUNT) pr_warn("%s: %u errors suppressed\n", current->comm, error_count - MAX_ERROR_COUNT); return error_count; } /* poor man's completion - we want to use wait_event_freezable() on it */ struct dmatest_done { bool done; wait_queue_head_t *wait; }; static void dmatest_callback(void *arg) { struct dmatest_done *done = arg; done->done = true; wake_up_all(done->wait); } static inline void unmap_src(struct device *dev, dma_addr_t *addr, size_t len, unsigned int count) { while (count--) dma_unmap_single(dev, addr[count], len, DMA_TO_DEVICE); } static inline void unmap_dst(struct device *dev, dma_addr_t *addr, size_t len, unsigned int count) { while (count--) dma_unmap_single(dev, addr[count], len, DMA_BIDIRECTIONAL); } static unsigned int min_odd(unsigned int x, unsigned int y) { unsigned int val = min(x, y); return val % 2 ? val : val - 1; } static char *thread_result_get(const char *name, struct dmatest_thread_result *tr) { static const char * const messages[] = { [DMATEST_ET_OK] = "No errors", [DMATEST_ET_MAP_SRC] = "src mapping error", [DMATEST_ET_MAP_DST] = "dst mapping error", [DMATEST_ET_PREP] = "prep error", [DMATEST_ET_SUBMIT] = "submit error", [DMATEST_ET_TIMEOUT] = "test timed out", [DMATEST_ET_DMA_ERROR] = "got completion callback (DMA_ERROR)", [DMATEST_ET_DMA_IN_PROGRESS] = "got completion callback (DMA_IN_PROGRESS)", [DMATEST_ET_VERIFY] = "errors", }; static char buf[512]; snprintf(buf, sizeof(buf) - 1, "%s: #%u: %s with src_off=0x%x ""dst_off=0x%x len=0x%x (%lu)", name, tr->n, messages[tr->type], tr->src_off, tr->dst_off, tr->len, tr->data); return buf; } static int thread_result_add(struct dmatest_info *info, struct dmatest_result *r, enum dmatest_error_type type, unsigned int n, unsigned int src_off, unsigned int dst_off, unsigned int len, unsigned long data) { struct dmatest_thread_result *tr; tr = kzalloc(sizeof(*tr), GFP_KERNEL); if (!tr) return -ENOMEM; tr->type = type; tr->n = n; tr->src_off = src_off; tr->dst_off = dst_off; tr->len = len; tr->data = data; mutex_lock(&info->results_lock); list_add_tail(&tr->node, &r->results); mutex_unlock(&info->results_lock); if (tr->type == DMATEST_ET_OK) pr_debug("%s\n", thread_result_get(r->name, tr)); else pr_warn("%s\n", thread_result_get(r->name, tr)); return 0; } static void result_free(struct dmatest_info *info, const char *name) { struct dmatest_result *r, *_r; mutex_lock(&info->results_lock); list_for_each_entry_safe(r, _r, &info->results, node) { struct dmatest_thread_result *tr, *_tr; if (name && strcmp(r->name, name)) continue; list_for_each_entry_safe(tr, _tr, &r->results, node) { list_del(&tr->node); kfree(tr); } kfree(r->name); list_del(&r->node); kfree(r); } mutex_unlock(&info->results_lock); } static struct dmatest_result *result_init(struct dmatest_info *info, const char *name) { struct dmatest_result *r; r = kzalloc(sizeof(*r), GFP_KERNEL); if (r) { r->name = kstrdup(name, GFP_KERNEL); INIT_LIST_HEAD(&r->results); mutex_lock(&info->results_lock); list_add_tail(&r->node, &info->results); mutex_unlock(&info->results_lock); } return r; } /* * This function repeatedly tests DMA transfers of various lengths and * offsets for a given operation type until it is told to exit by * kthread_stop(). There may be multiple threads running this function * in parallel for a single channel, and there may be multiple channels * being tested in parallel. * * Before each test, the source and destination buffer is initialized * with a known pattern. This pattern is different depending on * whether it's in an area which is supposed to be copied or * overwritten, and different in the source and destination buffers. * So if the DMA engine doesn't copy exactly what we tell it to copy, * we'll notice. */ static int dmatest_func(void *data) { DECLARE_WAIT_QUEUE_HEAD_ONSTACK(done_wait); struct dmatest_thread *thread = data; struct dmatest_done done = { .wait = &done_wait }; struct dmatest_info *info; struct dmatest_params *params; struct dma_chan *chan; struct dma_device *dev; const char *thread_name; unsigned int src_off, dst_off, len; unsigned int error_count; unsigned int failed_tests = 0; unsigned int total_tests = 0; dma_cookie_t cookie; enum dma_status status; enum dma_ctrl_flags flags; u8 *pq_coefs = NULL; int ret; int src_cnt; int dst_cnt; int i; struct dmatest_result *result; thread_name = current->comm; set_freezable(); ret = -ENOMEM; smp_rmb(); info = thread->info; params = &info->params; chan = thread->chan; dev = chan->device; if (thread->type == DMA_MEMCPY) src_cnt = dst_cnt = 1; else if (thread->type == DMA_XOR) { /* force odd to ensure dst = src */ src_cnt = min_odd(params->xor_sources | 1, dev->max_xor); dst_cnt = 1; } else if (thread->type == DMA_PQ) { /* force odd to ensure dst = src */ src_cnt = min_odd(params->pq_sources | 1, dma_maxpq(dev, 0)); dst_cnt = 2; pq_coefs = kmalloc(params->pq_sources+1, GFP_KERNEL); if (!pq_coefs) goto err_thread_type; for (i = 0; i < src_cnt; i++) pq_coefs[i] = 1; } else goto err_thread_type; result = result_init(info, thread_name); if (!result) goto err_srcs; thread->srcs = kcalloc(src_cnt+1, sizeof(u8 *), GFP_KERNEL); if (!thread->srcs) goto err_srcs; for (i = 0; i < src_cnt; i++) { thread->srcs[i] = kmalloc(params->buf_size, GFP_KERNEL); if (!thread->srcs[i]) goto err_srcbuf; } thread->srcs[i] = NULL; thread->dsts = kcalloc(dst_cnt+1, sizeof(u8 *), GFP_KERNEL); if (!thread->dsts) goto err_dsts; for (i = 0; i < dst_cnt; i++) { thread->dsts[i] = kmalloc(params->buf_size, GFP_KERNEL); if (!thread->dsts[i]) goto err_dstbuf; } thread->dsts[i] = NULL; set_user_nice(current, 10); /* * src and dst buffers are freed by ourselves below */ flags = DMA_CTRL_ACK | DMA_PREP_INTERRUPT; while (!kthread_should_stop() && !(params->iterations && total_tests >= params->iterations)) { struct dma_async_tx_descriptor *tx = NULL; dma_addr_t dma_srcs[src_cnt]; dma_addr_t dma_dsts[dst_cnt]; u8 align = 0; total_tests++; /* honor alignment restrictions */ if (thread->type == DMA_MEMCPY) align = dev->copy_align; else if (thread->type == DMA_XOR) align = dev->xor_align; else if (thread->type == DMA_PQ) align = dev->pq_align; if (1 << align > params->buf_size) { pr_err("%u-byte buffer too small for %d-byte alignment\n", params->buf_size, 1 << align); break; } len = dmatest_random() % params->buf_size + 1; len = (len >> align) << align; if (!len) len = 1 << align; src_off = dmatest_random() % (params->buf_size - len + 1); dst_off = dmatest_random() % (params->buf_size - len + 1); src_off = (src_off >> align) << align; dst_off = (dst_off >> align) << align; dmatest_init_srcs(thread->srcs, src_off, len, params->buf_size); dmatest_init_dsts(thread->dsts, dst_off, len, params->buf_size); for (i = 0; i < src_cnt; i++) { u8 *buf = thread->srcs[i] + src_off; dma_srcs[i] = dma_map_single(dev->dev, buf, len, DMA_TO_DEVICE); ret = dma_mapping_error(dev->dev, dma_srcs[i]); if (ret) { unmap_src(dev->dev, dma_srcs, len, i); thread_result_add(info, result, DMATEST_ET_MAP_SRC, total_tests, src_off, dst_off, len, ret); failed_tests++; continue; } } /* map with DMA_BIDIRECTIONAL to force writeback/invalidate */ for (i = 0; i < dst_cnt; i++) { dma_dsts[i] = dma_map_single(dev->dev, thread->dsts[i], params->buf_size, DMA_BIDIRECTIONAL); ret = dma_mapping_error(dev->dev, dma_dsts[i]); if (ret) { unmap_src(dev->dev, dma_srcs, len, src_cnt); unmap_dst(dev->dev, dma_dsts, params->buf_size, i); thread_result_add(info, result, DMATEST_ET_MAP_DST, total_tests, src_off, dst_off, len, ret); failed_tests++; continue; } } if (thread->type == DMA_MEMCPY) tx = dev->device_prep_dma_memcpy(chan, dma_dsts[0] + dst_off, dma_srcs[0], len, flags); else if (thread->type == DMA_XOR) tx = dev->device_prep_dma_xor(chan, dma_dsts[0] + dst_off, dma_srcs, src_cnt, len, flags); else if (thread->type == DMA_PQ) { dma_addr_t dma_pq[dst_cnt]; for (i = 0; i < dst_cnt; i++) dma_pq[i] = dma_dsts[i] + dst_off; tx = dev->device_prep_dma_pq(chan, dma_pq, dma_srcs, src_cnt, pq_coefs, len, flags); } if (!tx) { unmap_src(dev->dev, dma_srcs, len, src_cnt); unmap_dst(dev->dev, dma_dsts, params->buf_size, dst_cnt); thread_result_add(info, result, DMATEST_ET_PREP, total_tests, src_off, dst_off, len, 0); msleep(100); failed_tests++; continue; } done.done = false; tx->callback = dmatest_callback; tx->callback_param = &done; cookie = tx->tx_submit(tx); if (dma_submit_error(cookie)) { thread_result_add(info, result, DMATEST_ET_SUBMIT, total_tests, src_off, dst_off, len, cookie); msleep(100); failed_tests++; continue; } dma_async_issue_pending(chan); wait_event_freezable_timeout(done_wait, done.done, msecs_to_jiffies(params->timeout)); status = dma_async_is_tx_complete(chan, cookie, NULL, NULL); if (!done.done) { /* * We're leaving the timed out dma operation with * dangling pointer to done_wait. To make this * correct, we'll need to allocate wait_done for * each test iteration and perform "who's gonna * free it this time?" dancing. For now, just * leave it dangling. */ thread_result_add(info, result, DMATEST_ET_TIMEOUT, total_tests, src_off, dst_off, len, 0); failed_tests++; continue; } else if (status != DMA_SUCCESS) { enum dmatest_error_type type = (status == DMA_ERROR) ? DMATEST_ET_DMA_ERROR : DMATEST_ET_DMA_IN_PROGRESS; thread_result_add(info, result, type, total_tests, src_off, dst_off, len, status); failed_tests++; continue; } /* Unmap by myself */ unmap_src(dev->dev, dma_srcs, len, src_cnt); unmap_dst(dev->dev, dma_dsts, params->buf_size, dst_cnt); error_count = 0; pr_debug("%s: verifying source buffer...\n", thread_name); error_count += dmatest_verify(thread->srcs, 0, src_off, 0, PATTERN_SRC, true); error_count += dmatest_verify(thread->srcs, src_off, src_off + len, src_off, PATTERN_SRC | PATTERN_COPY, true); error_count += dmatest_verify(thread->srcs, src_off + len, params->buf_size, src_off + len, PATTERN_SRC, true); pr_debug("%s: verifying dest buffer...\n", thread->task->comm); error_count += dmatest_verify(thread->dsts, 0, dst_off, 0, PATTERN_DST, false); error_count += dmatest_verify(thread->dsts, dst_off, dst_off + len, src_off, PATTERN_SRC | PATTERN_COPY, false); error_count += dmatest_verify(thread->dsts, dst_off + len, params->buf_size, dst_off + len, PATTERN_DST, false); if (error_count) { thread_result_add(info, result, DMATEST_ET_VERIFY, total_tests, src_off, dst_off, len, error_count); failed_tests++; } else { thread_result_add(info, result, DMATEST_ET_OK, total_tests, src_off, dst_off, len, 0); } } ret = 0; for (i = 0; thread->dsts[i]; i++) kfree(thread->dsts[i]); err_dstbuf: kfree(thread->dsts); err_dsts: for (i = 0; thread->srcs[i]; i++) kfree(thread->srcs[i]); err_srcbuf: kfree(thread->srcs); err_srcs: kfree(pq_coefs); err_thread_type: pr_notice("%s: terminating after %u tests, %u failures (status %d)\n", thread_name, total_tests, failed_tests, ret); /* terminate all transfers on specified channels */ if (ret) dmaengine_terminate_all(chan); thread->done = true; if (params->iterations > 0) while (!kthread_should_stop()) { DECLARE_WAIT_QUEUE_HEAD_ONSTACK(wait_dmatest_exit); interruptible_sleep_on(&wait_dmatest_exit); } return ret; } static void dmatest_cleanup_channel(struct dmatest_chan *dtc) { struct dmatest_thread *thread; struct dmatest_thread *_thread; int ret; list_for_each_entry_safe(thread, _thread, &dtc->threads, node) { ret = kthread_stop(thread->task); pr_debug("dmatest: thread %s exited with status %d\n", thread->task->comm, ret); list_del(&thread->node); kfree(thread); } /* terminate all transfers on specified channels */ dmaengine_terminate_all(dtc->chan); kfree(dtc); } static int dmatest_add_threads(struct dmatest_info *info, struct dmatest_chan *dtc, enum dma_transaction_type type) { struct dmatest_params *params = &info->params; struct dmatest_thread *thread; struct dma_chan *chan = dtc->chan; char *op; unsigned int i; if (type == DMA_MEMCPY) op = "copy"; else if (type == DMA_XOR) op = "xor"; else if (type == DMA_PQ) op = "pq"; else return -EINVAL; for (i = 0; i < params->threads_per_chan; i++) { thread = kzalloc(sizeof(struct dmatest_thread), GFP_KERNEL); if (!thread) { pr_warning("dmatest: No memory for %s-%s%u\n", dma_chan_name(chan), op, i); break; } thread->info = info; thread->chan = dtc->chan; thread->type = type; smp_wmb(); thread->task = kthread_run(dmatest_func, thread, "%s-%s%u", dma_chan_name(chan), op, i); if (IS_ERR(thread->task)) { pr_warning("dmatest: Failed to run thread %s-%s%u\n", dma_chan_name(chan), op, i); kfree(thread); break; } /* srcbuf and dstbuf are allocated by the thread itself */ list_add_tail(&thread->node, &dtc->threads); } return i; } static int dmatest_add_channel(struct dmatest_info *info, struct dma_chan *chan) { struct dmatest_chan *dtc; struct dma_device *dma_dev = chan->device; unsigned int thread_count = 0; int cnt; dtc = kmalloc(sizeof(struct dmatest_chan), GFP_KERNEL); if (!dtc) { pr_warning("dmatest: No memory for %s\n", dma_chan_name(chan)); return -ENOMEM; } dtc->chan = chan; INIT_LIST_HEAD(&dtc->threads); if (dma_has_cap(DMA_MEMCPY, dma_dev->cap_mask)) { cnt = dmatest_add_threads(info, dtc, DMA_MEMCPY); thread_count += cnt > 0 ? cnt : 0; } if (dma_has_cap(DMA_XOR, dma_dev->cap_mask)) { cnt = dmatest_add_threads(info, dtc, DMA_XOR); thread_count += cnt > 0 ? cnt : 0; } if (dma_has_cap(DMA_PQ, dma_dev->cap_mask)) { cnt = dmatest_add_threads(info, dtc, DMA_PQ); thread_count += cnt > 0 ? cnt : 0; } pr_info("dmatest: Started %u threads using %s\n", thread_count, dma_chan_name(chan)); list_add_tail(&dtc->node, &info->channels); info->nr_channels++; return 0; } static bool filter(struct dma_chan *chan, void *param) { struct dmatest_params *params = param; if (!dmatest_match_channel(params, chan) || !dmatest_match_device(params, chan->device)) return false; else return true; } static int __run_threaded_test(struct dmatest_info *info) { dma_cap_mask_t mask; struct dma_chan *chan; struct dmatest_params *params = &info->params; int err = 0; dma_cap_zero(mask); dma_cap_set(DMA_MEMCPY, mask); for (;;) { chan = dma_request_channel(mask, filter, params); if (chan) { err = dmatest_add_channel(info, chan); if (err) { dma_release_channel(chan); break; /* add_channel failed, punt */ } } else break; /* no more channels available */ if (params->max_channels && info->nr_channels >= params->max_channels) break; /* we have all we need */ } return err; } #ifndef MODULE static int run_threaded_test(struct dmatest_info *info) { int ret; mutex_lock(&info->lock); ret = __run_threaded_test(info); mutex_unlock(&info->lock); return ret; } #endif static void __stop_threaded_test(struct dmatest_info *info) { struct dmatest_chan *dtc, *_dtc; struct dma_chan *chan; list_for_each_entry_safe(dtc, _dtc, &info->channels, node) { list_del(&dtc->node); chan = dtc->chan; dmatest_cleanup_channel(dtc); pr_debug("dmatest: dropped channel %s\n", dma_chan_name(chan)); dma_release_channel(chan); } info->nr_channels = 0; } static void stop_threaded_test(struct dmatest_info *info) { mutex_lock(&info->lock); __stop_threaded_test(info); mutex_unlock(&info->lock); } static int __restart_threaded_test(struct dmatest_info *info, bool run) { struct dmatest_params *params = &info->params; /* Stop any running test first */ __stop_threaded_test(info); if (run == false) return 0; /* Clear results from previous run */ result_free(info, NULL); /* Copy test parameters */ params->buf_size = test_buf_size; strlcpy(params->channel, strim(test_channel), sizeof(params->channel)); strlcpy(params->device, strim(test_device), sizeof(params->device)); params->threads_per_chan = threads_per_chan; params->max_channels = max_channels; params->iterations = iterations; params->xor_sources = xor_sources; params->pq_sources = pq_sources; params->timeout = timeout; /* Run test with new parameters */ return __run_threaded_test(info); } static bool __is_threaded_test_run(struct dmatest_info *info) { struct dmatest_chan *dtc; list_for_each_entry(dtc, &info->channels, node) { struct dmatest_thread *thread; list_for_each_entry(thread, &dtc->threads, node) { if (!thread->done) return true; } } return false; } static ssize_t dtf_read_run(struct file *file, char __user *user_buf, size_t count, loff_t *ppos) { struct dmatest_info *info = file->private_data; char buf[3]; mutex_lock(&info->lock); if (__is_threaded_test_run(info)) { buf[0] = 'Y'; } else { __stop_threaded_test(info); buf[0] = 'N'; } mutex_unlock(&info->lock); buf[1] = '\n'; buf[2] = 0x00; return simple_read_from_buffer(user_buf, count, ppos, buf, 2); } static ssize_t dtf_write_run(struct file *file, const char __user *user_buf, size_t count, loff_t *ppos) { struct dmatest_info *info = file->private_data; char buf[16]; bool bv; int ret = 0; if (copy_from_user(buf, user_buf, min(count, (sizeof(buf) - 1)))) return -EFAULT; if (strtobool(buf, &bv) == 0) { mutex_lock(&info->lock); if (__is_threaded_test_run(info)) ret = -EBUSY; else ret = __restart_threaded_test(info, bv); mutex_unlock(&info->lock); } return ret ? ret : count; } static const struct file_operations dtf_run_fops = { .read = dtf_read_run, .write = dtf_write_run, .open = simple_open, .llseek = default_llseek, }; static int dtf_results_show(struct seq_file *sf, void *data) { struct dmatest_info *info = sf->private; struct dmatest_result *result; struct dmatest_thread_result *tr; mutex_lock(&info->results_lock); list_for_each_entry(result, &info->results, node) { list_for_each_entry(tr, &result->results, node) seq_printf(sf, "%s\n", thread_result_get(result->name, tr)); } mutex_unlock(&info->results_lock); return 0; } static int dtf_results_open(struct inode *inode, struct file *file) { return single_open(file, dtf_results_show, inode->i_private); } static const struct file_operations dtf_results_fops = { .open = dtf_results_open, .read = seq_read, .llseek = seq_lseek, .release = single_release, }; static int dmatest_register_dbgfs(struct dmatest_info *info) { struct dentry *d; d = debugfs_create_dir("dmatest", NULL); if (IS_ERR(d)) return PTR_ERR(d); if (!d) goto err_root; info->root = d; /* Run or stop threaded test */ debugfs_create_file("run", S_IWUSR | S_IRUGO, info->root, info, &dtf_run_fops); /* Results of test in progress */ debugfs_create_file("results", S_IRUGO, info->root, info, &dtf_results_fops); return 0; err_root: pr_err("dmatest: Failed to initialize debugfs\n"); return -ENOMEM; } static int __init dmatest_init(void) { struct dmatest_info *info = &test_info; int ret; memset(info, 0, sizeof(*info)); mutex_init(&info->lock); INIT_LIST_HEAD(&info->channels); mutex_init(&info->results_lock); INIT_LIST_HEAD(&info->results); ret = dmatest_register_dbgfs(info); if (ret) return ret; #ifdef MODULE return 0; #else return run_threaded_test(info); #endif } /* when compiled-in wait for drivers to load first */ late_initcall(dmatest_init); static void __exit dmatest_exit(void) { struct dmatest_info *info = &test_info; debugfs_remove_recursive(info->root); stop_threaded_test(info); result_free(info, NULL); } module_exit(dmatest_exit); MODULE_AUTHOR("Haavard Skinnemoen (Atmel)"); MODULE_LICENSE("GPL v2");